
Q2oE: Balancing QoE Fairness and Preference for
Video Streaming from Cooperative Edge Servers

Xinwei Huang1,3 Yin Xu2,3 Jinbo Cai2,3 He Sun2,3 Jie Wu4 Mingjun Xiao2,3
1School of Software Engineering, University of Science and Technology of China, China

2School of Computer Science and Technology, University of Science and Technology of China, China
3Suzhou Institute for Advanced Study, University of Science and Technology of China, China

4Department of Computer and Information Sciences, Temple University, USA
Corresponding Email: xiaomj@ustc.edu.cn

Abstract—Quality of Experience (QoE) is a pivotal factor that
defines the overall quality within the realm of video streaming
services. To improve users’ QoE indicators, existing methods
have proposed many QoE models and Adaptive Bitrate (ABR)
algorithms. However, these advanced methods do not account for
the tradeoff between users’ personalized preferences and fairness,
leading to resource wastage on the edge server and an inefficient
bitrate allocation. Given resource constraints, non-cooperative
edge servers frequently request the cloud to enhance user QoE,
consequently resulting in high-latency transmissions. In this
paper, we address this issue by introducing collaborative edge
servers, which alleviate the burden of video chunk transcoding
and caching on individual servers. Specifically, we design a
novel QoE model named Q2oE that incorporates user-level QoE
preference and QoE fairness in this scenario. Furthermore, we
propose Q2D3, a Q2oE-aware reinforcement learning algorithm
based on a video chunk transcoding strategy for mobility-aware
vehicular networks, to improve Q2oE model performance.

Index Terms—Video streaming, quality of experience, deep
reinforcement learning, vehicular network.

I. INTRODUCTION

A. Background

With the rapid expansion of video media, video streaming
traffic has increased dramatically [1]. Various video confer-
encing platforms (such as Tencent Meeting and Zoom) are
ubiquitous in daily work, and 360-degree videos have steadily
emerged as a prevailing trend [2], [3]. In this context, users
have many diverse requirements for video quality, therefore
Quality of Experience (QoE) is a crucial research area in the
field [4]–[6].

High-quality user experience typically features high video
bitrate, minimal transmission delay, low rebuffering time, and
low frequency of bitrate variation [7]. Therefore, in real-time
video streaming, caching, and transcoding video chunks at the
edge servers are particularly important [8], [9]. Nevertheless,
the limited caching and transcoding capabilities inherent in an
individual edge server (e.g., the millimeter-wave base station)
result in frequent requests to the cloud for assistance, causing
significant transmission delays. However, collaborative edge
servers can effectively address and optimize for this limitation
[10]. The advantages of collaborative edge server design in-
clude: (1) Low latency: Latency is lower compared to methods
directly requesting video chunks from the cloud. (2) Alleviated

cloud load: If all users send requests to the cloud, the pres-
sure on resource retrieval and compute workloads increases
dramatically. Through a combination of these advantages,
collaborative edge servers effectively enhance QoE.

Due to the mobility characteristics of the user, especially
the vehicles that move at high speeds, the resource utilization
of edge servers needs to be rationalized. For instance, when
a high number of vehicle users access the same edge server,
achieving high QoE for all users becomes challenging due
to the inherent limitations of the edge server resources [6]. In
certain scenarios, users who specifically require only medium-
level bitrate video chunks may be assigned high-level bitrate
video chunks, resulting in suboptimal resource allocation and
wastage. This complication further emphasizes the research
challenge related to user-level QoE preference and fairness.

1) User-level QoE preference: As a basic observation, users
exhibit diverse preferences regarding various QoE metrics
[11], [12]. For example, certain vehicle users may tolerate
delays caused by rebuffering or transmission issues and opt
for high-bitrate video chunks, while others might prioritize
low latency and choose medium-bitrate or low-bitrate video
chunks. In this paper, we refer to users’ tolerance for different
QoE metrics, such as video bitrate level and latency, as user-
level QoE preferences.

