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Abstract—Efficient geometric routing algorithms have been
studied extensively in two-dimensional ad hoc networks, osimply
2D networks. These algorithms are efficient and they have bee
proven to be the worst-case optimal, localized routing algithms.
However, few prior works have focused on efficient geometric
routing in 3D networks due to the lack of an efficient method to
limit the search once the greedy routing algorithm encountes
a local-minimum, like face routing in 2D networks. In this
paper, we tackle the problem of efficient geometric routing m
3D networks. We propose routing on hulls, a 3D analogue to
face routing, and present the first 3D partial unit Delaunay
triangulation (PUDT) algorithm to divide the entire networ k

= greedy routing

space into a number of closed subspaces. The proposgreedy- ~ *=*** hull-based DFS ... single edge
hull-greedy (GHG) routing is efficient because it bounds the local-
minimum recovery process from the whole network to the surfae Fig. 1. An example of greedy-hull-greedy (GHG) routing.

structure (hull) of only one of the subspaces.
Index Terms—Delaunay triangulation, geometric routing, ad

hoc networks, three-dimensional (3D) networks. analogy of the greedy-face-greedy (GFG) routing protogol i

I. INTRODUCTION 2D networks. Logically, the 3D network is divided into many
subspaces. Once a message travels to a local-minimum in

In this paper, we focus on efficient geometric routin . .
. . . ; reedy forwarding, one of the adjacent subspaces of thé loca
algorithms for three-dimensional ad hoc networks, or sympF .- o s .
minimum is identified, such that a local-minimum recovery

3D networks. Exploiting the geometry of the network t%earch can succeed by only searching the nodes that are on
perform routing is a commonly-used approach for overcomir o surface structure (r?/ull) 3:‘ this subsg ace. Our alqarits
the challenges posed by resource-limited ad hoc networks. ﬁf ient b it efficiently bound hp : hed 9 d
important property of geometric routing algorithms is ttregy efficient fecaéjse-n eh iciently l?un s the searched nodes to
are based on local information, which can easily be updaIedF)tOX:]OZXc;rr:]()leersc)::i; € ?g;\ggsr c')f GHG is shown in Fiaure 1
reflect the unavoidable topology changes in mobile networks P ung p 9 '
Most efficient geometric routing protocols start with gryieedWhere greedy routing sen_dg the message from _node 55 (source)
forwarding, which is simple and close to optimal. Howeveﬁzegggee1{?&:3”1;02?"%n'wﬁgels’re@éu rf(())l:\s\'lr;? disnen?:Znthse
greedy forwarding is not always successful as it fails when a 9 ' 9 y 9

messade reacheslacal-minimumnode whose neiahbors arecontinued (since 70 is closer to 46 than 15). Finally, greedy
9 g routing sends the message from 70 to 46 (destination).

all further away from the destination than the node itsetf: F N A . i :
2D networks, face routing is the most prominent solution to Our contributions in this paper include: (1) We first propose
' tto use the partial unit Delaunay triangulatioPUDT) to

recover from local-minimum [1], [2], [3], [4], and [5]. . )

Because face routing relicgs] o[n]p[la]naEr ]graphg,]face—bageecgne network hulls (structures corres_pondmg 0 subspace
geometric routing algorithms are only applicable in networ n .D networks. (2) We present a !ocallzed PUPT algorithm,
on strictly plane surfaces. Therefore, there is a need for ich reduces the PUDT construction cost to a little moratha
geometric routing algorithms that can be deployed in mo -ho_p worth. (3) We devise a hu_ll ro_utlng algorithm, which

efficiently recovers from local-minima in 3D networks. (4gW

adversary situations, such as on a hilly territory, in thg, sk ¢ imuladi luati Int ted d o
underground, and underwater. We found that few previoHSr orm a simulation evaluation. Interested readers cer re

research works [6], [7], [8] have attempted to find a couraerp to the long version of this paper available at [9].
of face routing in 3D networks. I
In this paper, we propose an efficient, delivery guaran- ) )

teed, 3D geometric routing protocol, callgteedy-hull-greedy A- G€0metric routing
(GHG) geometric routing. This algorithm contains a greedy This paper considers a geometric routing algorithm in ad
forwarding algorithm and a hull routing algorithm. It is a 3Dhoc networks with all nodes distributed in 3D. Following

