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ABSTRACT
Mobile-crowd machine learning paradigm has been enabled due to the population of
federated learning and the increasingly powerful mobile devices.This paper focuses
on a mobile-crowd federated learning system that includes a central server and a
set of mobile devices. The server, acting as a model requester, motivates all devices
to train an accurate model by paying them based on their individual contributions.
Each participating device needs to balance between the training rewards and costs
for profit maximization. A Stackelberg game is proposed to model interactions be-
tween the server and devices. To match with reality, our model takes the training
deadline and the device-side upload time into consideration. Based on different def-
initions of individual contribution, two reward policies, i.e., the size-based policy
and accuracy-based policy, are compared. The existence and uniqueness of Stack-
elberg equilibrium (SE) under both definitions are analyzed, according to which
algorithms are proposed to achieve the corresponding SE(s). We show that there is
a lower bound of 0.5 on the price of anarchy in the proposed game. We extend our
model by considering the uncertainty in the upload time, where each device’s upload
time is subject to a normal distribution due to its unstable channel. We also uti-
lize the blockchain technique to ensure a truthful, trust-free, and fair system. This
paper also analyze how devices maximize their utilities when making profits via
training as well as blockchain mining in the fixed-upload-time setting. A blockchain-
powered testbed is implemented to reflect the presented federated learning system
and experiments are conducted based on it to validate our analysis.

KEYWORDS
Blockchain technique; federated learning; incentive mechanism; mobile-crowd
machine learning; price of anarchy; Stackelberg game

1. Introduction

Federated learning has enabled model(s) to be collaboratively trained across multiple
devices using decentralized data samples without actual data exchange, and therefore
protecting data privacy and security. Meanwhile, the growth of mobile devices also get
machine learning at the end of the network for real. Therefore, mobile-crowd federated
learning has emerged as a new business trend. Fig. 1 shows a typical federated learning
system, consisting of a central server as a model requester and a set of mobile devices as
model trainers. In such a system, the server distributes a global model to the devices.
The devices train the model on locally available data. All updated models, instead of
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Figure 1.: Federated learning system: (1) server sends current global model to all
devices; (2) each device trains its model using the local data; (3) all devices upload
their updated models to server; (4) server aggregates all local models into a new global
model.

the data, are then sent back to the server, where they are averaged to produce a new
global model. This new model now acts as the primary model and is again distributed
to the devices. This process is repeated forever or until the global model achieves a
satisfactory result from the server side. Usually, the newly aggregated global model
should get a little better than it already was. Obviously, model training moves to the
edge of the network so that the data never leaves the device, while it is still under the
central server’s orchestration.

The fact that model training consumes resources makes it impossible for mobile de-
vices to voluntarily participate in the federated learning task. In most cases, monetary
incentive is a necessity for any mobile-crowd federated learning system. That is, the
server has to motivate participating devices with enough rewards in order to obtain
a satisfactory model. The model accuracy can be used to measure how satisfied the
server is with the obtained model. Usually, the model accuracy is positively related to
the size of overall trained data. Thus, the server wants devices to train more data in
local training round, which inevitably will increase each device’s cost. To cover their
losses, more rewards should be provided. However, existing works also confirm that
the model accuracy and the data size show a concave down increasing trend, indicat-
ing the principle of diminishing marginal return. Thus, to balance its utility, i.e., the
difference between its satisfaction of the obtained model and the reward it offers to all
devices, it is important for a server to decide a suitable reward amount. In some case,
the server may set a deadline by which all devices should complete the training and
upload step, and ignore any update submitted after the deadline.

Devices participate in the federated learning aiming for the training rewards. Due
to the different network environments, devices may vary over their own upload time.
Each device must pay attention to its training time to avoid missing the deadline if one
is given. Similarly, each device has its own computation power, indicating a specific
training speed. The higher computation power a device has, the more data it can
trains in a given time. Usually, a device will get rewarded based on its contribution
to the global model. There exist two common ways to measure a device’s individual
contribution. One is using the size of its trained data, and the other is using the device’s
local model accuracy. As we mentioned before, the model accuracy is a concavely
increasing function in terms of the training data size. Thus, the more rewards a device
wants to obtain, the more data it has to train, and the more time it has to spend
in the training step. However, a long training time also leads to a high computation
cost. Obviously, the training time brings about a tradeoff between the reward and the

2



cost to the device. Thus, optimizing the training time is essential for each device, as
it wants to maximize its utility, i.e., the difference between its reward and its cost.

We exploit game theory to analyze the complex interactions between the server and
mobile devices. To solve the reward-based resource management problem, we leverage
a Stackelberg game, which includes two steps for the server (as a leader) and then
devices (as followers), respectively. In the first step, the server announces its deadline
and sets a reward for a training round by anticipating the devices’ responses. In the
second step, the devices decide their training time according to the observed reward
and deadline as well as their individual upload times. Moreover, we investigate how the
reward policy applied by the server will affect the devices’ decisions as well as the whole
system. As we mentioned before, a common reward policy can be paying each device
either in proportion to its data-size-based contribution or to its local-accuracy-based
contribution.

All previous studies assume that each device’s upload time is fixed as a common
knowledge in the proposed game. In practice, a mobile device in the wifi environment
experiences an unstable network speed, indicating its upload time may change due
to the time-varying network condition. In this paper, we also discuss the impact of
upload time uncertainty on the devices’ strategies by modeling each device’s upload
time as a random variable. That is, we assume that each device’s upload time follows a
Normal distribution with fixed values of mean and variance. To ensure that individual
contributions are correctly measured and the promised reward is fairly distributed,
we consider the blockchain technique to record all essential information for future
verification. The importing of Blockchain allows devices to earn money via mining,
which incurs a new challenge on how to split their computation power on training and
mining for utility maximization. This paper also considers this regard in the fixed-
upload-time setting.

The major contributions of this paper are as follows:

• We propose a Stackelberg game to solve a reward-based computation resource
management problem in a federated learning system.
• We study the proposed Stackelberg game in two practical reward sharing poli-

cies, i.e., size-based policy and accuracy-based policy, where the existence and
uniqueness of Stackelberg equilibrium (SE) are analyzed.
• We show that our proposed game is a valid utility game, thereby its has a lower

bound of 0.5 on the price of anarchy.
• We investigate the impacts of upload time uncertainty, which incurs longer train-

ing time on the device side.
• We utilize the blockchain technique to ensure a truthful contribution report and

a fair reward allocation.
• We consider different roles devices can play in the proposed blockchain-based

system and analyze their computation power splitting for utility maximization.
• We design a blockchain-powered testbed to implement the presented federated

learning system and conduct experiments on it to validate our analysis.

