
Efficient Switch Migration for Controller Load
Balancing in Software Defined Networking

(Invited Paper)

1st Rajorshi Biswas
dept. computer and information sciences

temple university
Philadelphia, United States

rajorshi@temple.edu

2nd Jie Wu
dept. computer and information sciences

temple university
Philadelphia, United States

jiewu@temple.edu

Abstract—The number of multi-controller datacenters is in-
creasing with the increasing size of software-defined networking
(SDN) datacenters. The performance of an SDN datacenter
depends largely on the delay of response from the controller.
The delay of response depends on the controller load and the
distance from the SDN switch. The load of a controller depends
on the number of requests it receives from the switches it controls.
Therefore, a good switch-controller assignment is very important
for load balancing the controller and the performance of an SDN
datacenter. In this paper, we consider multiple controllers and
formulate problems for initial and incremental load balancing.
The initial assignment process is executed at the beginning of the
network deployment. After initial deployment, the incremental
assignment process is executed periodically. The incremental
process migrates some of the switches to another controller to
improve the performance of the network. We propose greedy and
clustering-based solutions for initial switch-controller assignment.
We also propose a greedy solution for incremental assignment.
Our proposed solutions are evaluated using both synthetic and
real datasets, and the parameters are driven by experiments at
a data center.

Index Terms—controller assignment, controller load balancing,
software defined networking, minimization

I. INTRODUCTION

Software-defined networking (SDN) technology is an ap-
proach to manage networks dynamically and programmati-
cally. Unlike the traditional network system where a human
(network administrator) manages the network components
including switches and routers, a software called a controller
manages the network components. The SDN system also
enables the feasibility of decoupling the controller network
and data network. An in-band controller system enables the
SDN switches to communicate with the controller via the data
network. On the other hand, the out-band controller system
uses the control network to communicate with the controller.

The forwarding of packets in an SDN switch is defined by
the rules installed in it. There are two types of rules: wildcard
and re-active rules [1]. When a packet arrives at any ports
of an SDN switch, it first tries to use the wildcard rules.
A wildcard rule is stored in the SDN switch and its usage
for forwarding packets is not reported to the controller. When

B C W Y

C1 C2

s1

d1 s2

d2 d3

s3

A

d4

s4

Fig. 1: An Example of switch migration.

there exist no rules to match the packet, the SDN switch asks
for a forwarding decision from the controller. The controller
replies with the decision (output to one or multiple ports, drop,
broadcast, packet modifications, etc.). The requests from a
switch leave some workload on the controller. For example,
when the first SDN switch asks for a forwarding rule for the
packet of a flow, the controller needs to construct the routing
path for the flow, create the corresponding rules, and reply
to the rule for forwarding the packet. We represent this type
of request as a path construction request. This process takes
longer than processing other types of requests. For example,
when an SDN switch asks for a forwarding rule for a packet of
the flow, the controller does not need to re-calculate the path.
It replies to the rules already created for that flow. We call this
type of request as an intermediate query request. Therefore,
for different types of requests, the controller load is different.
If the number of switches and the flows in an SDN network
is large, then one controller cannot handle all of the requests.
In this situation, the network is divided into domains and a
controller is assigned to each domain. The network needs to
be divided wisely to balance the load of the controllers.

For example, in Fig. 1, there are five SDN switches (A, B,
C, X , and Y) and four flows (f1 : s1 → d1, f2 : s2 → d2,
f3 : s3 → d3, and f4 : s4 → d4) in the network. Let us
consider that switches A, B, and C are controlled by controller
C1 and switches W and Y are controlled by controller C2.
In this assignment, C1 becomes overloaded with three path
construction and two intermediate query requests. On the other
hand, C2 is underutilized because of two path construction and
two intermediate query requests. If we migrate the switch B

to controller C2, then it will increase one more intermediate
query to C2, but C1 will receive one less path construction
request. Usually, path constructions induce almost ten times
the load than intermediate query requests do. Therefore, C1 is
no longer overloaded and C2 gets a slightly higher load than
earlier. Switch migration is challenging for several reasons.
Firstly, to the best of our knowledge none of the commercially
available SDN switches support migration. However, it is
possible to implement the migration feature by using SSH
and Linux commands provided by some of the switches. The
downside of this type of migration is that it will block packet
forwarding for a period.

According to the SDN architecture, the controllers know the
links, their usage, and SDN switches. Each of the controllers
knows a portion of the topology and they report their knowl-
edge to the assignment manager (AM) server. The AM gets
the global view of the topology and uses that information to
assign switches to the controllers so that the load is balanced.
As we know, the topology and flows are subject to change over
time. Therefore, the AM needs to adjust the assignment based
on new topology and flow information changes. Therefore, we
needed to consider two types of switch-controller assignment
processes: initial assignment and incremental assignment. The
initial assignment process is executed at the beginning of the
network deployment and the incremental assignment process
migrates some switches from one controller to another. These
problems of the initial and incremental assignment are NP-
hard and we provide greedy and clustering-based solutions.
The main contributions of our paper are:

1) We study a switch-controller assignment problem to
minimize network overhead and propose a solution for
initial deployment.

2) We investigate incremental switch-controller assignment
problems and provide greedy solutions.

