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Abstract—Efficient geometric routing algorithms have been
studied extensively in two-dimensional ad hoc networks, orsimply
2D networks. These algorithms are efficient and they have been
proven to be the worst-case optimal, localized routing algorithms.
However, few prior works have focused on efficient geometric
routing in 3D networks due to the lack of an efficient method to
limit the search once the greedy routing algorithm encounters
a local-minimum, like face routing in 2D networks. In this
paper, we tackle the problem of efficient geometric routing in
3D networks. We propose routing on hulls, a 3D analogue to
face routing, and present the first 3D partial unit Delaunay
triangulation (PUDT) algorithm to divide the entire networ k
space into a number of closed subspaces. The proposedgreedy-
hull-greedy (GHG) routing is efficient because it bounds the local-
minimum recovery process from the whole network to the surface
structure (hull) of only one of the subspaces.

Index Terms—Delaunay triangulation, geometric routing, ad
hoc networks, three-dimensional (3D) networks.

I. I NTRODUCTION

In this paper, we focus on efficient geometric routing
algorithms for three-dimensional ad hoc networks, or simply
3D networks. Exploiting the geometry of the network to
perform routing is a commonly-used approach for overcoming
the challenges posed by resource-limited ad hoc networks. An
important property of geometric routing algorithms is thatthey
are based on local information, which can easily be updated to
reflect the unavoidable topology changes in mobile networks.

Most efficient geometric routing protocols start with greedy
forwarding, which is simple and close to optimal. However,
greedy forwarding is not always successful as it fails when a
message reaches alocal-minimumnode whose neighbors are
all further away from the destination than the node itself. For
2D networks, face routing is the most prominent solution to
recover from local-minimum [1], [2], [3], [4], and [5].

Because face routing relies on planar graphs, face-based
geometric routing algorithms are only applicable in networks
on strictly plane surfaces. Therefore, there is a need for 3D
geometric routing algorithms that can be deployed in more
adversary situations, such as on a hilly territory, in the sky,
underground, and underwater. We found that few previous
research works [6], [7], [8] have attempted to find a counterpart
of face routing in 3D networks.

In this paper, we propose an efficient, delivery guaran-
teed, 3D geometric routing protocol, calledgreedy-hull-greedy
(GHG) geometric routing. This algorithm contains a greedy
forwarding algorithm and a hull routing algorithm. It is a 3D
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Fig. 1. An example of greedy-hull-greedy (GHG) routing.

analogy of the greedy-face-greedy (GFG) routing protocol in
2D networks. Logically, the 3D network is divided into many
subspaces. Once a message travels to a local-minimum in
greedy forwarding, one of the adjacent subspaces of the local-
minimum is identified, such that a local-minimum recovery
search can succeed by only searching the nodes that are on
the surface structure (hull) of this subspace. Our algorithm is
efficient because it efficiently bounds the searched nodes toa
portion of nodes in the network.

An example routing process of GHG is shown in Figure 1,
where greedy routing sends the message from node 55 (source)
to node 15. On local-minimum 15, hull routing sends the
message from 15 to 70, where greedy forwarding can be
continued (since 70 is closer to 46 than 15). Finally, greedy
routing sends the message from 70 to 46 (destination).

Our contributions in this paper include: (1) We first propose
to use the partial unit Delaunay triangulation(PUDT) to
define network hulls (structures corresponding to subspaces)
in 3D networks. (2) We present a localized PUDT algorithm,
which reduces the PUDT construction cost to a little more than
1-hop worth. (3) We devise a hull routing algorithm, which
efficiently recovers from local-minima in 3D networks. (4) We
perform a simulation evaluation. Interested readers can refer
to the long version of this paper available at [9].

II. PRELIMINARIES

A. Geometric routing

This paper considers a geometric routing algorithm in ad
hoc networks with all nodes distributed in 3D. Following
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Fig. 2. A comparison of UDG, DT, UDT, and PUDT.

the convention in geometric routing research, all wireless
nodes have distinctive identities, each wireless node knows
its location information (i.e. through a GPS receiver), andall
wireless nodes have the same transmission range, which is
normalized to one unit. Consequently, all wireless nodes (V )
together define aunit-disk graphUDG(V ) in a 2D network,
or a unit-ball graphUBG(V ) in a 3D network.

