
Joint Optimization of DNN Partition and Scheduling for Mobile
Cloud Computing

Yubin Duan

Temple University

Philadelphia, USA

yubin.duan@temple.edu

Jie Wu

Temple University

Philadelphia, USA

jiewu@temple.edu

ABSTRACT
Reducing the inference time of Deep Neural Networks (DNNs) is

critical when running time sensitive applications on mobile devices.

Existing research has shown that partitioning a DNN and offloading

a part of its computation to cloud servers can reduce the inference

time. The single DNN partition problem has been extensively in-

vestigated recently. However, in real-world applications, a mobile

device usually generates multiple DNN inference jobs simultane-

ously, and little attention has been paid to this case. We aim to

minimize the makespan of multiple DNNs by jointly optimizing

their partitioning and scheduling. Our observations show that the

local computation time on a mobile device follows an increasing

function, while the communication workload for offloading is usu-

ally decreasing as more DNN layers are computed. Based on this,

we first relax our problem on continuous domain and show that par-

titioning all line-structure DNNs at the same layer is sufficient for

makespan optimization. Then, for the discrete domain, two types

of partitions are sufficient when the time difference between two

adjacent partition layers is not drastic, subject to a given condition.

An algorithm based on the binary search that efficiently finds opti-

mal partition layers is illustrated. We also extend our approach to

general-structure DNNs and offer a heuristic solution. Experiments

have been conducted to evaluate the performance of different par-

tition and scheduling methods on sample DNNs. Results validate

the optimality of our theoretical results.

KEYWORDS
DNN partition, makespan minimization, mobile cloud offloading,

pipeline, scheduling

ACM Reference Format:
Yubin Duan and Jie Wu. 2021. Joint Optimization of DNN Partition and

Scheduling for Mobile Cloud Computing. In 50th International Conference
on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472468

1 INTRODUCTION
Deep Neural Networks (DNNs) have become increasingly popular

in computer vision applications, such as image segmentation and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00

https://doi.org/10.1145/3472456.3472468

Mobile

co
nv

po
ol
in
g

ac
tiv

at
io

n

de
ns

e

DNN2 Cut

Comm. Cloud

DNN1

Comm. DNN1

DNN2

DNN2

Mobile Comp. 

TimeCloud Comp. 

Mobile

co
nv

po
ol
in
g

ac
tiv

at
io

n

de
ns

e

Mobile Comp. Cloud Comp.Comm.

DNN1 Cut𝑙! 𝑙" 𝑙# 𝑙$
𝑙! 𝑙" 𝑙# 𝑙$

Figure 1: Overview of the DNN partition and scheduling.

recognition. These applications usually require efficient processing

of DNN inference jobs, especially when the applications are run-

ning on mobile devices that have relatively weaker computational

abilities compared to cloud servers. For example, when running

augmented reality applications on smart glasses, the user experi-

ence heavily depends on the response time. Thus, it is critical to

reduce the makespan of those DNN inference jobs.

Prior research has shown that an intelligent collaboration be-

tween a mobile device and the cloud server could reduce the latency

of DNN inference jobs [10]. Partitioning the DNN computation be-

tween the mobile device and the cloud can reduce the makespan

compared to mobile-only and cloud-only approaches [12]. The

mobile-only approach refers to executing the DNN inference on a

mobile device. The cloud-only approach refers to sending all data to

the cloud and running the inference there. However, little attention

has been paid to optimizing the multiple-job case.

In real-world applications, a mobile device usually generates mul-

tiple DNN inference jobs at the same time. Self-driving cars [16]

and virtual/augmented reality [1, 14] are some typical examples. In

those applications, the mobile end device needs to repeatedly run

inference jobs on the same DNN. Specifically, self-driving cars usu-

ally equip multiple cameras and use the same DNN to process the

frames collected from different cameras. Similar situations could

also happen in virtual/augmented reality applications. Multiple

image frames are generated at the same time. The processing pro-

cedures of those frames are usually the same meaning, they use the

same DNN structure. Minimizing makespan of these jobs on the

mobile device and the cloud by jointly partitioning and scheduling

is very challenging, but its result is far reaching.