3) We conduct extensive simulations and experimental re-
sults and compare them with existing approaches.

The remainder of this paper is arranged as follows. Section
II presents some related work. In Section III, we present the
system and the cost model. In Section IV, we present the
problem of switch controller assignment and propose two
solutions. Section V contains the problem of incremental
switch-controller assignment and the proposed greedy solu-
tion. Section VI and Section VI present the simulation and
experimental and results. Finally, Section VII concludes our
paper.

II. RELATED WORK

There exists several works on switch-controller assignment
and load balancing. In [2], authors formulate the dynamic
controller assignment problem as an online optimization to
minimize the total cost. The cost includes response time and
maintenance on the cluster of controllers. They propose a
two-phase algorithm that integrates key concepts from both
matching theory and coalitional games to solve it. In [3],
authors propose an effective switch-controller mapping scheme
for distributed controllers and distributes flow setup requests

among them in order to minimize flow setup time, and obtain
resilience. In [4], authors show that dynamic mapping between
switches and controllers improves efficiency in traffic load
balancing. They propose two balanced controllers (BalCon)
and BalConPlus that are switch migration schemes to achieve
load balance among SDN controllers with minimum migration
cost. BalCon is limited to the scenarios where the network can
process switch requests out of order, otherwise BalConPlus is
more suitable.

In [5], authors propose a switch migration-based decision-
making (SMDM) scheme that is aware of the load imbalance.
They consider the tradeoff between migration costs and the
load balance rate for producing a switch migration trigger.
They propose a greedy method that utilizes the migration
efficiency to produce possible migration actions. A game
theory based decision mechanism for swith migration is pro-
posed in [6]. Their system dynamically migrates switches
from heavily loaded controllers to lightly loaded controllers
based on a centralized available resource utilization maxi-
mization problem. The system takes controllers and switches
as game player, and how to migrate switches among the
control plane is considered as the player policy. In [7], a
framework for deploying multiple controllers within a WAN is
proposed. The framework dynamically adjusts the number of
active controllers. This system only considers the flow setup
latency involved in path construction in controllers, formulates
an optimization problem, and solves using Integer Linear
Program. Other works that uses ILP for solving controller
load balancing includes [8–11]. In [12], authors propose a
dynamic load balancing method based on switch migration
mechanism for clustered controllers. The mechanism can also
handle controller failover without switch disconnection. In
[13], authors propose a mechanism to maximize resource
utilization. It detects imbalance in load and the controller
randomly selects a switch for migrating. It also maintains in-
tegrity by broadcasting the migration activity to the controller’s
neighbors.

Some other works that propose distributed controller system
include [14–21]. However these systems do not consider the
cost of migration and other performance metrics including
packet forwarding delays while load balancing. Most of the
works discussed here consider controller load as the main load
balancing/switch migrating parameters. None of them consider
the control plane communication overhead and intermediate
queries for deciding switch migration that are important pa-
rameters for network performance. Therefore, a system that
considers controller load and control plane communication
overhead for deciding switch migration to obtain a load
balanced state of the controller is necessary.

III. NETWORK MODEL

Our network is composed of SDN switches, controllers,
sources, destinations, and flows. We assume that the controller
knows the links, their usage, and SDN switches. Each of the
controllers knows a portion of the topology. The controllers
report their knowledge to the assignment manager (AM)

server. Therefore, the AM has a global view of the topology
and the flows in the network. The AM also has knowledge
about the control plane and thus can infer the number of hops
and delays between switches and controllers.

The AM is responsible for the assignment of switches to the
controllers. By analyzing the topology and the flows, it finds
out the switch-controller assignment that minimizes the overall
transmission network delay. As we know, the topology and
flows are subject to change over time. Therefore, the AM needs
to adjust the assignment based on new topology and flow infor-
mation. So, there are two types of switch-controller assignment
processes: initial assignment and incremental assignment. The
initial assignment process is executed at the beginning of
the network deployment. After initial deployment, the AM
executes the incremental assignment process. The incremental
process migrates some of the switches to another controller to
improve the performance of the network.

A switch migration refers to changing the controller of
a switch. The switch migration is a complex process that
includes removing the existing controller, adding the new
controller, and initialization of the switch with the controller.
Switch migration is challenging for several reasons. Firstly, to
the best of our knowledge, none of the commercially available
SDN switches support migration. However, it is possible to
implement the migration feature by using SSH and Linux
commands provided by some of the switches. The downside
of this type of migration is that it will block packet forwarding
for a period. The replacement of the controller can be done in
two ways: direct replacement and switch to the backup. Direct
replacement refers to the process of deleting the primary active
controller and adding a new controller. The switch to backup
approach refers to adding the new controller as a backup
controller, followed by the removal of the primary controller.

Therefore, our system is a two phase system. In the first
phase, the switches are assigned according to the initial
deployment methods. After that, the system enters into the
second phase which is basically adjusting the assignment
with the dynamic changes in flows. In the second phase,
the adjustments are done periodically using the incremental
deployment approach. The period of adjustment is determined
based on the dynamic nature of the SDN network.