2) QoE fairness: All vehicle users within the current server
must be allocated bandwidth for requesting video chunks, and
video chunks of different bitrate levels require varying band-
widths [6]. However, the server’s bandwidth is constrained. For
example, a new vehicle user enters the coverage area of the
server and requests high-bitrate video chunks, but the server’s
unallocated bandwidth can only meet the transmission of low-
bitrate video chunks. This will degrade user QoE and lead to
fairness issues. In this paper, we quantify fairness by using the
lowest QoE in user-acquired video chunks.

B. Motivations

User-level QoE preferences are crucial for designing ef-
fective QoE models and Adaptive Bitrate (ABR) algorithms.
However, the design philosophy behind these QoE models
targets the “average user”, thereby neglecting the individuality
of each user [4], [5], [13]. And, traditional ABR algorithms



are also agnostic to user preferences, because they usually
optimize towards a fixed QoE model [14], [15]. However, each
user’s perceptual preferences are different [11]. Therefore, the
differences between user preferences cannot be ignored, and
the “average user” cannot represent all users. Environmental
factors also need to be considered, such as watching videos
at home, watching videos while walking, or watching videos
while driving. User QoE perception is different in these
scenarios. Especially when the vehicle is traveling at high
speed, increasing the user video bitrate will not significantly
improve QoE. Blindly increasing video bitrate not only fails
to improve QoE but may even lead to a waste of edge server
resources, resulting in bitrate inefficiency [16].

QoE fairness is of paramount importance in the context
of vehicle networks [17], [18]. As new vehicles continually
enter the coverage area of edge servers, issues related to server
bandwidth preemption can arise easily. Most existing methods
use average bandwidth allocation to provide video services to
ensure the fairness of edge server resources. However, since
users exhibit diverse QoE preferences, the practice of evenly
allocating bandwidth places excessive emphasis on fairness,
potentially at the expense of individual user characteristics.
Therefore, bandwidth allocation is an important part of ensur-
ing QoE fairness. To better accommodate mobile scenarios,
Yuan et al [6] explored an approach to bandwidth allocation
for users in motion. This method takes into account factors
such as user speed and direction to tailor bandwidth alloca-
tion, recognizing the dynamic nature of mobile environments.
While this bandwidth allocation method effectively resolves
the bandwidth preemption challenges posed by mobile sce-
narios, enhancing the overall QoE indicators for all users, it
does have limitations. Notably, this allocation method does
not consider individual user QoE preferences. Consequently,
users with high preferences may not be fully satisfied, while
those with lower preferences may encounter issues related to
low-efficiency bitrate allocation. So, this method can result in
inefficient utilization of some server resources.

C. Key Contributions

Considering the aforementioned factors, we propose a novel
QoE model that balances preferences and fairness named the
Q2oE model. Based on this model, we design a corresponding
transcoding algorithm with reinforcement learning deployed
on collaborative edge servers. The main contributions of this
paper are summarized as follows:

• We propose the Q2oE model, a novel QoE model that
combines user QoE preferences and fairness. To the
best of our knowledge, we are the first to address user-
level QoE preferences and QoE fairness issues in vehicle
networks.

• We introduce a collaborative edge system where edge
servers can collaborate with neighboring servers for
caching and transcoding. This characteristic greatly im-
proves the efficiency of user requests for video chunks,
and significantly reduces latency compared to traditional
edge servers.
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Fig. 1: Q2oE-aware system in vehicular networks.

• We present Q2D3, a reinforcement learning algorithm
based on vehicle networks, to implement the Q2oE
model. When edge server resources are limited, this al-
gorithm can maximize satisfying users’ QoE preferences
while improving fairness as much as possible. Compared
to other state-of-the-art algorithms, our algorithm satisfied
an average of 103% of user preferences and improved
fairness by 13% on average.

II. RELATED WORKS
Building upon previous studies on transcoding and caching

of traditional video streams, extensive research has now
emerged on video streaming issues in mobile environments
[6], [16], [19]–[22]. Yuan et al. [6] proposed the VSiM system,
which aims to address the issue of QoE fairness in mobile en-
vironments. This system integrates client mobility profiles and
QoE-related information to enable dynamic and fair bandwidth
allocation. However, this study concentrates solely on enhanc-
ing the fairness of QoE and overlooks users’ individualized
preferences. In vehicular networks, the work [19] proposed
an infrastructure-assisted millimeter wave vehicular network,
which utilizes mmWave base stations (mBSs) as assisting
infrastructures to transmit video chunks. It utilizes the DDPG
(Deep Deterministic Policy Gradients) algorithm to execute the
video chunk push strategy. Nonetheless, this system lacks the
integration of collaborative edge nodes, resulting in excessive
transmission pressure on the MBS. Furthermore, it does not
address user-level preference and fairness issues.