. PRELIMINARIES



removes edges more reluctantly than RNG and GG. Details
of 3D PUDT construction will be presented in Section IV. A
comparison example of DT, UDT and PUDT in a 2D network
is shown in Figure 2. In UDT (Figure 2(c)kdge(p1,p4)

is removed because it is longer than 1, anlde(ps, p3) IS
removed for not belonging to any DT. In PUDT (Figure 2(d)),

(a) UDG (b) DT (c) UDT (d) PUDT , - y )
edge(p2, p3) is retained because it does not intersect any other
Fig. 2. A comparison of UDG, DT, UDT, and PUDT. edge in UDG. To summarize, UDT DT, but PUDTC DT
is not true.
the convention in geometric routing research, all wireless I1l. THE PROPOSEDAPPROACH

nodes have distinctive identities, each wireless node know

its location information (i.e. through a GPS receiver), aild | "€ Proposed geometric routing protocol starts with greedy

wireless nodes have the same transmission range, whicHovarding. Whenever the message is forwarded to a local-
normalized to one unit. Consequently, all wireless nodes (MNIMUM, a recovery process starts, searching in one of the
together define anit-disk graphU DG(V) in a 2D network subspaces adjacent to the local-minimum that containgrtge |

or aunit-ball graphU BG(V') in a 3D network ' segment between the local-minimum and destination. Orece th

In [10], Liu and Wu proposed several force-based geometffecCOVery process sends the message to a node that is closer

routing protocols, which do not rely on planar graph and c4f thz d;astlnatéc_)n than the local-minimum, it switches back

be applicable to 3D networks. These algorithms outperfoffi€€dy forwarding. _ _
several state-of-the-art geometric routing protocolsinran- ~ 1his paper tackles several challenges in 3D geometric

dom networks; however, they do not have a small theoreti¢QHting. The first challenge is dividing the network space
worst-case bound on route length. into subspaces in order to limit the local-minimum recovery

_ _ search in one of these subspaces, which improves recovery
B. Localized planar graphs in 2D networks efficiency. In 2D networks, faces are areas enclosed by edges

A planar graph construction algorithm logically removekocal-minimum recovery is performed on a particular face by
some of the links (edges) from a graph such that there is #@arching along consecutive edges bordering the face. In 3D
crossing edges in the graph. A planar graph constructionngtworks, we first propose to use triangles, each of which is
localized if every node: can remove the edges incident orflefined by three connected nodes, to divide the 3D network
u using only the information of the nodes within a constarffpace into subspaces. The entire network space is divided by
number of hops (maximally 2-hops in our case), and each pHigngles into one outer subspace and zero to any number of
of adjacent nodes remove their common edge consistently. TAner subspaces. Any inner subspace is enclosed by triangle
relative neighborhood grapfRNG) consists of all edgesy Traveling from a point inside one subspace to a point inside
such that|uv|| < 1 and that there is no point such that another subspace must go through at least one triangle. In
|luwl|| < |luv| and||wv|| < ||uv||. Letdisk(u,v) be the closed Figure 1, the network consists of two spherical inner subspa
disk with diameteruv. The Gabriel graph(GG) consists of and one outer subspace which fills the rest of the entire space
all edgesuwv such thatjuv|| < 1 and the interior oflisk(u, v) The second challenge is removing intersecting triangles.
does not contain any other node. There is no crossing edge#in2D planarization, crossing edges need to be removed
RNG and GG because at least one edge in any pair of crosssugh that the whole network area can be divided into faces.
edges must be removed according to their definitions. Similarly, non-overlapping subspaces cannot be dividedrwh