A. Cost Model

Unlike the cost metric in a single controller system [22]
where only the number of rules are considered, the cost
of a switch-controller assignment is incurred by the three
parameters: the number of path construction requests, the
number of intermediate query request, and the number of
hops from the controller to the switches. The response delay
from a controller depends on the number of hops from the
controller to the switches. P (A, c) denotes the number of path
construction requests at controller c for A assignment. A(v)
represents the assigned controller for SDN switch v. Therefore,
P (A, c) can be expressed as the following:

P (A, c) =
∑
f∈F

|
⋃

v∈Pf ,A(v)=c

A(v)| (1)

Q(A, c) denotes the number of intermediate query requests
at controller c for A assignment. Q(A, c) is the number of
all forwarding nodes that are controlled by c on the path
of all flows minus the number of path construction requests.
Therefore, Q(A, c) can be expressed as the following:

Q(A, c) =
∑
f∈F

|Pf , A(v) = c| − P (A, c) (2)

D(A, c) denotes the total number of hops traveled (in
control plane) by all requests at controller c for A assignment.
That is why we multiply the distance from the controller to
the nodes (dv,A(v)) with the number of requests. Therefore,
D(A, c) can be expressed as the following:

D(A, c) =
∑
f∈F

∑
v∈Pf ,A(v)=c

dv,A(v) × (P (A, c) +Q(A, c))

(3)
We define the cost of a switch-filter assignment as a

weighted summation of the above three metrics. Therefore the
cost of assignment A can be expressed as the following:

C(A, c) = ω1P (A, c) + ω2Q(A, c) + (1− ω1 − ω2)D(A, c)
(4)

Here, ω1 and ω2 are the weights that correspond to the
amount of workload induced at the controller by a path
construction request and an intermediate query request, re-
spectively.

In the next sections, we formulate problems to minimize
this cost. This cost represents the overall transmission delays
in an SDN network. This is because, when the number of
path construction requests and intermediate query requests
are high, the controller needs a long time to produce a
decision and respond to the requests. The delay to receive
the responses at a switch also depends on the number of
hops to reach the controller. As a result, when the number
of hops to the controller is high, a packet faces delay on
each intermediate node. The SDN switches usually catche the
forwarding rules locally in their limited memory which makes
the forwarding fast. In this case, only the first packet of the
flow encounters delays on each hop. When the number of rules
in a switch is very high, then the catching cannot provide the
best performance. In that case, not only the first packets but
also the following packets encounter delays.

IV. INITIAL DEPLOYMENT

In this section, we formulate the problem of switch assign-
ment so that the maximum cost for all flows is minimal.

Problem I: Find switch to controller mapping so that the
maximum delay of all flows is minimum.

Let the topology be G = (V,E) where V = {v1, v2, ..., vN}
is the set of N SDN switches and E is the set of links.
Let the set of controllers C = {c1, c2, ...cM} contain M

Algorithm 1 Find a switch assignment

Input: Topology G, set of controller C, set of flows F .
Output: A set of links to block from Lc.

1: Procedure: FIND-ASSIGNMENT(G)
2: ∀c ∈ C B[c]← initial switch.
3: for c ∈ C do
4: Candidate← NEI(B[C])
5: for s ∈ Candidate do
6: cost[s]← COST(s,B, F,G)
7: B[c] = B[c] ∪ ARGMIN(cost)
8: A(ARGMIN(COST))← c

9: return A

controllers. The set of flows in the network is denoted by
F = {f1, f2, ..., fK}. Therefore, the problem can be expressed
as the following:

minimize max
∀c∈C

C(A, c)

subject to ∀v∈V dvA(v) ≤ Th1

(5)

Here, Th1 is the threshold, the maximum allowable distance
from a switch to a controller.

A. Solution Approaches

In this subsection, we will present several proposed solu-
tions for problem I. The problem is NP-Hard and its NP-
Hardness can be proved by converting the problem into
the famous graph partitioning problem. We propose three
approaches based on greedy and clustering methods.

B. Greedy Controller Assignment

In this approach, we assign a controller to each switch in
a greedy way. We consider that each controller is a bucket
and each switch is an element that will eventually be put in
a bucket. The process is composed of two parts: initialization
of bucket and incremental growth of bucket. The initialization
of a bucket is very important because it directs the rest of the
assignments. If the initially assigned switches are very close
to each other, then there will be fewer options to grow each
bucket. Therefore, we select a switch for each bucket in such a
way that they are at least a certain number of hops away from
each other. We also prioritize the distance from the controller
to the switch.

After the initialization of the buckets, we consider some
candidates for the extension of each bucket. The candidate
switches for extension of a bucket include the neighbors of
each switch in that bucket. We pick the switch that adds a
minimum amount of cost. The process continues until all of
the switches are covered. The complete algorithm is shown in
Alg. 1.

C. An Example to Greedy Controller Assignment

Let us consider the topology and flows in Fig. 2.
There are eight SDN switches (A,B,C,D,W,X, Y, and Z)
and two controllers (C1, and C2). There are four flows

A

C

B

D

W

X

Y

Z

C1 C2

s1

d1
s2

d2 d3

d4

s4

s3

sw sw

Fig. 2: Example for initial switch migration.