In this paper, we focus on optimizing the collaboration between

the mobile device and the cloud when there are multiple homoge-

neousDNN inference jobs. Our objective is to reduce theirmakespan,

https://doi.org/10.1145/3472456.3472468
https://doi.org/10.1145/3472456.3472468


ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yubin Duan and Jie Wu

6
74

2Comm.

Comp.

6
4

Comm.

Comp. 4
6

2
7

Comm.

Comp. 7
2

cut point
(&1, &1)

cut point
(&2, &2)

Cut-Point 
(&1, &2)

6
74

2Comm.

Comp.

6
4

Comm.

Comp. 4
6

2
7

Comm.

Comp. 7
2

Cut-Point 
(&1, &1)

cut point
(&2, &2)

cut point
(&1, &2)

6
74

2Comm.

Comp.

6
4

Comm.

Comp. 4
6

2
7

Comm.

Comp. 7
2

cut point
(&1, &1)

Cut-Point 
(&2, &2)

cut point
(&1, &2)

DNN1 DNN2

DNN1 DNN2
16

13

16

Figure 2: Partition and scheduling are correlated.

which is the length of the duration between the first job’s starting

time and the last job’s completion. Fig. 1 illustrates the scheduling

of a line-structure DNN with four layers (l1, l2, l3, l4). There are

two major challenges to our optimization problem. The first one is

how to partition multiple DNNs; is it optimal to partition all DNNs

at the same layer? The other one is how to optimally schedule

the execution of partitioned DNNs. Executing a partitioned DNN

involves three steps: computing on the mobile device, offloading

the intermediate result to the cloud, and computing the rest of the

DNN on the cloud. Scheduling multiple DNNs with those execution

steps can be categorized as a flow shop problem[2].

The above challenges can be revealed in a simple go-through ex-

ample in Fig. 2. Assume we have two DNNs. Assume each DNN has

three layers (l1, l2, l3) with two partition (or cut) points: after l1 and
after l2. Assume the local computation time on the mobile device for

cutting after l1 and l2 are 4 and 7, respectively. The offloading time

of partitioning after l1 and l2 are 6 and 2, respectively. The computa-

tion time on the cloud is negligible. This is because the computation

power of the cloud server is usually much higher than mobile de-

vices. If we partition both of the two DNNs after the first or the

second layer (first or third case of Fig. 2), the makespan of the opti-

mal schedule is 16. In contrast, if the two DNNs are partitioned at

the first and second layers, respectively, then the optimal makespan

is 13 (second case in Fig. 2). In this example, partitioning DNNs at

different positions is a better choice. However, if we change the

offloading time 7 to 5, the optimal partition changes. Partitioning

both DNNs at the first layer becomes the optimal solution. How

many types of partitions should we perform on n identical DNNs

with k layers? Each DNN has O(k) partition points, and checking

all O(kn ) combinations for n DNNs is computationally expensive.

We observe some useful properties of DNNs and analyze the

optimal conditions of the partition problem. Our observation on

commonly used line-structure DNNs shows that the offloading vol-

ume for mobile devices is usually decreasing as the partition layer

moves down the linear layers. Although the volume of some inter-

mediate layers may increase as the partition layer goes deep, we

can cluster those layers as a virtual block without missing the opti-

mal partition point. Offloading after some layers within the virtual

block cannot be optimal because it is not wise to increase the of-

floading volume while running more computation workload on the

mobile device. In addition, the offloading volume after each layer or

virtual block usually decreases exponentially because DNNs need

to quickly extract key features before classification. The computa-

tion time usually increases linearly since DNNs typically consist of

many repeated blocks.