The remainder of the paper is organized as follows. Section 2 presents our model
and formulate the Stackelberg game. Section 3 analyzes equilibrium of the proposed
game in the fixed-upload-time setting, by comparing two different reward policies. In
Section 4, we investigate Price of Anarchy of the proposed game and find its lower
bound. We further take the instability of communication channels between the server
and devices scenarios into account and study new equilibrium in the variable-upload-
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Table 1.: Summary of Notations.

Symbol Description

R total reward offered by the server in a global round

N number of participating devices

βi unit-time training computation speed of device i

ci unit-time training computation cost of device i

αi device i’s contribution

α / α−i sum of all devices’ contributions with/without i

ti local training time decided by device i

τi expected upload time of device i

T server’s pre-announced deadline

Bi unit-time computation speed of device i

Ci unit-time computation cost of device i

λ training task arrival rate

Mp total mining reward offered by Blockchain in the period of P

time setting in Section 6. Section 5 shows the utilization of the blockchain technique to
ensure truthfulness and fairness, and we also consider different roles that devices can
play in the proposed blockchain-based system and analyze their computation power
splitting for utility maximization. We discuss simulation results in Section 7. Section 8
briefly gives the related backgrounds, and we conclude our paper in Section 9.

2. Model and Problem

2.1. Model Description

As shown in Fig. 1, we consider a cooperative federated learning system. The model
consists of a number of mobile devices associated with a central parameter server.
The whole system is in a universal mobile network with wireless communication in-
frastructures. We consider a quasi-static state where no devices are joining or leaving.
Corresponding notations are shown in Table 1. The server aims to build a global ma-
chine learning model by employing N devices. Firstly, the server shares the current
global model parameters with all devices. All devices will train their local models using
their own data. Then, each device uploads its updated local model parameters to the
server. Finally, the server facilitates the computation of the parameters aggregation
and obtains a new global model. We consider that these four steps forms a global
update round. Obviously, in such a global round, each device experiences lots of local
training iterations, depending on its training data size. The global rounds continues
repeatedly until meeting some specific requirements, e.g. a certain accuracy level or a
deadline. Given that the model training and upload definitely bring about costs to the
device side, the interaction between the server and all devices should be instantiated
by an incentive mechanism.

Since the final global model is obtained through lots of training rounds, here, we
only consider one round, in which, the server wants to make its model as improved as
possible. According to the existing works, the accuracy of a machine learning model
depends on the training data size. The relation between them can be captured by an
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Figure 2.: Relation between the accuracy of the global model and the trained data
size:f(x) = 3.98log(9.68× 105x− 3.69× 108).

concavely increasing function (an example is given in Fig. (2)), indicating a decreasing
marginal gain. For simplicity, we assume that all training data in each edge device
have the same quality and are independently and identically distributed (IID). Based
on this assumption, the more data trained by the devices, the better global model the
server will obtain at the end of a round. To motivate all devices’ participation level,
the server will announce a total reward R at the beginning of a round as an incentive.
All devices will share this reward based on their individual contributions to the global
model. Each device should train its local model and upload its local parameters to the
server before the round deadline T . Here, we assume all devices simultaneously start
local training at the time of 0. Let ti and τi represent device i’s local model training
time and its parameter upload time. Then, the sum of ti and τi cannot exceed the
round deadline T . We define βi as device i’s unit-time computation speed, indicating
that the number of its trained data is βi in a unit time. Thus, in a training time ti,
device i trains βiti data in total. Let ci represent the unit-time computation cost of
device i. Then its total training cost will be citi. Obviously, a longer training time
brings a higher data contribution ratio while also incurring more computation cost.
Since all devices aim to make a profit, they should balance the contribution and the
cost by carefully determining the training time ti.

2.2. Stackelberg Game Formulation

We focus on incentive-driven interactions between the server and the devices. Each
device’s income varies according to the reward set by the server and all other devices’
strategies, and its cost mainly depends on its individual strategy. In fact, the server
decides its rewards by considering the devices’ contributions. Game theory provides
a natural paradigm to model the interactions between the server and the devices in
this network. The server sets the total reward and announces it to the devices. The
devices respond to the reward by deciding an optimal training time. Since the server
acts first and then the devices make their decision based on the reward, the two events
are sequential. Thus, we model the interactions between the server and the devices
using a Stackelberg game. In our proposed game, the server is the leaders and the
devices are the followers. It is a single-leader multi-follower Stackelberg game, the two
stages of which can be described as follows.

In the first stage, the server optimizes the reward R it is willing to offer in a global
round by predicting the devices’ reactions. We assume the server also informs all
devices of a deadline T , indicating that it only accepts models that arrived no later
than the deadline. Devices that fail to successfully upload their local models will not
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be rewarded. In the second stage, after observing the total reward and the deadline,
each device i responds with a suitable training time, by taking its computation speed
βi, computation cost ci, and upload time τi, as well as other devices’ decisions into
consideration. Since decisions are generated for individual utility maximization, a non-
cooperative follower subgame is formed.

2.2.1. Device Side Utility

We define αi(ti) as device i’s single round contribution. We will consider two different
ways to define αi(ti), and under both definitions, the value of αi(ti) always depends on
its training time ti. In the rest of paper, we use αi for the simplicity of writing. With
the system model, we formulate the following optimization problem for maximizing
the overall profit in each round:

Problem 1 (OPdevice).

maximize ui(ti, t−i) = R
αi
α
− citi, (1a)

where α =
∑N

j=1
αj , (1b)

subject to ti + τi ≤ T. (1c)

Each device i aims to maximize its utility and constraint (1c) ensures that i’s local
model can be uploaded within the deadline and thereby avoiding the worst case of
zero-reward.

2.2.2. Server Side Utility

The objective of the server is to optimize its utility by determining the corresponding
reward. Let V denote the server’s utility, which is the difference between its satisfaction
about the newly aggregated global model and the reward R it has to pay all qualified
devices. We assume that the server’s satisfaction is caught by the estimated accuracy of
the new global model, which is a concavely increasing function over the amount of the
data trained by all devices. Thus,, we use a log function to characterize the relationship
between the model accuracy and the trained data. The optimization problem OPserver

on the server side is thus defined as below.

Problem 2 (OPserver).

maximize V = θ log

(
1 + ε

∑N

i=1
βiti

)
−R (2)

2.2.3. Stackelberg Equilibrium

OPserver and OPdevice together form the proposed Stackelberg game. To achieve
equilibrium in this game, where neither the leader (server) nor the followers (devices)
have incentive to deviate, we need to find its subgame perfect Nash equilibrium (NE)
in the follower stage first, and then apply backward induction to achieve the leader
side equilibrium. Formally, the SE point(s) are defined as follows.