(f1, f2, f3, and f4) originating at s1, s2, s3, , and s4 and des-
tined to d1, d2, d3, , and d4, respectively. Distances from
C1 (or C2) to the switches A,B,C, and , D is two (or
three) hops. Distances from C1 (or C2) to the switches
W,X, Y, and , Z is three (or two) hops.

According to Alg. 1, we first need to initialize the buckets
for the controllers. Let the minimum distance among the initial
items in the bucket be 2. We consider ω1 = 0.08 and ω2 =
0.8 There are several options for choosing the initial items of
the buckets. Let us choose {{A}, {W}} where the first and
second elements correspond to the bucket related to C1 and
C2, respectively.

Now, for the first and second buckets, we have three candi-
dates for extension {B,C,D} and {B,X, Y }, respectively.
Now we need to calculate the cost of extension for each
candidate element. The cost of adding C to the first bucket
is 0.8 × 0 + 0.08 × 0 + 0.12 × 2 = 0.24. This is because
there is no new path construction requests or intermediate
query requests. The cost of adding B to the first bucket is
0.8 × 1 + 0.08 × 0 + 0.12 × 2 = 1.04. This is because there
is one new path construction requests and no intermediate
query requests. The cost of adding D to the first bucket is
0.8 × 1 + 0.08 × 2 + 0.12 × 2 = 1.2. This is because there
is one new path construction requests and two intermediate
query requests.

Next, we need to calculate the cost of extension for each
candidate element of the second bucket. The cost of adding
B to the first bucket is 0.8 × 1 + 0.08 × 0 + 0.12 × 3 = .26.
This is because there is no new path construction requests
or intermediate query requests. The cost of adding W to the
first bucket is 0.8 × 1 + 0.08 × 0 + 0.12 × 2 = 1.04. This
is because there is one new path construction requests and
no intermediate query requests. The cost of adding Y to the
first bucket is 0.8 × 2 + 0.08 × 0 + 0.12 × 2 = 1.2. This
is because there is one new path construction requests and
two intermediate query requests. The cost of adding X to the
first bucket is 0.8 × 1 + 0.08 × 2 + 0.12 × 2 = 1.8. This is
because there is one new path construction requests and two
intermediate query requests.

Therefore, adding switch C to the first bucket pro-
duces the lowest cost increase. Therefore, the new buck-
ets are {{A,C}, {W}}. Similarly, we calculate the costs
for each candidate in the candidate sets and pick the
one that produces the lowest cost. Finally, the buckets are
{{A,C,D,X}, {W,Y,Z}} which represent that switches A,

A B C D W X Y Z
A 0 1 1 1 2 2 3 3 2 3
B 1 0 2 1 1 2 2 3 2 3
C 1 2 0 1 3 2 3 3 2 3
D 1 1 1 0 2 1 2 2 2 3
W 2 1 3 2 0 1 1 2 3 2
X 2 2 2 1 1 0 1 1 3 2
Y 3 2 3 2 1 1 0 1 3 2
Z 3 3 3 2 2 1 1 0 3 2
C1 2 2 2 2 3 3 3 3 0 3

3 3 3 3 2 2 2 2 3 0C2

C1 C2

Fig. 3: Distance matrix for clustering.

B, C, D, and X will be assigned to controller C1 and switches
W,Y, and Z will be assigned to controller C2. The total cost
for this assignment is 24.6.

Theorem 1. The complexity of Alg. 1 is O(|C|(|V |2 +
|V ||F |))).

Proof. To calculate the complexity of Alg. 1, we need to
calculate complexity of COST(s,B, F,G). If we pre-compute
the number of path construction requests and intermediate
queries, then COST(s,B, F,G) can be obtained in constant
time. The pre-computation takes O(|V ||F |). Step 5 to 8 takes
O((|V |2)) and the loop at Step 4 runs for |C| times. Therefore,
the Alg. 3 takes O(|C|(|V |2 + |V ||F |))).

D. Hierarchical Clustering

We group the switches using the hierarchical clustering
algorithm. We formulate the distance matrix from the distance
between two nodes in topology. The distance values between
a pair of nodes are normalized by dividing with the maximum
distance. The normalised distances are used for hierarchical
clustering. The distance matrix is represented as follows:

D[u, v] =
du,v

maxu,v∈V du,v
(6)

Next, we use D to cluster the nodes into |C| groups. We use
the hierarchical clustering algorithm to partition the nodes. We
set the maximum class to be the number of controllers (|C|).
This clustering will group the most similar nodes in a cluster.
We pick a cluster and calculate the average number of hops to
each controller. We assign the closest controller to the nodes in
that cluster. Then, we continue the process with the unassigned
clusters and controllers. The complete approach is shown in
Algorithm 2.

E. An Example of Hierarchical Clustering Solution

We are going to use the topology in Fig. 3 to explain this
solution. We group the nodes using the hierarchical clustering
algorithm. The similarity values between a pair of nodes
are subtracted from the maximum of the similarity values
(except the similarity value of a node with itself) to get
dissimilarities. The dissimilarities are used as distances for
hierarchical clustering. The distance matrix is represented as
follows:

Algorithm 2 Find a switch assignment

Input: Topology G, set of controller C, set of flows F .
Output: A set of links to block from Lc.