When investigating ABR algorithms, Zuo et al. [11] discov-
ered that many existing algorithms are designed for an abstract
“average user” without addressing individual users’ specific
QoE preferences. Therefore, they proposed a user preference-
based QoE model and incorporated it into an ABR algo-
rithm to validate the accuracy of modeling user preferences.
Mehrabi et al. [23] proposed the GreedyMSMC algorithm
which combines user QoE and fairness in multi-user and multi-
server scenarios. GreedyMSMC utilizes proportional fairness
to allocate base station resources, thus achieving resource
allocation across multiple users and servers.

For edge collaborative resource allocation, Yang et al. [24]
proposed an edge server collaborative ABR algorithm where
the local edge server connected to the user can collaborate with



neighboring edge servers. The servers jointly perform caching
and video transcoding.

III. PREFERENCE, FAIRNESS AND Q2OE MODELS

A. System Overview

The system is primarily composed of three components:
vehicle users are responsible for requesting and receiving
video chunks, edge servers with caching and transcoding capa-
bilities, and a cloud server holding all video chunk resources.
Fig. 1 illustrates the entire workflow of the system, depicting
how vehicle users request and receive video chunks. (1) Users
first establish a connection with their affiliated edge server and
request the required video chunks. (2) After receiving the user
request, the edge server retrieves its cache area and returns it
to the user if there is a corresponding video chunk. (3) If
the current edge server lacks the requested video chunk, it
seeks assistance from neighboring servers. The neighboring
server checks its cache, returning the video chunk if a cache
hit occurs. (4) If neither the current edge server nor the
neighboring servers have the user’s requested video chunk,
the current server initiates a request to the cloud. The cloud
server retrieves the needed video chunk and completes the
transmission. (5) The cloud server proactively pushes video
chunks to each edge server based on user location and viewed
video chunks, aiding the edge servers in pre-caching.

In our system, there are a total of J edge servers, denoted as
J ={0, 1 , 2, ..., J}, where j = 0 specifically represents the cen-
ter cloud. Each edge server is equipped with a neural network
capable of independently performing transcoding operations
on video chunks, as illustrated in Fig. 1. The computational
capacity, caching capacity, and bandwidth of each edge server
are limited, represented as Pj , Wj , and Bj , respectively. N
represents the number of users in all edge servers, and the
sets of all video chunks and video chunk bitrate levels are
denoted as K={1, 2, ..., K} and Q={1, 2, ..., Q}, respectively.
Vk represents the bitrate level of the kth video chunk, where
Vk ∈ Q.

B. User-level Preference Model

According to the work [16], under different environments,
the user’s perceptual ability is different. For the same bitrate
video stream, the user’s perceptual ability is the strongest when
static, and QoE is the highest. However, when the vehicle is
moving at high speed, the user’s perceptual ability is easily
interfered, and QoE is slightly lower. Further increasing the
video bitrate will not significantly improve the user’s QoE,
resulting in bitrate-inefficiency.

Therefore, in the vehicle network, we need to consider the
characteristics of high-speed movement of the vehicle, and
on this basis, define the user QoE preference suitable for the
mobile environment. Due to the difference between static and
dynamic user QoE perception, the user’s initial QoE preference
(static case) must be adjusted. According to Eq. (1), we use pi
to represent the user i ’s initial QoE preference, and define Pi

to indicate the user i ’s true QoE preference when the vehicle

is moving. And, γ is a hyperparameter. Then, we obtain the
user’s QoE preference in the vehicle network.