Definition 1. Let t∗ and R∗ denote the optimal training time vector of all devices
and the optimal reward offered by the server, respectively. Let t∗ = [t∗1, · · · , t∗N ], then
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the point (t∗, R∗) is the Stackelberg equilibrium if the following conditions hold:

V (R∗, t∗) ≥ Vc(R, t∗),∀R, (3a)

ui(t
∗
i , R

∗) ≥ ui(tiR∗),∀ti. (3b)

3. Stackelberg Equilibrium in the Fixed-Upload-Time Setting

We start with a relatively simple setting, where each device has a stable channel
connecting to the server. That is, the model upload time τi is a pre-known constant.
This assumption allows us to focus on how different reward policies applied by the
serve will affect devices’ strategies and thereby influencing the result of the proposed
Stackelberg game.

3.1. Size-based Reward Policy

3.1.1. Follower Subgame Equilibrium

It is natural to consider the size of the trained data to measure the individual con-
tribution. The corresponding device side optimization problem can be rewritten as
below.

Problem 3 (OPdevice).

maximize ui(ti, t−i) = R
αi
α
− citi, (4a)

where αi = βiti, (4b)

subject to ti + τi ≤ T. (4c)

Theorem 1. At least one Nash equilibrium exists in Problem 3.

Proof. Obviously, each device’s strategy space [0, T − τi] is a non-empty, compact,
and convex subset of the Euclidean space, and the utility function ui(ti, t−i) is contin-
uous and twice differentiable over [0, T − τi]. In order to show the existence of Nash
equilibrium, we need to prove that ui is concave with respect to ti. According to
Eq. (5), the second order derivative of ui is less than 0 over [0, T − τi].

∂2ui
∂t2i

=
−2Rβ2i α−i

α3
< 0 (5)

where α−i =
∑

j 6=i αj . Therefore, we can conclude that there exists at least one Nash
equilibrium in OPdevice.

Lemma 1.
√

R
βici
− 2
βi

√
α−i > 0 always holds if the following condition holds.

2(N − 1)
ci
βi
<
∑N

j=1

cj
βj

(6)

Proof. Given the domain [0, T − τi] and the first order derivative Eq. (7) of ui, device
i’s the best response strategy can be obtained in Eq. (8), which is a function over
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t = [t1, · · · , tN ].

∂ui
∂ti

= Rβi
α−i
α2
− ci (7)

t∗i =g(t)=


0

√
Rβiciα−i−ciα−i

βici
<0

√
Rβiciα−i−ciα−i

βici
0<

√
Rβiciα−i−ciα−i

βici
≤T−τi

T − τi
√
Rβiciα−i−ciα−i

βici
>T − τi

(8)

Let Eq. (7) equal to 0. Then, we obtain the following equation.

α−i
α2

=
1

R

ci
βi

(9)

By summing up on the both sides of Eq. (9), we obtain
∑N

j=1 βjtj =

R(N − 1)/
∑N

j=1
cj
βj

. According to Eq. (8), we obtain ci

(∑N
j=1 βjtj

)2
= Rβi

∑
j 6=i αj .

Combining these two equations, we obtain the following result.

∑
j 6=i

βjtj =

(
N − 1∑N
j=1

cj
βj

)2
Rci
βi

(10)

When Eq. (6) holds, we can easily prove that
√

R
βici
− 2
βi

√∑
j 6=i

αj > 0 always holds.

Definition 2. The function g(t) is standard if for all t ≥ 0 the following properties
are satisfied.

(1) Positivity: g(t) > 0,
(2) Monotonicity: if t ≥ t′, then g(t) ≥ g(t′).
(3) Scalability: ∀ε > 1, εg(t) ≥ g(εt′).

Theorem 2. There exists a unique Nash equilibrium in OPdevice if Eq. (6) holds.

Proof. If Eq. (8) is a standard function, the proposed game has a unique Nash equi-
librium. The positivity is obviously satisfied by g(t). We prove the monotonicity of
g(t) under the condition Eq. (6) by showing g(t)− g(t′) ≥ 0 given t ≥ t′.

g(t)−g(t′)=

√
R

βici

√∑
j 6=i

αj−
√∑

j 6=i
α′j

− 1

βi

∑
j 6=i

αj−
∑
j 6=i

α′j


=

√∑
j 6=i

αj−
√∑

j 6=i
α′j

√ R

βici
− 1

βi

√∑
j 6=i

αj+

√∑
j 6=i

α′j


≥

√∑
j 6=i

αj−
√∑

j 6=i
α′j

√ R

βici
− 2

βi

√∑
j 6=i

αj

 (11)
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Algorithm 1 Best Response Algorithm

Output: t = {t1, · · · , tN}
Input: Initialize k as 1 and pick a feasible starting point t(0)

1: for round k do
2: for device i do

3: Decide t
(k)
i = t

(k−1)
i +∆

∂Ui(ti,t(k−1)
−i )

∂ti
4: Send the local model the server
5: Server aggregates all models received before T into a new global model and

send back to devices.
6: if t(k) = t(k−1) then Stop
7: else set k ← k + 1

According to Lemma 1, the monotonicity property is proved.
To show scalability, we prove that ∀ε > 1,εg(t) ≥ g(εt′) based on Eq. (12).

εg(t)−g(εt′) = ε

√
R
∑

j 6=i αj

βici
−

√
R
∑

j 6=i εα
′
j

βici
> 0 (12)

Therefore, the proposed game always possesses a unique Nash equilibrium.

This naturally gives a distributed iterative algorithm, allowing each device to iter-
atively update its strategy, given the strategies of other devices. We summarize the
distributed iterative algorithm in Algorithm 1. Algorithm 1 is applicable to find the
unique NE point, where each device is engaged in a gradient ascent process to maxi-
mize its utility.

Corollary 1. When T → +∞, the unique Nash equilibrium for device i is given by

t∗i =
R(N − 1)∑N

j=1
cj
βj

−

(
N − 1∑N
j=1

cj
βj

)2
Rci
βi
. (13)

3.2. Accuracy-based Reward Policy

Another simple and intuitive way for the server to measure the individual contribution
and distribute its reward is based on each device’s local model accuracy. As we men-
tioned before, the relationship between the model accuracy and the training time can
be characterized by a log function. As we will show in the below, when using model
accuracy to measure device’s contributions, αi is still an strictly increasing concave
function with respect to ti. In this case, the new problem facing each device is shown
as follows.

Problem 4 (OPdevice).

maximize ui(ti, t−i) = R
αi
α
− citi, (14a)

where αi = θ log (1 + εβiti) , (14b)

subject to ti + τi ≤ T, θ > 0, ε > 0. (14c)

Theorem 3. At least one Nash equilibrium exists in Problem 7.