1: Procedure: FIND-ASSIGNMENT(G)
2: ∀u,v∈V ∪CD[u, v]← du,v/maxu,v∈V du,v
3: CL← HIERARCHICAL(D)
4: for all c ∈ CL do
5: min← CLOSEST(c, C)
6: for all v ∈ c do
7: A(v)← min

8: C ← C \min

9: return A

A

C

B

D

W

X

Y

Z

C1 C2

s1

d1

d3

d4

s4

s3

sw sw

d5s5
s6

d6

d7

s7

Fig. 4: Example for incremental switch migration.

Using Equation 6, we calculate D′[A,B]. Therefore,
D[A,B] = dA,B/4 = 0.25. Similarly, we calculate that
D′[B,C] = 2 and D′[B,D] = 1. So, we can see that nodes
1 and 2 are more similar than nodes 1 and 4 or 2 and 7.
The similarity score between 1 and 3 is 0. This is because
they are different in type and they do not have any similar
neighbors. Finally, by using hierarchical clustering we find
that the clusters are {{A,C,D,X,C1}, {W,Y,Z,C2}} which
represent that switches A, B, C, D, and X will be assigned to
controller C1 and switches W,Y, and Z will be assigned to
controller C2. The total cost for this assignment is also 24.6.

Theorem 2. The complexity of Alg. 2 is O(|V |3)).

Proof. To calculate the distance matrix we need O(|V |2). The
the rest of the part is determined by the complexity of the
hierarchical clustering. The standard algorithm for hierarchical
agglomerative clustering has a time complexity of O(|V |3).
In Step 5, to find the closest controller it take O(|V |) for
each clusters. Therefore, for all clusters, it will take at most
O(|C||V |) time. Therefore, the total complexity is O(|V |3 +
|V |2 + |C||V |). In the worst case, the maximum number of
controllers can be at most |V |. Therefore, the complexity of
Alg. 2 is O(|V |3).

V. INCREMENTAL DEPLOYMENT

In this section, we formulate the problem of switch assign-
ment so that the maximum cost for all flows is minimal.

Problem II: Find a switch to controller mapping so that
the maximum delay of all flows is the minimum by ensuring
limited changes.

Algorithm 3 Find a switch assignment

Input: Topology G, set of controller C, set of flows F , current
Assignment A.

Output: A set of links to block from Lc.
1: Procedure: FIND-ASSIGNMENT(G,C, F,A)
2: while DIFF(A,A′) < K do
3: Divide C into Co and Cu

4: for all c ∈ Co do
5: for v, u ∈ V : A(v) = c & A(u) ∈ NEI(c) do
6: B[u, v]← BEN(V,U)
7: u, v ← ARGMAX(B)
8: A′(v)← A(u)

9: return A′

Let the topology be G = (V,E) where V = {v1, v2, ..., vN}
is the set of N SDN switches and E is the set of links.
Let the set of controller C = {c1, c2, ...cM} contains M
controllers. The set of flows in the network is denoted by
F = {f1, f2, ..., fK}. Therefore, the problem can be expressed
as the following:

minimize max
∀c∈C

C(A, c)

subject to ∀v∈V , dvA(v) ≤ Th1,

DIFF(A,A′) ≤ Th2

(7)

Here, Th2 is the threshold of changes in an assignment.
DIFF(A,A’) is the number or changes between the cur-
rent assignment A′ and the next assignment A. Therefore,
DIFF(A,A’) can be expressed as the following:

DIFF(A,A’) =
∑
v∈V

x(A(v), A′(v))

x(a, b) =

{
1, if a = b

0, otherwise

(8)

A. Solution Approaches

In this subsection, we present our proposed solutions for
problem II. Though we have added one more constraints, the
problem is still NP-Hard We propose three approaches based
on greedy methods.

B. Greedy Incremental Deployment

To find the new assignment, we first calculate the load of
each controller. By using the equation 3, we calculate the load
of the controllers in C. Then, we divide the C into two parts
Co and Cu (C = Co∪Cu) based on the load of the controller.
If a load of a controller is higher (or lower) than a threshold,
then Co (or Cu) will contain it. Therefore, Co represents the set
of the overloaded controllers and Cu represents the set of the
depleted controllers. The part of the topology that is controlled
by an overloaded controller is called the overloaded domain
and the part of the topology that is controlled by a depleted
controller is called the depleted domain.

Next, for each overloaded domain, we consider the depleted
neighboring domains as the candidate domains. Then, we need

to find a switch that will be migrated to the neighboring
domain. Let A(v) ∈ Co and A(u) ∈ Cu such that there is
a link between u and v. In this case, v may be considered
to migrate to A(u). We consider a parameter called migration
benefit for determining the priority of migration in this greedy
approach. The migration benefit is the ratio of increased total
load and the amount of transferred load. Let A be the current
assignment and A′ is the new assignment after migrating v to
the neighboring domain (A′(v) = A(u)).

BEN(v, u) =
C(A,A(v)) + C(A,A(u))− C(A′, A′(v))− C(A′, A′(u))

(9)
Among all eligible migrations we pick the pair that provides

the maximum benefit. The process continues until the number
of migrations is equal to K.