In [10], Liu and Wu proposed several force-based geometric
routing protocols, which do not rely on planar graph and can
be applicable to 3D networks. These algorithms outperform
several state-of-the-art geometric routing protocols in 2D ran-
dom networks; however, they do not have a small theoretical
worst-case bound on route length.

B. Localized planar graphs in 2D networks

A planar graph construction algorithm logically removes
some of the links (edges) from a graph such that there is no
crossing edges in the graph. A planar graph construction is
localized if every nodeu can remove the edges incident on
u using only the information of the nodes within a constant
number of hops (maximally 2-hops in our case), and each pair
of adjacent nodes remove their common edge consistently. The
relative neighborhood graph(RNG) consists of all edgesuv

such that‖uv‖ < 1 and that there is no pointw such that
‖uw‖ < ‖uv‖ and‖wv‖ < ‖uv‖. Let disk(u, v) be the closed
disk with diameteruv. The Gabriel graph (GG) consists of
all edgesuv such that‖uv‖ < 1 and the interior ofdisk(u, v)
does not contain any other node. There is no crossing edges in
RNG and GG because at least one edge in any pair of crossing
edges must be removed according to their definitions.

In a d-dimensional Euclidean space, a Delaunay triangula-
tion is a triangulationDT (V ) such that no point inV is inside
the circum-hypersphere of anyd-simplex inDT (V ). Here, a
d-simplex is thed-dimensional analogue of a triangle. We are
interested in 3-dimensional spaces where the 3-simplex is a
tetrahedron. In Euclidean space, the Delaunay triangulation of
V corresponds to the dual graph of the Voronoi tessellation
for V .

A unit Delaunay triangulation(UDT) [11] is a subgraph of
DT in terms of edges and UDT= DT ∩ UDG. That is, UDT
differs from DT in that UDT only contains the edges which are
shorter than one.Partial unit Delaunay triangulation(PUDT)
differs from UDT in that PUDT might contain extra edges
and PUDT always results in a connected graph. In a PUDT
graph in a 2D network, an edge is removed when it crosses
another edge and it does not belong to any DT. That is, PUDT

removes edges more reluctantly than RNG and GG. Details
of 3D PUDT construction will be presented in Section IV. A
comparison example of DT, UDT and PUDT in a 2D network
is shown in Figure 2. In UDT (Figure 2(c)),edge(p1, p4)
is removed because it is longer than 1, andedge(p2, p3) is
removed for not belonging to any DT. In PUDT (Figure 2(d)),
edge(p2, p3) is retained because it does not intersect any other
edge in UDG. To summarize, UDT⊆ DT, but PUDT⊆ DT
is not true.

III. T HE PROPOSEDAPPROACH

The proposed geometric routing protocol starts with greedy
forwarding. Whenever the message is forwarded to a local-
minimum, a recovery process starts, searching in one of the
subspaces adjacent to the local-minimum that contains the line
segment between the local-minimum and destination. Once the
recovery process sends the message to a node that is closer
to the destination than the local-minimum, it switches backto
greedy forwarding.

This paper tackles several challenges in 3D geometric
routing. The first challenge is dividing the network space
into subspaces in order to limit the local-minimum recovery
search in one of these subspaces, which improves recovery
efficiency. In 2D networks, faces are areas enclosed by edges.
Local-minimum recovery is performed on a particular face by
searching along consecutive edges bordering the face. In 3D
networks, we first propose to use triangles, each of which is
defined by three connected nodes, to divide the 3D network
space into subspaces. The entire network space is divided by
triangles into one outer subspace and zero to any number of
inner subspaces. Any inner subspace is enclosed by triangles.
Traveling from a point inside one subspace to a point inside
another subspace must go through at least one triangle. In
Figure 1, the network consists of two spherical inner subspaces
and one outer subspace which fills the rest of the entire space.

The second challenge is removing intersecting triangles.
In 2D planarization, crossing edges need to be removed
such that the whole network area can be divided into faces.
Similarly, non-overlapping subspaces cannot be divided when
intersecting triangles exist. We propose a low-cost, localized
PUDT algorithm in Section IV to remove intersecting triangles
which use just over 1-hop worth of information.