In a d-dimensional Euclidean space, a Delaunay trianguleMersecting triangles exist. We propose a low-cost, Iaedll
tion is a triangulationDT (V') such that no point iV is inside PUDT algorithm in Section IV to remove intersecting triaeg|
the circum-hypersphere of anritsimplex in DT (V). Here, a which use just over 1-hop worth of information.
d-simplex is thed-dimensional analogue of a triangle. We are The third challenge is identifying nodes in a particular
interested in 3-dimensional spaces where the 3-simplex isw@space. This is required by our local-minimum recovery
tetrahedron. In Euclidean space, the Delaunay trianguatf search, which is limited to the nodes belonging to a paicul
V' corresponds to the dual graph of the Voronoi tessellatisubspace. To do so, we definehall of a subspace as a
for V. structure containing triangles (that enclose the subgpaue

A unit Delaunay triangulatioUDT) [11] is a subgraph of single edges (that do not belong to any triangle and areensid
DT in terms of edges and UDE DT n UDG. That is, UDT the subspace). Nodes on the vertices of the triangles olesing
differs from DT in that UDT only contains the edges which aredges of a hull belong to the subspace of the hull. Defining
shorter than oneRartial unit Delaunay triangulatiofPUDT) hulls essentially groups the triangles and single edged (an
differs from UDT in that PUDT might contain extra edgesonsequently nodes) into different subspaces. We propose a
and PUDT always results in a connected graph. In a PUDdcal hull construction in Section V, in which each node
graph in a 2D network, an edge is removed when it crossesally groups its triangles and single edges into différen
another edge and it does not belong to any DT. That is, PUDdcal hulls. Specifically, we distinguish each triangle by i



two sides; then each sided triangle or single edge belongs to
exactly one local hull.

In Figure 1, the hull of the right-side inner subspace
contains all the triangles on the right-side ball and theglsin
edge(p16, p71) inside the ball. Some triangles have two of their
sides belonging to different hulls, and others have bothssid (b) Case 2
belonging to the same hull. For example, both sides of the
blue triangle A (p20, pss, p70), belong to the outer hull (outer
subspace). Each single edge belongs to only one hull which
contains it.

The last, but not least, challenge deals with searchiggarantees that an edge and a triangle cannot exist at ttee sam
(Section VI) on the target hull (hull routing). For a parfiau time if they intersect. Note that we define edges and triangle
destination, a target hull is a hull that is adjacent to trmalo as two kinds of objects. Removing any of the three edges of
minimum and contains the line segment between the localtriangle results in removing the triangle. However, when a
minimum and destination. Recovery from the local-minimuririangle is removed, all of its three edges can be retained in
is guaranteed when searching on the target hull. For enHantee graph.
performance, we propose a hull-based connected dominatingpefinition 1 (Invalid edge & triangle)lIf edge(p1, p2) in-
set (CDS) in Section VI, which further limits the node in théersectsA(ps, ps, ps) and p, is outside ball(p1, ps, p4, ps).
local-minimum recovery search. thenedge(p1, p2) is an invalid edge (invalidated bk (ps, p4,
ps)). Otherwise, ifps is insideball(p1, ps, p4, ps), thenA(ps,

V. PARTIAL UNIT DELAUNAY TRIANGULATION (PUDT) pi,ps) is an invalid triangle (invalidated bydge(py, p»)).
A. The basic approach and its correctness A(ps, ps, ps) is also invalid if any of its three edges are invalid

We denote nodes as;,ps,..., an edge between noder if there exists @g such that the radius &kl (p1, p3, pa, ps)
p1 and py as edge(p1, p2), a triangle determined by threeis greater than 1.
points not in a line asA(pi,pe2,p3), @ tetrahedron as The last constraint on the validity of triangles in Defini-
T(p1,p2,p3,p4), and a ball determined by four pointstion 1 is a patch for Delaunay triangulation regarding not
not on the same plane akall(p1,p2,ps,ps). Note that guaranteeing delivery [3]. It can be proven that invalid esig
ball(p1, p2, ps, p4) is the circumsphere df' (p1, p2, Ps, p4)- and triangles determined distributively are consistenbrgn

When the edges can be arbitrarily long, the result diie nodes, that the position information of a 2-hop neighbor
applying Delaunay triangulation to a set of vertices is i& sufficient for the correctness of Definition 1 in removing
space uniquely divided into a number of non-overlappirigtersecting triangles and edges, and that network coivitgct
tetrahedra (the 3D simplexes) and a single outer subspaseconserved when invalid edges are removed.