Proof. The existence of Nash equilibrium can be confirmed by showing that its second
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derivative is negative based on Eq. 15.

∂2ui
∂t2i

= − Rθε2β2i α−i

(1 + εβiti)
2 α2

(
2
θ

α
+ 1

)
< 0 (15)

Since the objective function is concave, we can conclude that there exists at least one
Nash equilibrium in Problem 7.

Lemma 2. Let Γ =
{
N, (Ai)i∈N , (πi)i∈N

}
be an N-player non-zero-sum game in nor-

mal form, where N represents the player set, Ai represents the i-th player’s feasible
strategies, which is a non-empty compact convex subset of the Euclidean space, and
πi represents the i-th player’s utility function. If the utility functions (π1, · · · , πN ) are
diagonally strictly concave for (Ai)i∈N, then the game has a unique pure strategy Nash
equilibrium [1].

Lemma 3. Given 5π(x) =
[
∂πi

∂x1
, · · · , ∂πN

∂xN

]ᵀ
as the game’s pseudo-gradient function

and let Π(x) denote the Jacobian of 5π(x), if the symmetric matrix Π(x) + Πᵀ(x) is
negative definite for x ∈ (Ai)i∈N, then the utility functions (π1, · · · , πN ) are diagonally
strictly concave for (Ai)i∈N [1].

Theorem 4. There exists a unique Nash equilibrium in Problem 7.

Proof. To prove the uniqueness of Nash equilibrium in Problem 7, we need to show
that U(t) + Uᵀ(t), where U is given in Eq. (17), is negative definite.

We start with constructing the pseudo-gradient function 5u(t) =
[
∂u1

∂t1
, · · · , ∂uN

∂tN

]ᵀ
,

where ∂ui

∂ti
is shown in Eq. (16).

∂ui
∂ti

=
Rθεβiα−i

(1 + εβiti)α2
− ci, ∀i ∈ [1, N ] (16)

Thus, we have the Jacobian of 5u(x) as below.

U(t) =


∂2u1

∂t21

∂2u1

∂t1t2
· · ·

∂2u2

∂t2t1

. . .
...

 (17)

where ∂2ui

∂t2i
is given in Eq. (15) and ∂2ui

∂titj
can be referred in Eq. (18).

∂2ui
∂titj

=
Rθ2ε2βiβj [α− 2(αi + αj)]

(1 + εβiti) (1 + εβjtj)α3
(18)

Obviously, U(t) + Uᵀ(t) is symmetric. Due to the complexity of this matrix, we use
Matlab to check its eigenvalues, which are all negative, indicating it is negative definite.
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Table 2.: Strategy iterations given R = 1000, T = 250, N = 5, θ = 10, ε = 2× 10−5

(β1, β2, β3, β4, β5) = (200, 200, 200, 200, 200) , (c1, c2, c3, c4, c5) =
(1.2, 1.4, 1.3, 1.4, 1) , (τ1, τ2, τ3, τ4, τ5) = (10, 10, 15, 75, 20).

Round

MEAS t INIT 1 2 3 4 5 6 7 8 9 10 11 Sum
Size t1 30 196 207 118 129 131 135 147 148 152 151 151

t2 30 165 158 87 91 62 67 66 64 69 70 71
t3 30 121 125 104 104 99 99 100 100 100 100 100
t4 30 147 132 133 130 115 116 111 110 109 110 110
t5 30 178 187 226 225 230 230 230 230 230 230 230 662

Accuracy t1 30 163 157 105 106 114 116 116 116 116 116 116
t2 30 129 125 83 85 83 85 85 85 85 85 85
t3 30 121 125 104 104 99 99 100 100 100 100 100
t4 30 89 94 91 89 85 84 85 85 85 85 85
t5 30 135 135 157 156 158 157 157 157 157 157 157 543

3.3. Comparison of Two Reward Policies

In Table 2, we give a five-device example to show the achieved Nash equilibrium under
these two reward policies. Obviously, a device’s local training time mainly depends on
its cost-to-speed ratio, i.e., ci/βi as well as its upload time when other outside factors
are fixed. It is obvious that devices with lower cost-to-speed ratio and less upload time
tend to have a longer training time under both reward policies. Further, we compare the
difference of these two equilibria. We deliberately set identical initial values while we
can still observe that the final equilibrium points are different. The size-based reward
policy motivates devices to train for longer time as each second has the same value
while the accuracy-based reward policy makes the later time less valuable, so that all
devices tend to train for less time under this policy. The numerical results provided
in Section 7 also shows the same result. Thus, we can say that the accuracy-based
reward policy brings more benefit to the device-side.

3.4. Stackelberg Equilibrium

While Algorithm 1 achieves a unique pure strategy for the devices’ game, our final
goal is to obtain the Stackelberg equilibrium of the entire system. For this purpose, we
leverage Algorithm 1 to construct the corresponding SE. The Stackelberg equilibrium
of the game can be found by solving the following non-linear optimization problem.
Let t∗(R) be the unique NE obtained by the followers when the server offers a reward
of R. The server needs to solve the following optimization problem a priori to find its
unique optimal reward R∗ and announces it to the devices.

Problem 5 (OPserver).

maximize V = θ log

(
1 + ε

∑N

i=1
βit
∗
i (R)

)
−R (19)

The corresponding SE can be achieved by solving the Problem 5. We analyze the
effects induced by these two different contribution definitions in the simulation part.
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Specially, we compare the server utility, the total utility of all devices, and the social
welfare achieved under these two definitions. Meanwhile, we also compare the social
welfare computed under the proposed Stackelberg game with the optimal social welfare
to see the price of anarchy caused by selfishness.

4. Robust Price of Anarchy

Consider that the federated learning system operates in a centralized control. That is,
all devices follow the server’s instruction to train their local models. Then the objective
of this whole system should be maximizing the social welfare, denoted by W , i.e., the
difference between the global model accuracy and the training cost among all devices,
which is given in Eq. (20).

W = θ log

(
1 + ε

∑N

i=1
βiti

)
−
∑N

i=1
citi (20)

Centralized control achieves a better performance than decentralized (game theo-
retic) control solutions in terms of the social objectives being met. The concept of price
of anarchy, which is caused by the devices’ selfish behaviors, is used to quantify the loss
of efficiency in decentralized game solutions as compared to the optimal centralized
control. In the following, we prove that the non-cooperative game played among all
devices is a valid monotone utility game. As a result, we obtain a lower bound on the
PoA of value 0.5.