Pi = pi − γ ∗ vi (1)

C. QoE Model

In the scenario of high-speed vehicle movement, the QoE
perceived by vehicle users is mainly affected by three factors:
(1) quality variations between continuous video chunks, (2) the
access latency of edge servers, including transmission latency
and transcoding latency, we only consider transmission latency
in this work, and (3) vehicle driving status. The QoE model
is defined as follows:

QoE = Q0 − ω ∗ Ic − γ ∗ v − δ ∗ d (2)

Q0 is modeled with a Michaelis-Menten function, i.e.,
Q0 = max

(
1,min

(
5, 1 + 4 · c1·Vk

c2+Vk

))
, where Vk is the

bitrate level of the kth video chunk, and c1 and c2 are the
model parameters. We use the parameters from [10], i.e.,
c1 = 1.036 and c2 = 0.429. These values are set based on
subjective quality assessment experiments. The parameter ω
penalises the gain in QoE with Ic for loss of smoothness while
γ penalises the QoE gain with vehicle mobility status and δ
penalises gain with access latency.
Ic represents fluctuations in the quality of continuous video

chunks watched by the vehicle user. Due to the fluctuation of
video block quality, users are likely to feel dizzy, which can
significantly reduce user experience. Then, the QoE model
should consider quality variations, as shown in Eq. (3) where
Ic,k represents the bitrate fluctuation when the user watches
the kth video chunk, and Q0,k represents the Q0 value of the
kth video chunk.

Ic,k =
max(Vk−1 − Vk, 0)

Vk
∗Q0,k (3)

In Eq. (3), the difference between the bitrate of the (k− 1)th

video chunk and the kth video chunk represents the oscillation
of the quality of two consecutive video chunks. Here, only
the downward fluctuation in video block quality will have
negative effects, while an increase in bitrate often leads to
positive effects.

D. Fairness Model

We transform the problem of improving the QoE fairness
of the entire system into the problem of improving the QoE
fairness of each edge server. Therefore, to improve the fairness
of users in each edge server range with limited bandwidth Bj ,
we define user QoE fairness in Eq. (4) where M denotes that
the video watched by each user i consists of M blocks. This
is a standard QoE fairness metric. QoEi,t denotes the QoE
actually felt by the user i in the timeslot t. In Eq. (4), ct
denotes the minimum value of the fairness index at timeslot
t. Max-min QoE fairness reflects the QoE improvement of
the worst performing clients, which helps service providers to
offer a fairer service for clients [6], [25].

ct = mini∈N (QoEi,t/M) (4)



E. Mobility Model

According to the work [6], information such as the moving
direction, location, and speed of a vehicle can be captured by
a user’s mobile device. We use ρ to represent the probability
that the vehicle user will move to the next edge server, and
(1 − ρ) to indicate the probability that the vehicle user does
not move out of the current edge server. Eq. (5) gives the
transition probability as:

ρ =
1000 ∗ v′

3600 ∗R
(5)

where v′ represents the vehicle’s speed (e.g., 80km/h) and
R represents the range of the edge server (e.g., 200m). For
example, if a user’s vehicle speed is 100km/h and the coverage
range of each edge server is 200m, then ρ = 0.139.

F. Q2oE Model

To combine considerations of user-level preference and QoE
fairness, we must formulate an optimization object to find
the trade-off point. As described above, we aim to satisfy
each user’s self-preferences and improve their QoE fairness.
However, there is an inhibitory relationship between them.
So we can formally define our optimization problem using
the weighted sum method as below. In Eq. (6), α and β are
two hyperparameters, and α + β = 1. Pi is the expected
QoE of each user i, and QoEi,t is the actual QoE at time
t. We also define ct as mini∈N (QoEi,t/M) at moment t and
Ft = ct − ct−1. Therefore, Ft represents the improvement of
the fairness index. With a smaller β , we tend to prioritize
the preferences of certain users, while with a larger β, we
prefer higher QoE fairness (e.g. when bandwidth is limited,
priority is given to users with the lowest actual QoE). Pi minus
QoEi,t represents the difference between the actual and the
ideal, which we aim to minimize.

Finally, we derive the optimization object of our Q2oE
model with Eq. (6). Next we can incorporate the Q2oE model
with reinforcement learning algorithms to achieve optimiza-
tion.

maxmize

T∑
t

(α ∗ 1∑N
i |Pi −QoEi,t|

+ β ∗ Ft) (6)

Given the number of edge servers and the frequent handoffs
of vehicles, edge servers require a significant amount of infor-
mation to make transcoding decisions. This includes informa-
tion such as the association between vehicles and edge servers,
the caching status of edge servers, the current bandwidth
allocation status, and user preferences. These uncertain factors
complicate the optimization problem, making it difficult to
solve with traditional optimization methods. Therefore, we
employ reinforcement learning to optimize this issue.