C. An Example of Incremental Assignment

Let us consider the current topology and flows in Fig. 4 and
the previous assignment {A,B,C,D,X} to C1 and {W,Y,Z}
to C2. Because of three new flows (f5, f6 and f7) and an
expired flow f4 in Fig. 4, controller C1 gets overwhelmed.
Therefore, the Co{C1} and Cu{C2}. There are two possible
migration options here: migrate B to C2 or migrate X to
C2. Next, we will calculate the benefit of migration for both
options.

For the first option (migrate B to C2) the benefit is
BEN(v, u) = (4.48 + 3.36 − 3.84 − 4.96) = −0.96. If
we migrate X to C2 then the benefit will be BEN(v, u) =
(4.48+3.36−3.68−3.68) = 0.48. Therefore, we get a higher
benefit from migrating the switch X to C2. Fig. 4 shows the
new assignment after migration.

Theorem 3. The complexity of Alg. 3 is O(|F ||V |K)).

Proof. To calculate the complexity of Alg. 3, we need to
calculate complexity of BEN(u, v). According to the Eq. 4, it
takes O(|F ||V |)) to calculate cost. Therefore, the complexity
of BEN(u, v) is O(|F ||V |)). The nested loops in Step 4-8
take O(|V ||C|). The loop at Step 2 executes at most K times.
Therefore, the Alg. 3 takes O(|F ||V |K).

VI. SIMULATION AND EXPERIMENTS

In this section, we present our experimental and simulation
results comparing some existing works.

A. Experimental Settings

We conduct the experiments in our data center with fifteen
SDN switches. We use the regular switches in the control
plane. The partial topology of the data center is shown in
Fig. 5. Nodes 2 to 16 are Pica 8 (P-3297) SDN switches.
The numbers at the ends of a link denote the port number
where it is plugged. There are four servers (101-104) that are
connected at the leaf level switches. We create three flows
{101 → 102, 101 → 103, 101 → 104} and record the ping
delays (round trip delay). Initially, switches between 2 and 12

1 1 1 1

1 1 1 1 1 1 1 1

2 3 2 3 2 3 2 3

2 3 2 3

2 31 1

0

1

101

11

Controller

102 103 104

1

Fig. 5: Datacenter topology (partial).

are controlled by controller 0, and switches between 4 and 16
are controlled by controller 1.

We use ONOS (2.2.2) as the controller software. We develop
a Java program that can connect the switches through SSH and
change the controller of any switch. The program does not
need to run on the same machine as the controller because
it communicates with the controller through SSH. We also
develop a flow generator program that keeps generating flows
to random destinations. The controller modifier program first
uses the direct replacement method and observes the delay to
restore the communication of 101 → 104 flow. We observe
an average delay of 5.2 seconds for the direct replacement
of controllers. The controller modifier program is used to
apply the switch to backup methods. We observe an average
delay of 5.6 seconds for this method. Therefore, from these
experiments, we conclude that the direct replacement method
works better than the switch to backup method.

After that we run some experiments to obtain the values
of the weights (ω1, and ω2). To do so, we needed to change
the control topology to make the different number of hops
reach the controller. We change the number of hops between
switches and the controllers from 2 to 5 and observe the round
trip time of the three flows mentioned above. We observe the
first round trip time is higher than the following round trip
times. This is because of the path establishment overhead of
the controller. This delay is used to calculate the weight of
path construction cost (ω1). From the delays, we calculate the
delay of the response from the controller for different hops
(ω2). We use these values in the simulations presented in the
next subsections.

B. Simulation Settings

We conducted all the experiments with a custom-built Java
simulator. The main reason for using a custom-built simulator
is its scalability and fast execution time. We do not need to
analyze transmission time or natural packet drop issues rather
to calculate cost of switch controller assignment, migration
costs, and benefits. The network topologies we considered
contain 100 − 300 switches. Based on our experience, using
NS3 or other similar simulators for this kind of simulation
would take several days. That is why we built our own Java
multi-threaded simulator to get the results quickly.

We generate random topologies by dividing an area of 500×
500 square unit into 50× 50 blocks. In each block, a certain
number of nodes are placed randomly to make an uniform
distribution of nodes. We randomly select some nodes and

(a) Topology T1. (b) Topology T2.

Fig. 6: Randomly generated topologies.

attach a source or destination. We set the link capacities as
100 Mbps for simplicity and ease of comparison. After that,
we generate the desired number of flows by randomly selecting
a source and a destination. We set the data rate randomly. The
initial routing of the flows are done using shortest path routing.
Fig. 6 shows the randomly generated topologies. Topology T1

is small and sparse and contains 75 nodes. Topology T2 is
large and dense and contains 233 nodes.

We measure the cost and compare with different approaches.
In the distance based approach, each switch is assigned to the
closest available controller. All of the results in the plot are
the average of 1000 runs.