Definition 3. Let Γ =
{
N, (Ai)i∈N , (Ui)i∈N

}
be an N-player non-zero-sum game in

normal form, where N represents the player set, Ai represents the i-th player’s fea-
sible strategies, which is a non-empty compact convex subset of the Euclidean space,
and Ui represents the i-th player’s utility function. Assume that the objective function
W ((Ai)i∈N) where w : 2(Ai)i∈N 7→ R, is a general function defined over all subsets of
(Ai)i∈N. Game Γ is called a valid utility game if it satisfies the following three proper-
ties

(1) W is submodular,
(2) The objective value of a player is at-least his added value for the societal objective,
(3) The total value for the players is less than or equal to the total societal value.

And Γ is called a monotone game if for all S ⊆ S′ ⊆ (Ai)i∈N ,W (S) ≤W (S′)[20].

Lemma 4. If a game Γ is a valid monotone utility game, then its lower bound on the
PoA is 0.5.

Theorem 5. Our proposed Stackelberg game has a lower bound on the PoA of 0.5.

Proof. We show that our proposed game has the following three properties:

(1) W is submodular.
Assume there exists one set a ⊆ t and two elements tp, tq ∈ t − a. We define set
a′ = a ∪ {tp}, indicating that a ⊆ a′ ⊆ t. Therefore, we have

(W (a ∪ {tq})−W (a))−
(
W (a′ ∪ {tq})−W (a′)

)

12



=θ log

(
1 + s+ εβqtq

1 + s

)
− θ log

(
1 + s+ εβptp + εβqtq

1 + s+ εβptp

)
=θ log

(
(1 + s+ εβqtq) (1 + s+ εβptp)

(1 + s) (1 + s+ εβptp + εβqtq)

)
> 0, (21)

where s = ε
∑

i∈a βiti. Thus, we can conclude that W is a submodular function.

(2) Device i’s utility ui is at-least its added value for the societal objective.
To prove this property, we need to show that ui(ti, t−i) ≥W (ti, t−i)−W (t−i).

ui(ti, t−i)− (W (ti, t−i)−W (t−i))

=R
αi
α
− θ log

(
1 + ε

∑N
j=1 βjtj

1 + ε
∑N

j=1 βjtj − εβiti

)

=R
αi
α
− θ log

(
1 +

εβiti

1 + ε
∑N

j=1 βjtj − εβiti

)
> 0 (22)

(3) The total value for the devices is less than or equal to the total societal value.

Here, we show the difference of
∑N

i=1 ui and W as below.

∑N

i=1
ui −W

=

N∑
i=1

(
R
αi
α
− citi

)
−

(
θ log

(
1 + ε

N∑
i=1

βiti

)
−

N∑
i=1

citi

)

=R− θ log

(
1 + ε

∑N

i=1
βiti

)
> 0 (23)

Now, we can conclude that our proposed game is a valid monotone utility game.
Thus, its has a lower bound of 0.5 on the PoA.

5. Unstable Communication Chanel

As we mentioned before, local updates have to be transferred to the server. Every
such update is of the same size as the trained model, which can be in the range of
gigabytes for modern architectures with millions of parameters [2,3]. Nevertheless,
the devices typically employed in federated learning are communication-constrained,
for example IoT devices or smartphones are generally connected to Wifi networks.
Obviously, our previous assumption that each device has a fixed upload time τi is
not realistic due to the mobility of devices and instability of wifi connection. In the
following, we further consider a complex setting, where each device i’s upload time
is stochastic and subject to a normal distribution N (µi, σ

2
i ) for ∀i ∈ [1, N ]. In the

following, we will focus on equilibrium analysis in the size-based-policy setting, while
it also holds in the accuracy-based-policy setting.

13



5.1. Problem Formulation

Since device i’s upload time follows a normal distribution N (µi, σ
2
i ), the probability

that i successfully uploads its model within time τi can be expressed as Eq. (24).

Fi(τi) =

∫ τi

−∞

1

σi
√

2π
exp

{
−(x− µi)2

2σ2i

}
dx (24)

After a device i decides on its training time ti, it has a time period of T − ti for
uploading. Therefore, its model can be successfully uploaded with the probability of
Fi(T − ti). Any update after the deadline T will not be accepted by the server. Thus,
with a probability of Fi(T − ti), device i can contribute a set of data αi = βiti to the
global model, otherwise, its data contribution will be 0. Since all other devices follow
the same principle to participate in this game as well, device i can estimate that the
total data contributed by other devices would be

∑
j 6=i βjtjFj(T − tj) in expectation,

which we denote as α̂−i for simplification. Thus, if device i successfully uploads its
model, then the system-wide data contribution is α̂−i + βiti. Based on the analysis
above, we reformulate the optimization problem for an individual device i.

Problem 6 (OPdevice).

maximize ui(ti, t−i) = R
αiFi(T−ti)
α̂−i + αi

−citi, (25a)

subject to 0 ≤ ti < T. (25b)

In fact, each device’s utility function fails to satisfy the quasi-concavity condition in
the strategy space. However, a non-concave game still possesses a pure strategy Nash
equilibrium when meeting some specific conditions which is given in Lemma 5 [4].

Lemma 5. Let Γ =
{
N, (Ai)i∈N , (Ui)i∈N

}
be an N-player non-zero-sum game in nor-

mal form, where N represents the player set, Ai represents the i-th player’s feasible
strategies, which is a non-empty compact convex subset of the Euclidean space, and Ui
represents the i-th player’s utility function. Assume that for each i ∈ N:

(1) Ai is some closed interval of the real line,
(2) Ui(.) is continuous on Ai,
(3) For each x−i ∈ A−i, there exists a local maximum of Ui(x−i, .), and this local

maximum is also a global maximum,

then the game Γ possesses a pure-strategy Nash equilibrium.

Theorem 6. Nash equilibrium exists in OPdevice.

Proof. Obviously, our proposed game satisfies the conditions (1) and (2). Thus, we
now prove that ∀x−i, ui(ti, t−i) has a local maximum over its strategy domain [0, T )
and that this local maximum is also a global maximum of ui(ti, t−i) over its feasible
domain.

For each feasible t−i, we start to analyze the function ui(ti, t−i)’s monotonicity with
respect to ti. We show the first-order derivative of ui in the below

∂ui
∂ti

=R
βiFi(T−ti)α̂−i−βitifi(T−ti) (α̂−i+βiti)

(α̂−i + βiti)
2 −ci
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T R 200 400 600 800 1000

100 32 64 90 90 90

120 32 64 96 110 110

160 32 64 96 128 150

(a) Size-based policy.

T R 200 400 600 800 1000

100 31 61 90 90 90

120 31 61 90 110 110

160 31 61 90 118 144

(b) Accuracy-based policy (θ=10, ε=8×10−6).