Each tetrahedron is a subspace enclosed by four triangles. i

The rule to determine the Delaunay tetrahedra is that orffy A 10W-cost PUDT algorithm

the tetrahedra without a fifth vertex inside its circumsgher ~ We have showed a basic PUDT algorithm in which the
valid. Two tetrahedra are overlapping if there is a commarodes propagate 2-hops of position information and then
point inside both tetrahedra. remove all invalid edges and triangles. In this subsection,

Our PUDT algorithm in 3D networks is analogous to planawve will calculate the PUDT with just over 1-hop worth of
graph construction in 2D networks: planar graph constoucti position information. In this low-cost PUDT algorithm, éac
removes intersecting edges, while our PUDT constructimode sends its own position and might also send a small
removes intersecting triangles and edges. It can be préwgn tamount ofadvertised informatiorto its neighbors. Advertised
if there is no intersecting edge and triangle, then thereois mformation is the minimal information of 1-hop neighbors’
overlapping tetrahedra. This is because when two tetrahegpsitions that need to be sent in order to achieve consigtenc
overlap, one of the four triangles on the first tetrahedrostmiPlease refer to [9] for the details of this algorithm.
intersect a triangle on the second tetrahedron; moreoker, i
two triangles intersect, an edge of one of the triangles must
intersect the other triangle. After the PUDT construction, each node knows all of its

When the network is very dense, the retained trianglesljacent valid edges and triangles that do not intersedt eac
partition the network space into a number of tetrahedrather. Note that greedy forwarding uses all nodes in the
Otherwise, there are some irregular polyhedra, each oftwhigetwork, whereas hull routing only uses nodes on the valid
consists of a number of tetrahedra combined because #tges and triangles. Therefore, starting from this sectinly
triangle between them does not exist for owning edges thatlid edges and triangles are considered. For simplicibgnw
are longer than 1. we talk about triangles, we only refer to valid trianglesdan

Our basic PUDT algorithm logically removes the edgeshen we talk about edges, we only refer to valid and single
and triangles. The triangles and edges to be removed @vatdges, and we refer to both valid triangle and valid singtgeed
triangles and edges) are defined in Definition 1. Definition ds object.

Fig. 3. lllustrations for Definition 1.

V. LOCALIZED HULLS



The reason to divide a network into different subspacésrwarding can be recovered. In 2D, searching the border of
is to reduce the overhead in the local-minimum recoveg/face for a recovery node is a trivial one-dimensional dearc
process from searching in the whole network to searchiigndom walk is proposed in [6] to search the hull of a virtual
only the nodes in a particular subspace. The recovery psoceabe structure which is also proposed in [6]. In this paper, w
guarantees success when searching the target subspace.ufhean efficient hull-based, depth-first search, in whictheac
notion of hull is used here to identify nodes belonging tomessage is forwarded at most twice the number of nodes on
each subspace. The nodes belonging to a subspace includath@&get hull (leaf nodes forward at most once and non-leaf
nodes on the vertices of the triangle enclosing the subspamzles forward at mosb times, whereD is the node degree).
and the nodes on the vertices of the single edges that adeindiherefore, we conserve the worst-case bound.

the subspace. The recovery process, i.e. hull routing,bvill  In [8], a depth-first search (DFS) has been proposed for
presented in Section VI. geometric routing where depth is defined as the reciprocal

o ] of the distance between the node and destination. In this
A. Identifying localized hulls algorithm, for each message, if a nodeu receives it for

Local hull construction is a process in which each nodee first time, the node creates a recordsferlf v is the first
classifies the objects belonging to its local hulls. Eacleabj node that forwardsn to u, thenv is the ancestor of. with
belongs to only one local hull. Recall that a hull for a parée respect tom’s DFS search. Whem receivesm from some
subspace is a structure which contains the triangles @nglosnodew andwu receivedm before, ifu has not forwarded to
the subspace and the single edges that are inside the sebspadefore,u returnsm to w. Otherwiseu sorts its neighbors
Due to space limitation, we cannot provide the details of the which it has not forwardeeh, in decreasing order of their
algorithm to identify local hulls. Again, refer to [9] for ¢h depth with respect to the destinationf and forwardsn to
details of this algorithm. the first of them. If such a neighbor does not existeturns
m to its ancestow.