IV. Q2OE-AWARE DEEP REINFORCEMENT
LEARNING

A. The proposed Q2D3 algorithm

1) State space: The state of each edge server St in the
current environment consists of four components: (1) The

location of the user vehicle L(t), including which edge node’s
coverage area the user is currently driving within. (2) The
cache status of the edge server C(t), equivalent to the bitrate
of the video chunks currently cached at the edge node. (3) The
velocity of the user’s vehicle V (t). (4) The QoE preference
of the user P (t). It is important to note that all these states
possess the Markov property. Hence, the state of the defined
MDP can be represented as St = [L(t), C(t), V (t), P (t)],
where L(t) ∈ L, C(t) ∈ C, V (t) ∈ V and P (t) ∈ P. Here,
L, C, V and P denote the set of all possible user locations,
cache states of edge servers, user mobility probabilities, and
user preferences respectively.

2) Action space: Due to the characteristics of edge server
collaboration, each edge server has two possible actions: (1)
The transcoding decision T (t) for the video chunks of in-
coverage users at the current edge server. (2) The transcoding
operation T ′(t) for the video chunks for the users that are
about to enter the coverage range of the current edge server,
which can be inferred based on the velocity and location
information of users approaching the coverage area. Therefore,
the action taken at time t can be defined as At = [T (t), T ′(t)],
where T (t) ∈ T and T ′(t) ∈ T. Here, T represent all possible
transcoding decisions.

3) Reward function: The formulation of the reward function
is of critical importance for the efficacy of reinforcement
learning algorithms. Based on the previously mentioned op-
timization goals of user-level QoE preference and fairness,
we propose the reward equation in Eq. (7). We utilize the
reciprocal of an exponential function to represent the proxim-
ity between the user’s preference value and actual value. The
constant C is used to control the range of the value. In our
simulation experiments, C is set to 5.

rt,i = α ∗ 1

exp(Pi −QoEi,t)
∗ C + β ∗ Ft (7)

For edge server j, the reward for the actions it performs is the
sum of all user rewards rt,i belonging to edge server j during
time slot t. As shown in Eq. (8):

rt,j =

Nj∑
i

rt,i (8)

where Nj represents the number of all users who have
established connections to edge server j. In actuality, we
evaluate the performance of our system using the total rewards
rt accumulated across all agents, which are the edge servers.

rt =

J∑
j

rt,j (9)

4) The Detailed Algorithm: Algorithm 1 details our pro-
posed Q2D3 algorithm to solve the user-level QoE preference
and fairness problem. At each time slot t, agent j either
randomly explores actions or directly selects the currently
optimal action aj,t and then executes this action. Subsequently,
according to Eqs. (7) and (8), we can derive the reward
rt,j corresponding to the edge service j, and finally get the



Algorithm 1 algorithm of Q2D3

Initialize: Initialize each agent’s evaluation network Q and
target network Q′ with random parameters; Initialize the
replay buffer M ;

1: for episode = 1, 2, ..., E do
2: Reset the environment and get an initial observation

state s0;
3: for t = 1, 2, 3, ..., T do
4: for j = 1, 2, 3, ..., J do
5: Cache video chunks based on the user’s location

and speed information;
6: Select actions aj,t based on current state and

random exploration probability;
7: Executes aj,t, that is, executes corresponding

transcoding actions;
8: for i = 1, 2, 3, ..., N do
9: Move and request video chunks from local edge

servers;
10: Calculate the value of QoEi,t and the value of

Ft, and then get the corresponding reward rt,i
according to Eq. (7);

11: The environment return the state of the next time slot
st+1 and reward rt according to Eq. (9);

12: Store sample (st, at, rt, st+1) in M ;
13: Sample a random minbatch of K samples from M ;
14: for j = 1, 2, 3...J do
15: Update the evaluation network parameters θ with

loss function by Eq. (10);
16: Update the target network parameters θ′ with loss

function by Eq. (11);

total reward rt of the system according to Eq. (9). After
obtaining the reward rt and the state st+1 for the next time
slot, the transition (st, at, rt, st+1) is stored in the experience
replay buffer M . Then, each edge server updates its network
parameters based on K randomly selected transitions from
the replay buffer. For each agent, the loss function for the
evaluation network is shown in Eq. (10), and the parameter
update for the target network uses Eq. (11) where θ and θ′

are the parameters for the evaluation network Q and target
network Q′ respectively, with a∗ = argmaxQ(st+1, a; θ), and
τ = 0.5 in our simulation experiments.