T R 200 400 600 800 1000

100 29 54 76 90 90

120 29 54 76 97 110

160 29 54 76 97 117

(c) Accuracy-based policy (θ=10, ε=4×10−5).

Table 3.: Homogeneous follower subgame Nash equilibrium under different rewards
and deadlines where (N, β, c, τ) = (5, 200, 1, 10).

Obviously, ∂ui

∂ti
is continuous over its feasible domain. We show the signs of ∂ui

∂ti
on

the boundary points over its strategy space.

∂ui
∂ti

(0, t−i)=
RβiFi(T )

α̂−i
− ci (26)

∂ui
∂ti

(T, t−i)=R
βiFi(0)−βitifi(0) (α̂−i+βiT )

(α̂−i + βiT )2
−ci (27)

Since Eq. (26) is positive and Eq. (27) is negative, there must exist a certain t∗i ∈
(0, T ) so that∂ui

∂ti
(t∗, t−i) = 0, and ui increases in the domain [0, t∗i ) and decreases in

the domain (t∗, T ]. Thus, ui reaches its local maximum at the point t∗i .
Next, we will prove that ui(t

∗
i ) is a global maximum in its feasible domain [0,+∞).

When ti >= T , the value of Fi(ti) = 0 always holds, meaning that ∂ui

∂ti
(ti, t−i) <

0 holds, thus ui is a decreasing function in terms of ti in the domain of [T,+∞).
Therefore, ui(t

∗
i ) is a global maximum as well. Now, we can conclude that the proposed

game possesses a pure-strategy Nash equilibrium.

6. Blockchain-powered System

The previous discussions are based on a strong assumption that the server and devices
are honest and reliable. That is, each device truthfully reports its contribution, i.e.,
how much data it has trained or how accurate its model is, and the server fairly
distributes the reward as promised among all devices based on their contributions.
However, in reality, a device may exaggerate its contribution for more reward and
the server may refuse to make a payment after receiving models from devices. To
keep the whole system operating orderly, we utilize the blockchain technique [5] and a
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(a) Size-based policy.
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(b) Size-based policy.
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(c) Accuracy-based policy.
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(d) Accuracy-based policy.

Figure 3.: Impact of device number under T = 160.

smart contract [6] to fulfill these two requirements, i.e., device-side contributions are
quantified correctly and the server-side payment is implement as promised.

6.1. Server-Device Smart Contract Workflow

Before the system operates, the server and all participating devices are required to
sign a smart contract, which will be recorded in the blockchain for future query and
validation. The workflow of such a smart contract is as below.

In the beginning of a round, the server sends its training request to the smart con-
tract by announcing its reward R and deadline T . Meanwhile, it has to send an amount
of R deposit to the smart contract. After the deposit is ready, the smart contract will
retrieve the current global model and send it together with the reward and the dead-
line information to all participating devices. All devices utilize received information to
determine their strategies and then train their local models. All the newest local mod-
els are uploaded to the smart contract. The smart contract will automatically record
each model’s arriving time so that all models arriving after the deadline will not be
accepted. When reaching the deadline, the smart contract will aggregate all available
local models into a new global model. To measure each device’s contribution, there is a
measurement function with a testing dataset to estimate each device’s contribution. All
devices’ contributions are determined using the same measurement function, meaning
that the measuring criteria is uniform and fair. Based on the estimated contribution,
the smart contact will distribute the deposit of R to each device.

16



6.2. Device Computation Power Splitting

Since we import Blockchain, it is natural to consider about block mining, which main-
tains and secures our system’s operation. Mining itself is profitable in the long term
and consumes computation power. Except training, devices can also make profits in
our Blockchain-based system by contributing its computation power to mining. Here,
we assume all devices also work as Blockchain mining nodes, and hence are responsible
for both training and mining. We assume that, devices are mining all the time. When
training tasks come, they will perform training and mining. That is, for a device, it will
split its computation power to training and mining when taking both tasks. Otherwise,
all of its computation power will be devoted to mining only.

In the current setting where devices can perform training as well as mining, we
assume that device i’s total computation power can lead to a unit-time speed of Bi,
at which i can mine without power splitting. After splitting, i’s unit-time training
speed becomes βi and its unit-time mining speed decrease to Bi − βi. Previously, βi
is assumed to be known. Now, it becomes a variable that should be determined by
device i to optimize its overall utility on training and mining. Let’s assume the arrival
of training tasks follow a Poisson process. That is, on average, in each unit time, there
are λ tasks required by the server. We simply assume all tasks are homogeneous so that
they should have the same value of R and T . And each device has a fixed upload time.
In our setting, both λ and T are dedicatedly determined to ensure that an old task
has been completed before a new one comes. All devices care about their own utility
in a period of time, say P . That is, each device determine its strategies to maximize
its totally utility in the period of P , during which, the total mining reward offered by
Blockchain is supposed to be Mp.

Since device i’s training time for each task is ti, its total training time will be
Pti/λ, meaning that its full mining time will be P − Pti/λ in total. Mining reward
is distributed among all mining nodes based on their computation power contribution
in a proportional way. Thus, device i’s mining reward can be captured as below:

Mp
PBi − P tiβi

λ∑
j

(
PBj − P tjβj

λ

) = Mp
λBi − tiβi

λ
∑

j Bj −
∑

j tjβj
. (28)

And its training reward should be (P/λ) · (Rαi/α). Let Ci be the unit-time computa-
tion cost for device i. Then its total computation cost is CiP , Now, we are ready to
reformulate the utility function for each device.

Problem 7 (OPdevice).

maximize Ui(βi, β−i, ti, t−i)

= Mp
λBi − tiβi

λ
∑

j Bj −
∑

j tjβj
+R

αiP

αλ
− CiP, (29a)

subject to ti + τi ≤ T, θ > 0, ε > 0. (29b)

Ui’s concavity is determined based on Eq. (28), given RP/λ and CiP are constant
and αi/α is concave. Since Eq. (28) is concave over ti and βi, we can conclude the
existence of Nash equilibrium in the current setting.
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7. Simulation

Our evaluation includes four parts. First, we examine how the server and the devices
(Subsection VII.A and B) decide their optimal strategies. Second, we compare the
game-driven market equilibrium and the optimal social welfare to confirm our PoA
lower bound (Subsection VII.C). Then, we analyze how the upload channel jitters
influence the achieved equilibrium (Subsection VII.D). Lastly, we show how devices
reach their maximal utilities when splitting their computation power on training and
mining. All experiment data confirm our theoretical results and show the efficiency of
our proposed algorithm.