The third challenge is identifying nodes in a particular
subspace. This is required by our local-minimum recovery
search, which is limited to the nodes belonging to a particular
subspace. To do so, we define ahull of a subspace as a
structure containing triangles (that enclose the subspace) and
single edges (that do not belong to any triangle and are inside
the subspace). Nodes on the vertices of the triangles or single
edges of a hull belong to the subspace of the hull. Defining
hulls essentially groups the triangles and single edges (and
consequently nodes) into different subspaces. We propose a
local hull construction in Section V, in which each node
locally groups its triangles and single edges into different
local hulls. Specifically, we distinguish each triangle by its



two sides; then each sided triangle or single edge belongs to
exactly one local hull.

In Figure 1, the hull of the right-side inner subspace
contains all the triangles on the right-side ball and the single
edge(p16, p71) inside the ball. Some triangles have two of their
sides belonging to different hulls, and others have both sides
belonging to the same hull. For example, both sides of the
blue triangle,∆(p20, p38, p70), belong to the outer hull (outer
subspace). Each single edge belongs to only one hull which
contains it.

The last, but not least, challenge deals with searching
(Section VI) on the target hull (hull routing). For a particular
destination, a target hull is a hull that is adjacent to the local-
minimum and contains the line segment between the local-
minimum and destination. Recovery from the local-minimum
is guaranteed when searching on the target hull. For enhanced
performance, we propose a hull-based connected dominating
set (CDS) in Section VI, which further limits the node in the
local-minimum recovery search.

IV. PARTIAL UNIT DELAUNAY TRIANGULATION (PUDT)

A. The basic approach and its correctness

We denote nodes asp1, p2, . . ., an edge between nodes
p1 and p2 as edge(p1, p2), a triangle determined by three
points not in a line as∆(p1, p2, p3), a tetrahedron as
T (p1, p2, p3, p4), and a ball determined by four points
not on the same plane asball(p1, p2, p3, p4). Note that
ball(p1, p2, p3, p4) is the circumsphere ofT (p1, p2, p3, p4).

When the edges can be arbitrarily long, the result of
applying Delaunay triangulation to a set of vertices is a
space uniquely divided into a number of non-overlapping
tetrahedra (the 3D simplexes) and a single outer subspace.
Each tetrahedron is a subspace enclosed by four triangles.
The rule to determine the Delaunay tetrahedra is that only
the tetrahedra without a fifth vertex inside its circumsphere is
valid. Two tetrahedra are overlapping if there is a common
point inside both tetrahedra.

Our PUDT algorithm in 3D networks is analogous to planar
graph construction in 2D networks: planar graph construction
removes intersecting edges, while our PUDT construction
removes intersecting triangles and edges. It can be proven that
if there is no intersecting edge and triangle, then there is no
overlapping tetrahedra. This is because when two tetrahedra
overlap, one of the four triangles on the first tetrahedron must
intersect a triangle on the second tetrahedron; moreover, if
two triangles intersect, an edge of one of the triangles must
intersect the other triangle.

When the network is very dense, the retained triangles
partition the network space into a number of tetrahedra.
Otherwise, there are some irregular polyhedra, each of which
consists of a number of tetrahedra combined because the
triangle between them does not exist for owning edges that
are longer than 1.

Our basic PUDT algorithm logically removes the edges
and triangles. The triangles and edges to be removed (invalid
triangles and edges) are defined in Definition 1. Definition 1
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Fig. 3. Illustrations for Definition 1.

guarantees that an edge and a triangle cannot exist at the same
time if they intersect. Note that we define edges and triangles
as two kinds of objects. Removing any of the three edges of
a triangle results in removing the triangle. However, when a
triangle is removed, all of its three edges can be retained in
the graph.

Definition 1 (Invalid edge & triangle):If edge(p1, p2) in-
tersects∆(p3, p4, p5) and p2 is outside ball(p1, p3, p4, p5),
thenedge(p1, p2) is an invalid edge (invalidated by∆(p3, p4,

p5)). Otherwise, ifp2 is insideball(p1, p3, p4, p5), then∆(p3,

p4, p5) is an invalid triangle (invalidated byedge(p1, p2)).
∆(p3, p4, p5) is also invalid if any of its three edges are invalid
or if there exists ap6 such that the radius ofball(p1, p3, p4, p5)
is greater than 1.