L (θ) =
1

K

K∑
i=1

[rt + γQ′ (st+1, a
∗; θ′)−Q (st, at; θ)]

2

(10)
θ′ = τθ + (1− τ)θ′ (11)

V. EVALUATION
A. Simulation Settings

In this section, we evaluate the proposed Q2D3 algorithm,
which is based on collaborative edge servers and considers
user QoE preferences and fairness under vehicular mobility
scenarios. The system is simulated on a PC platform (Intel(R)
Xeon(R) Silver 4310 CPU @ 2.10GHz, RTX 3080TI). In

the system, five edge servers are configured and a random
number of vehicles are generated, with the velocity of these
vehicles ranging between 30km/h and 120km/h. The cloud has
information about all video chunks. The end-to-end latency
for users to fetch the same bitrate video chunks from the
edge server, neighbor edge server, and the cloud are randomly
assigned following a uniform distribution within the range
of [5, 10] (ms), [20, 50] (ms), and [100, 200] (ms) [26],
respectively. We assume that the roads are clear, that vehicles
can move normally, and that there is no network congestion
due to vehicle congestion.

The neural network used in our proposed Q2D3 algorithm
consists of two fully connected hidden layers, with each fully
connected layer containing 1024 neurons. We set the size of
the experience replay buffer to 10000 and the batch size to
256. The discount factor γ in the reward function is set to
0.95, and the network update parameter τ is set to 0.005. To
ensure that the algorithm operates in a valid action space, the
input of the neural network is defined as the size of the state
space, and the output is defined as the size of the action space,
avoiding the generation of invalid actions. We have performed
a total of 30,000 training iterations, and finally the average
reward of the proposed algorithm progressively increases and
converges at about the 3000th episode.

B. Performance Comparison

In this section, we evaluate the performance of Q2D3,
comparing it with three alternative methods.

DRL-CTCS [24]: This approach consists of a cooperative
transcoding and caching strategy at the edge cluster. However,
it does not take into account user mobility, as users are static in
this scenario with fixed edge server connections. The focus of
this work remains on improving user QoE, without considering
personalized user preferences and fairness. In contrast, our
system comprehensively considers user preferences, mobility,
and fairness.

MA [10], [19]: Mobile-based algorithm, which considers
user mobility, but overlooks user preferences and fairness
issues. Additionally, this work does not consider the potential
for collaboration between edge servers. We incorporate this
algorithm into our system and compare its performance with
our proposed Q2D3 algorithm.

GreedyMSMC [23]: This work considers the fairness issue
arising from connections between multiple users and different
servers. It adopts a proportional fairness approach to allocate
base station resources, thereby achieving coordinated resource
allocation between multiple users and servers. However, it
is based on maximizing individual QoE to achieve propor-
tional fairness and does not consider the perspective of user
preference. We implement this algorithm in our proposed
collaborative system and compare its performance on QoE and
fairness.

As shown in Fig. 2 (a), the average QoE index of our
proposed Q2D3 algorithm eventually converges to 22.7. The
QoE index of the DRL-CTCS algorithm finally converges
to 22.5, which is slightly lower than our proposed Q2D3
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algorithm. It can be observed that the user’s QoE preference
fluctuates around 22, clearly demonstrating that our Q2D3
algorithm can satisfy the user’s preferences well. However,
under the Greedy algorithm, the user’s QoE index converges
to 21.5, and under the MA algorithm, the user’s QoE index
converges to 19.8, both of which fail to meet the user’s QoE
preference. In summary, our proposed Q2D3 algorithm can
satisfy the user’s QoE preference under the edge collaboration
scenario.