C. Simulation Results

Firstly, we observe the cost of controller assignment by
changing different parameters, such as the number of rules and
number of controllers. Fig. 7(a) shows the cost of assignment
for different number of flows in T1. We vary the number
of flows from 20 to 100 and keep the maximum data rate
as 10 Mbps. We set the number of controllers as 5. For
all assignment methods, the cost increases with the increase
of the number of flows. This is because when the number
of flows is higher, the controllers get a higher number of
requests from the switches. The distance-based clustering-
based method produces the highest and the lowest amount of
costs for all numbers of flows, respectively. The cost produced
by greedy assignment method remains in between them. When
the number of flows is 20 and distance-based method is used,
the average cost is 114.78. When the greedy method is used,
the average cost is 100.42. When the clustering-based method
is used, the average cost is 90.14. The cost decreased by about
12% and 21% in greedy and clustering methods. When the
number of flows is 80 and distance-based method is used, the
average cost is 407.34. When the greedy method is used, the
average cost is 366.25. When the clustering-based method is
used, the average cost is 328.95. The cost decreased by about
10% and 19% in greedy and clustering methods.

Fig. 7(b) shows the cost of assignment for different number
of flows in T2. We keep the same settings as the previous
simulation. We observe a higher overall cost in T2 than T1.
This is because the topology is large and the average number
of hops between the sources and the destinations is also higher

(a) Different # of flows in T1. (b) Different # of flows in T2. (c) Different # of controllers in T1. (d) Different # of controllers in T2.

(e) Different # of flows in T1. (f) Different # of flows in T2. (g) Different # of controllers in T1. (h) Different # of controllers in T2.

Fig. 7: Simulation results.

in T2. The distance-based clustering-based method produces
the highest and the lowest amount of costs for all numbers of
flows, respectively. The cost produced by greedy assignment
method remains in between them. When the number of flows
is 20 and distance-based method is used, the average cost is
109.39. When the greedy method is used, the average cost is
103.28. When the clustering-based method is used, the average
cost is 1.54. The cost decreased by about 5.5% and 14.5% in
greedy and clustering methods. When the number of flows is
100 and distance-based method is used, the average cost is
719.63. When the greedy method is used, the average cost is
647.03. When the clustering-based method is used, the average
cost is 1.54. The cost decreased by about 10% and 17% in
greedy and clustering methods.

Next, we observe the cost of controller assignment by
changing the number of controllers. Fig. 7(c) shows the cost
of assignment for different number of controllers in T1. We
vary the number of controllers from 2 to 10 and keep the
number of flows as 50. Other settings are kept the same as
the previous simulation. For all assignment methods, the cost
decreases slightly with the increase of number of controllers.
This is because when the number of controllers is higher,
there are more options of assignment and the average distance
between switches and controllers reduces. The distance-based
clustering-based method also produces the highest and the low-
est amount of costs for all numbers of controllers, respectively.
The cost produced by greedy assignment method is lightly
lower than the distance based method. When the number of
controllers is 2 and distance-based method is used, the average
cost is 230.92. When the greedy method is used, the average
cost is 231.63. When the clustering-based method is used, the
average cost is 209.10. The cost decreased by about 0.3%
and 9% in greedy and clustering methods. When the number
of controllers is 10 and distance-based method is used, the
average cost is 233.70. When the greedy method is used, the

average cost is 235.36. When the clustering-based method is
used, the average cost is 214.37. The cost increased by about
0.85% and 8.15% in greedy and clustering methods.

Fig. 7(d) shows the cost of assignment for different number
of controllers in T2. We keep the same settings as the previous
simulation. We also observe a higher overall cost in T2 than
T1. For all assignment methods, the cost decreases slightly
with the increase of number of the controllers. We also observe
similar behavior as in T1. When the number of controllers is 2
and distance-based method is used, the average cost is 322.72.
When the greedy method is used, the average cost is 317.95.
When the clustering-based method is used, the average cost is
296.22. The cost decreased by about 1.5% and 8% in greedy
and clustering methods. When the number of controllers is 10
and distance-based method is used, the average cost is 317.12.
When the greedy method is used, the average cost is 281.97.
When the clustering-based method is used, the average cost is
259.08. The cost increased by about 11% and 18% in greedy
and clustering methods.

Next, we observe cost of controller assignment by using
the incremental switch assignment. Fig. 7(e) shows the cost
of assignment for different number of controllers in T1. We
vary the number of flows from 20 to 100 and keep the number
of controllers at 5. We first assign the switches by using the
clustering-based method, then we randomly delete 10 (or 20)
flows and add 10 (or 20) flows. For all changes, the cost
increases with the increase of number of the flows. When the
number of flows is 20, we observe similar cost for all changes.
When the number of flows is 100, the cost decreases by about
10% and 24% for 10 and 20 flow changes, respectively. We
also observe similar behavior in T2 as shown in 7(f). When the
number of flows is 20, we observe similar cost for all changes.
When the number of flows is 100, the cost decreases by about
8% and 23% for 10 and 20 flow changes, respectively.

Figs. 7(g) and 7(h) show the cost of assignment for different

number of controllers in T1. We vary the number of controllers
from 2 to 10 and keep the number of flows at 50. For all
changes, the cost decreases slightly with the increase of the
number of controllers. For all changes, the cost decreases
slightly with the increase of the number of controllers. When
the number of controllers is 2, we observe that the cost
decreases by about 16% and 35% for 10 and 20 flow changes,
respectively. We also observe similar behavior in T2. When the
number of controllers is 10, we observe similar cost difference
as 2 controllers. Therefore, from the above simulations we can
conclude that the clustering based approach works better than
the other two approaches.