The last constraint on the validity of triangles in Defini-
tion 1 is a patch for Delaunay triangulation regarding not
guaranteeing delivery [3]. It can be proven that invalid edges
and triangles determined distributively are consistent among
the nodes, that the position information of a 2-hop neighbor
is sufficient for the correctness of Definition 1 in removing
intersecting triangles and edges, and that network connectivity
is conserved when invalid edges are removed.

B. A low-cost PUDT algorithm

We have showed a basic PUDT algorithm in which the
nodes propagate 2-hops of position information and then
remove all invalid edges and triangles. In this subsection,
we will calculate the PUDT with just over 1-hop worth of
position information. In this low-cost PUDT algorithm, each
node sends its own position and might also send a small
amount ofadvertised informationto its neighbors. Advertised
information is the minimal information of 1-hop neighbors’
positions that need to be sent in order to achieve consistency.
Please refer to [9] for the details of this algorithm.

V. L OCALIZED HULLS

After the PUDT construction, each node knows all of its
adjacent valid edges and triangles that do not intersect each
other. Note that greedy forwarding uses all nodes in the
network, whereas hull routing only uses nodes on the valid
edges and triangles. Therefore, starting from this section, only
valid edges and triangles are considered. For simplicity, when
we talk about triangles, we only refer to valid triangles, and
when we talk about edges, we only refer to valid and single
edges, and we refer to both valid triangle and valid single edge
as object.



The reason to divide a network into different subspaces
is to reduce the overhead in the local-minimum recovery
process from searching in the whole network to searching
only the nodes in a particular subspace. The recovery process
guarantees success when searching the target subspace. The
notion of hull is used here to identify nodes belonging to
each subspace. The nodes belonging to a subspace include the
nodes on the vertices of the triangle enclosing the subspace
and the nodes on the vertices of the single edges that are inside
the subspace. The recovery process, i.e. hull routing, willbe
presented in Section VI.

A. Identifying localized hulls

Local hull construction is a process in which each node
classifies the objects belonging to its local hulls. Each object
belongs to only one local hull. Recall that a hull for a particular
subspace is a structure which contains the triangles enclosing
the subspace and the single edges that are inside the subspace.
Due to space limitation, we cannot provide the details of the
algorithm to identify local hulls. Again, refer to [9] for the
details of this algorithm.

B. Determining the target hull

When a message reaches a local-minimum, one of the
adjacent hulls of the local-minimum is selected such that the
message can recover from the local-minimum by searching
the nodes on this hull, which is calledtarget hull. We define
target hull as the hull whose subspace contains the imaginary
m-t segment connecting the local-minimum and destination.

Since eachobject belongs to only one hull, in order to
determine the target hull, we only need to find a representative
object (a triangle or a single edge), which belongs to the target
hull. Since them-t segment is contained in the target hull, we
only need to find theclosest object[9] of the m-t segment.
This object will be in the same subspace as them-t segment,
and the hull that contains this object is the target hull. The
proof that hull routing on the target hull can always make
progress is shown in [9].

VI. GHG ROUTING

Greedy-hull-greedy (GHG) routing is analogous to greedy-
face-greedy (GFG) routing. All geometric routing algorithms
contain a greedy routing algorithm and a recovery algorithm,
since greedy routing (which forwards the message ever closer
to its destination) is the most simple and efficient. Note that
greedy routing has nothing to do with hull routing and it
can use any node in the network. An execution of GHG is
a repetitive alternation between greedy forwarding and hull
routing. GHG can be easily extended with a bounded circle
as in [5] to achieve the worst case boundO(d3), whered is
the distance between the source and destination.

A. Efficient searching on the target hull

From this subsection on, we are only concern with hull rout-
ing. We use a depth-first-search to travel the target hull which
will eventually send the message to the node where greedy

forwarding can be recovered. In 2D, searching the border of
a face for a recovery node is a trivial one-dimensional search.
Random walk is proposed in [6] to search the hull of a virtual
cube structure which is also proposed in [6]. In this paper, we
use an efficient hull-based, depth-first search, in which each
message is forwarded at most twice the number of nodes on
a target hull (leaf nodes forward at most once and non-leaf
nodes forward at mostD times, whereD is the node degree).
Therefore, we conserve the worst-case bound.