Furthermore, Fig. 2 (b) clearly shows the fairness indices
of the four algorithms. Our proposed Q2D3 algorithm demon-
strates outstanding performance, eventually converging to 4.3
after 10,000 rounds of training iterations. The performance
of the DRL-CTCS algorithm is comparable to Q2D3. How-
ever, the fairness index of the GreedyMSMC algorithm is
only 4.0, which is slightly better than the worst-performing
MA algorithm at 3.2. Evidently, our algorithm also exhibits
remarkable performance in terms of fairness. In terms of user

access latency, as shown in Fig. 2 (c), the Q2D3 algorithm
has the lowest latency, averaging 61ms. The MA algorithm
has the highest latency, averaging 220ms. We see that the
latency performance of the Q2D3 algorithm based on the edge
collaboration server is much higher than that of the other
three algorithms. Coincidentally, under the characteristic of
edge server collaboration, our proposed Q2D3 algorithm also
exhibits excellent performance in terms of cache hit rate, with
an average cache hit rate as high as 88%. The average cache
hit rates of the other three algorithms are 85%, 71%, and
82% respectively, all lower than our proposed algorithm. It is
evident that our proposed Q2D3 algorithm demonstrates good
performance in four aspects - user preference, fairness, latency,
and cache hit rate.

C. Parameter comparison of Q2D3

The optimization objective of our proposed Q2oE model,
as shown in Eq. (6), includes two important parameters α
and β in this optimization objective. The size of parameter
α determines the user QoE while the size of parameter β
determines the fairness metric. In the work of this paper, we
use α = 0.5 and β = 0.5, which best values after comparison.
In order to select the optimal parameters, we respectively set
the values of α as 1, 0.8, 0.5, 0.2, and 0, while maintaining
α + β = 1. As shown in Fig. 3, we conducted experiments
based on two key aspects: the user preference-based QoE
metric and fairness. In Fig. 3 (a), the user QoE (22.7) reaches
its maximum when the value of α is 1. However, the fairness
index (4.26) is lower for the values of 0.5 and 0.8. When the
value is 0.8, the user QoE (22.6) decreases slightly from α = 1,
but the fairness index (4.31) increases slightly. When α value
of 0.5, performance is excellent in both QoE and fairness. It
can be observed that α = 0.5 strikes the best balance between
user QoE and fairness index. Therefore, we set α = 0.5 and
β = 0.5 as the optimal parameter for the proposed Q2oE
model.

Moreover, vehicle speed is an important benchmark in
vehicular networks. Therefore, we conducted simulation ex-
periments with different average vehicle speeds, specifically
30km/h, 60km/h, 90km/h, and 120km/h. Through the above
experiments, we verified the performance of our system at
different vehicle speeds. Fig. 4 (a) illustrates the QoE metric
convergence process under different vehicle speeds. It can



be observed that when the average speed is 30km/h, the
curve eventually converges to 22.6. When the average speed
is 60km/h, the curve converges to 22.75. At 90km/h aver-
age speed, the final convergence is 22.5. And at 120km/h
average speed, the curve converges to 22.25. Although the
user QoE metric decreases slightly with the increase of
average vehicle speed, it remains notably higher than the
user’s QoE preference value (22.0) under all speed conditions.
So we demonstrate that, our system can satisfy the user’s
preferences well under different vehicle speeds. Fig. 4 (b)
presents the performance curves of the fairness metric under
different vehicle speeds. Under the four scenarios of 30km/h,
60km/h, 90km/h and 120km/h, the fairness metric converges
to 4.35, 4.39, 4.32 and 4.30, respectively. As the vehicle speed
increases, the user fairness metric shows a slight decrease
but remains significantly higher than the three benchmark
algorithms compared above. In summary, our system adapts
well under different vehicle speeds, demonstrating favorable
performance in both user preference and fairness metrics.

VI. CONCLUSION

User-level QoE preference and QoE fairness are important
factors to consider in multi-user scenarios. We designed a
novel QoE model, named the Q2oE model, which successfully
combines user preference and fairness metrics. Finally, we
deployed the Q2oE model and Q2D3 algorithm on collabo-
rative edge servers with our simulation results showing that,
our method improves QoE fairness while guaranteeing user-
level QoE preference.
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