We conduct our experiments using Tensorflow 1.9 (to get fine-tuned machine-
learning related parameters) and Matlab R2019b (to help the server and devices make
decisions) on Ubuntu 16.04 LTS. Our smart contract (to build a trustless trade) is
implemented through CITA [7], a blockchain framework that supports smart contract
design and execution.
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(a) Size-based policy.
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(b) Accuracy-based policy: ε=8×10−6.
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(c) Accuracy-based policy: ε=4×10−6.
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Figure 4.: Impact of device number under T = 80.

7.1. Follower Subgame Nash Equilibrium

In this part, we will first analyze Nash equilibrium achieved among all devices. We
will discuss how different parameters will affect the devices’ equilibrium strategies.

7.1.1. Parameters from the server side

The server can determine its deadline T , its reward R, and its reward policy, i.e.,
size-based or accuracy-based. In the following, we focus on investigating how those
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t R 200 400 600 800 1000

t1 45.8 91.5 110 110 110

t2 29.1 58.3 91.4 110 110

t3 29.1 58.3 91.4 95 95

t4 12.5 25 43.4 80 110

t5 12.5 25 43.4 80 105

sum 129 258.1 379.6 475 530

(a) T = 120.

t R 200 400 600 800 1000

t1 45.8 91.5 137 150 150

t2 29.1 58.3 87.4 121 150

t3 29.1 58.3 87.4 121 135

t4 12.5 25 37.5 57.1 88.1

t5 12.5 25 37.5 57.1 88.1

sum 129 258.1 386.8 506.2 611.2

(b) T = 160

Table 4.: Heterogeneous follower subgame Nash equilibrium under size-based policy.

parameters affect the device-side equilibrium. We start with a simple homogeneous-
device setting, where (N, β, c, τ) = (5, 200, 1, 10). In Table 3, we show the impact
caused by different decisions on deadline T , the reward R, and the reward policy.
Note that, R may not be its equilibrium value. Obviously, the increase of R’s value is
the main driven power for all devices to extend their training time. In the size-based
reward policy, we can even observe the linear relation between the reward and the
training time in some case. However, after devices reach their optimal training time,
the server cannot push them to train longer by providing more rewards. This indicates
that, the server should carefully determines its reward value to avoid useless monetary
invest. This is an important reason why we utilize Stackelberg model since it adds the
leader level to ensure the server’s benefit.

Based on Table 3, we can also confirm the importance of the deadline T as it is
the upper bound of training time. For example, in Table 3(a), given R = 1000, the
optimal training time can be t = 160 if without considering the deadline, meaning
that devices are willing to train more time and the server can obtain a better model.
However, the deadline prevents devices from reaching their optimal training time and
lower the server’s utility. Although, in our theoretical discussion, we assume T ’s value
is a pre-announced constant, it also plays an essential role for both the server and all
devices. It can be our future work by adding the deadline T as another variable to be
optimized by the server in our proposed Stackelberg game.

By comparing Table 3(a) to Table 3(b) and Table 3(c), we can conclude that, in
most cases, the size-based reward policy leads devices to train for a longer time if
other parameter values are identical, and thus, bringing more benefit to the server. By
comparing Table 3(b) and Table 3(c), we also see the influence caused by the accuracy
measurement function. Generally, an accuracy measurement function with the higher
diminishing return will motivate devices for a longer time training. Note that, the
accuracy measurement functions in Table 3(b) and Table 3(c) are transformed based
on the results obtained by training the open datasets Reddit and Celeba, respectively.
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t R 200 400 600 800 1000

t1 36.7 64.9 89.6 110 110

t2 25.5 47.2 66.9 85.5 106

t3 25.5 47.2 66.9 85.5 95

t4 16.1 33.1 49.3 64.8 82.5

t5 16.1 33.1 49.3 64.8 82.5

sum 119.9 225.5 322 410.6 476

(a) T = 120.

t R 200 400 600 800 1000

t1 36.7 64.9 89.6 112 133

t2 25.5 47.2 66.9 85.3 102.6

t3 25.5 47.2 66.9 85.3 102.6

t4 16.1 33.1 49.3 64.6 79.2

t5 16.1 33.1 49.3 64.6 79.2

sum 119.9 225.5 322 411.8 496.6

(b) T = 160

Table 5.: Heterogeneous follower subgame Nash equilibrium under accuracy-based
policy(θ=10, ε=4×10−5).

7.1.2. Number of Participating Devices

In this part, we investigate the impact caused by the number of participating devices
N . We assume all devices are evenly distributed in 5 areas. All devices have the
same computation speed and devices located in the same area enjoy the identical
unit cost and upload time. The detailed setting are given as T = 160, β = 200,
(c1, c2, c3, c4, c5) = (1, 1.2, 1.2, 1.4, 1.4), and (τ1, τ2, τ3, τ4, τ5) = (10, 10, 25, 10, 15). We
change the number of devices in each area so that the total device number ranges from
5 to 75 and we show the device number impact in Fig. 3. According to Fig. 3(a) and
Fig. 3(c), we can conclude that, in the beginning, the increase on the device number
can result in a longer total training time, i.e., the sum of all devices’ training time.
When reaching some point, the increasing trend stops, meaning that the newly joining
devices only splits the reward with the existing devices while bringing no benefits to
the system. As we can see in Fig. 3(b) and Fig. 3(d), the ratio between the reward
R and the total training time converges to the same value in the end. Thus, blindly
recruiting more devices cannot increase the global model’s accuracy while brings more
ordination work to the server.

7.1.3. Device Parameters

Now we study how the values of (β, c, τ) affect individual devices’ equilibrium strate-
gies. Here, we still apply the five-area setting we mentioned in the above, while we
assume there is only one device in each area, i.e., N = 5. We find each device’s equilib-
rium strategy under different system parameters. Table 4 and Table 5 show the results
under the size-based reward policy and the accuracy-based reward policy, respectively.
Based on these two tables, we can see the training time heavily depends on a device’s
computation cost to speed ratio when other conditions are identical. Meanwhile, its
upload time also constrains its training length as no device wants to miss the deadline.
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We can conclude that devices with lower cost-to-speed ratio and less upload time tend
to have a longer training time under any reward policy.

σ R 100 200 300 400 800

0 16 32 48 64 125

1 23 34.5 48.4 64 128

10 27 38 50 64.1 128

(a) Size-based policy.

σ R 100 200 300 400 800

0 15.8 31.2 46.3 61.1 117.6

1 17.8 31.3 46.3 61.1 117.6

10 24.6 35.9 46.8 61.1 117.6

(b) Accuracy-based policy (θ=10, ε=8×10−6).

σ R 100 200 300 400 800

0 15.1 28.8 41.7 53.8 97.3

1 17.7 28.9 41.7 53.8 97.3

10 23.9 34.5 43.1 53.9 97.3

(c) Accuracy-based policy (θ=10, ε=4×10−5).