In [8], a depth-first search (DFS) has been proposed for
geometric routing where depth is defined as the reciprocal
of the distance between the node and destination. In this
algorithm, for each messagem, if a nodeu receives it for
the first time, the node creates a record form. If v is the first
node that forwardsm to u, thenv is the ancestor ofu with
respect tom’s DFS search. Whenu receivesm from some
nodew andu receivedm before, ifu has not forwardedm to
w before,u returnsm to w. Otherwise,u sorts its neighbors
to which it has not forwardedm, in decreasing order of their
depth with respect to the destination ofm, and forwardsm to
the first of them. If such a neighbor does not exist,u returns
m to its ancestorv.

In this algorithm, messagem does not need to maintain any
information about its routing state. All information is stored
in the nodes. Such information can be deleted afterm has
expired. Since both the messages’ time-to-live (TTL) and the
bandwidth in ad hoc networks are small, the amount of routing
state information stored in each node is small. We improve
this algorithm in [12], in which we make use of the broadcast
nature of wireless communication. Check [9] for its details.

B. Extension: CDS on a hull

In [13], the Gabriel graph is constructed on the connected
dominating set (CDS) of the network to reduce the number
of nodes on each face. Similarly, we use CDS to reduce
the number of nodes on each hull to make searching more
efficient.

VII. S IMULATION

A. Evaluation of the PUDT algorithm

The simulation was run in our EASIM simulator [14].
PUDT is performed in random 3D networks of size1, 000×
1, 000 × Z, whereZ varies among 100, 200, and 400. For
eachZ, networks containing a different amount of nodes are
generated. For eachZ and each network density, 100 networks
are generated to repeat the simulation by randomly selecting
an(x, y, z) coordinate for each node within the specific space.

We compare the cost of the basic PUDT (denoted byO(d)
in the simulation results) and the low-cost PUDT (denoted by
O(1)) in terms of the size of position information exchanged
among the nodes. The size is measured by the volume of
position information, each of which contains three integers
describing thex, y, andz coordinates of a node. The simu-
lation results are plotted in log scale. The measurement does
not include information of the node’s own position. Simulation
results in Figures 4(a)-4(c) show that the low-cost PUDT is
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Fig. 4. Comparison of PUDT costs (a-c) and routing perforamnce (d-f).

much cheaper than the simple approach: the average amount
of position information ranges from below 0.1 to 0.4 and the
maximum number is below 10. That is, the total amortized
cost of our low-cost PUDT is just over 1-hop of information.
Also, the cost of the low-cost PUDT is only around 3% of the
2-hop,O(d), information in the basic PUDT.

B. Routing performance

We compare the routing performance of Flooding (which
finds the optimal paths), DFS [8] and DFS+CDS (DFS runs
on the connected dominating set of the network), greedy-
random-greedy (GRG) [6], which performs its random walk
local-minimum recovery search on the hull we constructed,
and GHG. Our simulation metric is in terms of hop-count.

We use networks with randomly placed nodes and artificial
holes to emulate obstacles in practical situations. We generate
random networks of different node degreeD. The average
node degree in different networks ranges from 8, 10, or 12
neighbors per node. Small holes, other than the artificial hole,
might exist in regions where node density is low. Disconnected
networks are discarded. The size of all networks is500×500×
500 and the transmission range of the nodes is 100. In different
networks, a rectangular hole whose size isH × H × 150 is
created at the center of the network, whereH is a variable
between 200 and 400 in different networks.

First, we compare GHG with Flooding, DFS, and
DFS+CDS. Figures 4(d)-4(f) show that, as expected, the

routing performance of all routing algorithms degrades as the
size of the hole increases. The performance of GHG is, on
average, only 20% longer than the optimal path length of
Flooding and is at most 50% longer in the worst-case. Second,
we compare GHG with GRG. From Figures 4(d)-4(f), the
performance of all of Flooding, GRG, and GHG increases as
network density increases.

VIII. C ONCLUSION

In this paper, we have proposed some solutions for ef-
ficient geometric routing in 3D networks. We present the
first 3D localized partial unit Delaunay triangulation (PUDT)
algorithm, hull recognition algorithm, andgreedy-hull-greedy
(GHG) algorithm, the first 3D analogue to face routing.
Simulation results show that PUDT is low in cost, and GHG
is more efficient than depth-first-search (DFS) and greedy-
random-greedy (GRG). We believe many future works can
be developed on our model: problems in geometric routing
in 2D networks can be redefined or extended in 3D networks,
which include multicast, geocast, virtual coordinates, handling
uncertain position information, and energy efficient routing.
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