VII. CONCLUSION

Controller load balancing for large-scale SDN datacenters is
very important for ensuring good performance. To balance the
load of the controllers, we need to migrate SDN switches from
overloaded controller to relatively lightly loaded controller.
Currently, switch migration functionality is not available in
commercially available switches. Therefore, we investigate
the possibility of switch migration by accessing the system
using ssh. We have formulated two problems for switch-
controller assignments that consider initial deployment and
incremental modification for load balancing. We proposed
several solutions to the problems. Our extensive simulations by
using parameters driven from experiments, show great support
for the solutions.

ACKNOWLEDGEMENT

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS
1651947, and CNS 1564128.

REFERENCES

[1] J.-P. Sheu and Y.-C. Chuo, “Wildcard rules caching and cache
replacement algorithms in software-defined networking,” IEEE
Transactions on Network and Service Management, vol. 13,
no. 1, pp. 19–29, 2016.

[2] T. Wang, F. Liu, and H. Xu, “An efficient online algorithm for
dynamic sdn controller assignment in data center networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp.
2788–2801, 2017.

[3] V. Sridharan, M. Gurusamy, and T. Truong-Huu, “On multiple
controller mapping in software defined networks with resilience
constraints,” IEEE Communications Letters, vol. 21, no. 8, pp.
1763–1766, 2017.

[4] Y. Xu, M. Cello, I.-C. Wang, A. Walid, G. Wilfong, C. H.-
P. Wen, M. Marchese, and H. J. Chao, “Dynamic switch
migration in distributed software-defined networks to achieve
controller load balance,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 515–529, 2019.

[5] C. Wang, B. Hu, S. Chen, D. Li, and B. Liu, “A switch
migration-based decision-making scheme for balancing load in
sdn,” IEEE Access, vol. 5, pp. 4537–4544, 2017.

[6] G. Cheng, H. Chen, H. Hu, and J. Lan, “Dynamic switch
migration towards a scalable sdn control plane,” Int. J. Commun.
Syst., vol. 29, no. 9, p. 1482–1499, Jun. 2016.

[7] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning

in software defined networks,” in Proceedings of the 9th In-
ternational Conference on Network and Service Management,
2013, pp. 18–25.

[8] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An
approach for service function chain routing and virtual function
network instance migration in network function virtualization
architectures,” IEEE/ACM Transactions on Networking, vol. 25,
no. 4, pp. 2008–2025, 2017.

[9] F. He and E. Oki, “Load balancing model against multiple
controller failures in software defined networks,” in ICC 2020-
2020 IEEE International Conference on Communications, 2020,
pp. 1–6.

[10] X. Zhang, L. Li, and C.-b. Yan, “Robust controller placement
based on load balancing in software defined networks,” in 2020
IEEE International Conference on Networking, Sensing and
Control, pp. 1–6.

[11] L. Li, N. Du, H. Liu, R. Zhang, and C. Yan, “Towards robust
controller placement in software-defined networks against links
failure,” in 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management, 2019, pp. 216–223.

[12] C. Liang, R. Kawashima, and H. Matsuo, “Scalable and crash-
tolerant load balancing based on switch migration for multiple
open flow controllers,” in 2014 Second International Symposium
on Computing and Networking, 2014, pp. 171–177.

[13] G. Cheng, H. Chen, Z. Wang, and S. Chen, “Dha: Distributed
decisions on the switch migration toward a scalable sdn control
plane,” in 2015 IFIP Networking Conference, 2015, pp. 1–9.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” in 9th USENIX Symposium on Operating
Systems Design and Implementation. Vancouver, BC: USENIX
Association, Oct. 2010.

[15] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed
control plane for openflow.” USA: USENIX Association, 2010,
p. 3.

[16] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework
for efficient and scalable offloading of control applications,” in
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks. New York, NY, USA: Association for
Computing Machinery, 2012, p. 19–24.

[17] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock,
M. Jarschel, and M. Hoffmann, “Heuristic approaches to the
controller placement problem in large scale sdn networks,” IEEE
Transactions on Network and Service Management, vol. 12,
no. 1, pp. 4–17, 2015.

[18] J. C. Mogul and P. Congdon, “Hey, you darned counters! get off
my asic!” in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks. New York, NY, USA: Association
for Computing Machinery, 2012, p. 25–30.

[19] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined
networks,” in 2nd USENIX Workshop on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services,
Apr. 2012.

[20] D. Erickson, “The beacon openflow controller,” in Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Soft-
ware Defined Networking. New York, NY, USA: Association
for Computing Machinery, 2013, p. 13–18.

[21] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, “Devoflow: Scaling flow manage-
ment for high-performance networks,” in Proceedings of the
ACM SIGCOMM 2011 Conference. New York, NY, USA:
Association for Computing Machinery, 2011, p. 254–265.

[22] R. Biswas and J. Wu, “Traffic engineering to minimize the
number of rules in sdn datacenters,” IEEE Transactions on
Network Science and Engineering, pp. 1–1, 2021.