Table 6.: Homogeneous follower subgame Nash equilibrium under different rewards
and deadlines where (N,T, β, c, τ) = (5, 140, 200, 1, 15).

7.2. Leader-Follower Stackelberg Equilibrium

Based on the device-side analysis, we further study the optimal strategy on the server
side to obtain the desired Stackelberg equilibrium.We consider a three-area setting
and the detailed setting are given as T = 80, β = 10000, τ = 15, and(c1, c2, c3) =
(10, 12, 14).

We investigate the Stackelberg equilibrium under different reward policy. We show
the device-side equilibrium strategies in Fig. 4. And we can find that the total training
time in each area is almost fixed when increasing the device number in these areas. We
find another interesting observation that, although we change the number of devices in
each area, the server’s optimal reward is almost the same. The server’s optimal reward
is around 1731, 626, and 408, for Figs. 4(a), (b), and (c) respectively. According to
Fig. 4(d), we can observe the devices’ total training time is positively related to the
server’s reward, which matches with the real market.

7.3. Price of Anarchy

In this section, we want to compare the social welfare created by different model
designs.The definition of social welfare is the difference between the global model
satisfaction and the total cost on the device side. We focus on the optimal control
model and our proposed Stackelberg game. The optimal control means no money
incentive: all devices are forced to follow the central server’s scheduling. We consider a
homogeneous-device setting. We show the obtained social welfare of these two models
under different device numbers in Fig. 5. We can see that the social welfare yielded by
our proposed Stackelberg game is always more than half of the optimal social welfare
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Figure 5.: Social welfare: game-driven vs optimal.
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Figure 6.: Different lengths of P .

under a central controller, which confirms our theoretical analysis on the lower bound
of PoA.

7.4. Uncertainty in Upload Time

In this part, we investigate the impact caused by the channel instability. We still apply
the homogeneous-device setting, where (N, β, c, τ) = (5, 200, 1, 10). We use different
values of σ to reflect how unstable the communication channels are. Note that, σ = 0 is
the special case, representing that the upload time is fixed as 10. According to Table 6,
we can conclude that, the uncertain upload time makes devices spend more time on
the local training.

7.5. Device Computation Power Splitting

We perform our experiment in the 4-identical-device setting. We start with the setting
that P contains 3 or 5 mining rounds. As is shown in Fig. 6(a), all devices’ strategies
finally converge to the same point after 50 mining rounds, since they are identical.
This result confirms the existence of Nash equilibrium in the device computation
power splitting game.

To show the impact caused by the length of the assessment period, we extend P to
contains 5 mining rounds. We show each device’s strategy in Fig. 6(b). We find that
in this setting, devices spend more time on training and the time used for convergence
becomes shorter.
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8. Related Work

8.1. Federated Learning

As there is more and more attention on privacy, federated learning has become one
of the essential concepts in modern machine learning. Existing works in this research
field can be divided into two directions. In one direction, researchers focus on solving
the global model accuracy decreasing caused by device heterogeneity [8–10] in terms
of hardware, network connectivity, and battery power, and data heterogeneity among
all devices [11–13]. This paper focuses on how to improve the global model accuracy
by motivating all participating devices train more data locally. Some literature also
consider to dealing with the coordination and operation problems in such a system,
such as the communication bottleneck [14–17] and the trust and truthfulness [18]
between the server and devices. Like [19,20], our paper also utilizes the blockchain
and a smart contract to ensure that the devices’ contributions are correctly quantified
and the reward promised by the server are fairly distributed.

8.2. Incentive Mechanism Design for Mobile Crowdsourcing

An effective incentive mechanism is indispensable in mobile crowdsourcing tasks. De-
vices need to consume resources to perform tasks and the crowdsourcer needs to ad-
just the rewards to devices based on the task difficulties and device performances.
Most solutions integrate online auction and game theory techniques for mechanism
design [21–23]. There also exist some works dealing with incentive mechanisms in the
federated learning system. In [24], the authors present an incentive mechanism called
FMore with multi-dimensional procurement auction to select high-quality training
nodes. [25] utilizes contract theory in order to motivate high-reputation workers to
join model training. Our paper utilizes a Stackelberg game, where the server acts as
a leader and provides rewards based on devices’ individual contributions to motivate
each device to feed its local model with more data in each iteration. We utilize utility
theory, which has been widely applied to decision making [26,27], and design suit-
able utility functions for both the server and the devices. Besides, our model is more
practical as we take the training deadline and device upload time into consideration.

8.3. Price of Anarchy

In algorithmic game theory, the price of anarchy (PoA) [28] is defined as the ratio
of the social cost of a worst Nash equilibrium to that of a social optimum (i.e., an
assignment of strategies to players achieving optimal social cost). This highly successful
and influential concept is frequently thought of as the standard measure of the potential
efficiency loss due to individual selfishness, when players are concerned only with
their own utility and not with the overall social welfare. Lots of works dealing with
communication network problems either use this concept to measure the efficiency their
methods can achieve [29–33] or utilize this concept as the system design goal [34,35].
In this paper, we investigate the existence of a pure strategy equilibrium in a resource
management game and measure the inefficiency of equilibria by the price of anarchy.
We show that the lower bound on the price of anarchy is 0.5 for our proposed solution.
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8.4. Blockchain-based FL Systems

The combination of blockchain and FL promises the secure data sharing method in the
edge of the network and the main advantage of integrating blockchain into FL systems
is to provide a trust-free and fair environment for the training of decentralized models.
The blockchain can store all those trained parameters in a secure and immutable way
with the resistance against unauthorized access and malicious actions. Most of the
existing Blockchain-based FL Systems focus on protecting privacy, achieving decen-
tralization and improving the performance of model training [36–39], while our paper
pays attention to computation power allocation on mining and training simultaneously
by considering different roles that devices can play.

9. Conclusion

In this paper, we utilize a Stackelberg game to model the interaction between a server
and all participating devices in a federated learning system. We aims to find the server’s
optimal reward the server and each device’s optimal training time for the purpose of
individual utility maximization. Our model takes both the server-side deadline and the
device-side upload time into consideration. We consider two different reward policies,
i.e., size-based and accuracy-based, and investigate how they affect the equilibrium
achieved in the whole system. We prove that the proposed game is a valid utility
game, which has a lower bound of 0.5 on the PoA. We also extend our model by
adding uncertainty in the upload time. We show that devices spend more time on local
training in the variable-upload-time setting. We design a blockchain-powered testbed
to implement the presented federated learning system and allow devices to execute
mining and training simultaneously. Experiments conducted on top of it validate the
proposed models and theoretical results.
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