In this algorithm, message does not need to maintain any

When a message reaches a local-minimum, one of timormation about its routing state. All information is std
adjacent hulls of the local-minimum is selected such that tin the nodes. Such information can be deleted aftehas
message can recover from the local-minimum by searchiegpired. Since both the messages’ time-to-live (TTL) arel th
the nodes on this hull, which is callédrget hull We define bandwidth in ad hoc networks are small, the amount of routing
target hull as the hull whose subspace contains the imaginatate information stored in each node is small. We improve
m-t segment connecting the local-minimum and destinationthis algorithm in [12], in which we make use of the broadcast

Since eachobject belongs to only one hull, in order tonature of wireless communication. Check [9] for its details
determine the target hull, we only need to find a represemetati .
object (a triangle or a single edge), which belongs to thgetar B. Extension: CDS on a hull
hull. Since them-t segment is contained in the target hull, we In [13], the Gabriel graph is constructed on the connected
only need to find theclosest objec{9] of the m-t segment. dominating set (CDS) of the network to reduce the number
This object will be in the same subspace as#h¢ segment, of nodes on each face. Similarly, we use CDS to reduce
and the hull that contains this object is the target hull. THBe number of nodes on each hull to make searching more
proof that hull routing on the target hull can always makefficient.
progress is shown in [9].

B. Determining the target hull

VII. SIMULATION
VI. GHG ROUTING A. Evaluation of the PUDT algorithm

Greedy-hull-greedy (GHG) routing is analogous to greedy- The simulation was run in our EASIM simulator [14].
face-greedy (GFG) routing. All geometric routing algonith PUDT is performed in random 3D networks of sizg)00 x
contain a greedy routing algorithm and a recovery algorjthm, 000 x Z, where Z varies among 100, 200, and 400. For
since greedy routing (which forwards the message everrclosachZ, networks containing a different amount of nodes are
to its destination) is the most simple and efficient. Note thgenerated. For eacti and each network density, 100 networks
greedy routing has nothing to do with hull routing and iare generated to repeat the simulation by randomly setgectin
can use any node in the network. An execution of GHG &n(z,y, z) coordinate for each node within the specific space.
a repetitive alternation between greedy forwarding and hul We compare the cost of the basic PUDT (denotedXy)
routing. GHG can be easily extended with a bounded cirdle the simulation results) and the low-cost PUDT (denoted by
as in [5] to achieve the worst case boufdd?), whered is  O(1)) in terms of the size of position information exchanged

the distance between the source and destination. among the nodes. The size is measured by the volume of
o ] position information, each of which contains three integer
A. Efficient searching on the target hull describing ther, y, and z coordinates of a node. The simu-

From this subsection on, we are only concern with hull routation results are plotted in log scale. The measuremerd doe
ing. We use a depth-first-search to travel the target hulttwhinot include information of the node’s own position. Simidat
will eventually send the message to the node where greesgults in Figures 4(a)-4(c) show that the low-cost PUDT is
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routing performance of all routing algorithms degradeshas t
size of the hole increases. The performance of GHG is, on
average, only 20% longer than the optimal path length of
Flooding and is at most 50% longer in the worst-case. Second,
we compare GHG with GRG. From Figures 4(d)-4(f), the
performance of all of Flooding, GRG, and GHG increases as
network density increases.

VIII. CONCLUSION

In this paper, we have proposed some solutions for ef-
ficient geometric routing in 3D networks. We present the
first 3D localized partial unit Delaunay triangulation (PUD
algorithm, hull recognition algorithm, angreedy-hull-greedy
(GHG) algorithm, the first 3D analogue to face routing.
Simulation results show that PUDT is low in cost, and GHG
is more efficient than depth-first-search (DFS) and greedy-
random-greedy (GRG). We believe many future works can
be developed on our model: problems in geometric routing
in 2D networks can be redefined or extended in 3D networks,
which include multicast, geocast, virtual coordinates\diiag
uncertain position information, and energy efficient rogti
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Fig. 4. Comparison of PUDT costs (a-c) and routing perforeenfd-f).
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