Based on these observations, we first relax our problem on con-

tinuous solution space and show that partitioning all DNNs at the

same layer is sufficient formakespan optimization. Then, we expand

our analysis to the discretized problem space. Although sharing the

same partition layers on all DNNs is no longer optimal, we show

that two types of partitions are sufficient when the time difference

between two adjacent layers is not drastic. In addition, we illustrate

an O(logk) algorithm based on the binary search to efficiently find

optimal partition layers for line-structure DNNs with k layers. Ad-

ditionally, we also extend our approach to general-structure DNNs

and offer a heuristic solution.

In the experiment, we test our joint optimization scheme with

AlexNet, MobileNet, ResNet, and GoogLeNet, which are widely used

in computer vision applications. The experiment results show that

jointly considering the DNN partition and scheduling could further

reduce the makespan of all jobs, compared to merely considering

only DNN partition or only DNN scheduling.

Our contributions are summarized as followings:

• We formulate amakespanminimization problem formultiple

DNN inference jobs in mobile cloud computing. We jointly

consider the DNN partition and scheduling.

• We theoretically analyze the partition and scheduling of line-

structure DNNs. We reveal the optimal conditions for using

one or two ways of partitions.

• We propose a binary-search-based algorithm to find the

optimal cut-points for line-structure DNNs and extend it to

deal with general-structure DNNs.

• Experiments onAlexNet,MobileNet, ResNet, andGoogLeNet,

which are widely used in computer vision applications, show

that our joint optimization scheme outperforms the scheme

that only considers the DNN partition or scheduling.

2 RELATEDWORK
Cloud/edge offloading approaches investigate the collaboration be-

tween local and remote computation resources. Neurosurgeon [10]

proposed the idea of computation offloading for DNNs. The collab-

oration between mobile devices and the cloud server could speedup

the DNN inference. However, Neurosurgeon only considers the

partition of a single DNN. Our paper jointly considers the parti-

tion and scheduling of multiple DNNs. Teerapittayanon et. al. [24]
proposed DDNN to reduce the communication data size in a dis-

tributed computing system containing mobile devices, the edge,

and the cloud. Different from their objective, we aim to reduce

the makespan that contains both communication and computation

latencies. Mohammed et. al. [15] proposed to partition DNN into

more than two parts to fit the fog computing scenario. Wang et. al.
[28] presented an adaptive DNN partition scheme for inference ac-

celeration. [3] further proposed an optimal partition algorithm for

tree-structure DNNs. Although they considered multiple DNNs, the

scheduling of multiple jobs is not discussed. In our paper, we allow

DNN offloading stages to work in a pipeline. Carefully scheduling

those jobs could further reduce their completion time.



Joint Optimization of DNN Partition and Scheduling for Mobile Cloud Computing ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Filter 
Concat

1x1 
Conv

Avg 
Pooling

1x1 
Conv

1x3
Conv

3x1
Conv

1x1 
Conv

1x1 
Conv

1x3 
Conv

3x1 
Conv

3x1 
Conv

1x3 
Conv

Filter 
Concat

DNN DAG

Cut-Points

(a) General-structure DNN and its DAG representation

28x28 
Conv

Avg 
Pooling

10x10 
Conv

Ave 
Pooling

Fully 
ConnectedInput Output

	𝑣! 	𝑣" 	𝑣# 	𝑣$ 	𝑣% 	𝑣& 	𝑣'

Comp. Time: 𝑓(𝑣$) Comm. Time: 𝑔(𝑣$)

Cut-Point

(b) Line-structure DNN and its DAG representation

Figure 3: DNNs and its DAG representations.

Other inference acceleration approaches include DNN model

simplification [4, 6, 8, 23, 26, 27] and hardware acceleration [11,

25, 29, 30]. Our methods are compatible with those approaches. In

addition, DNN model simplification accelerates an inference job by

modifying and simplifying DNNmodels. This approach investigates

the trade-off between computation workload and model accuracy.

Our proposed methods do not modify the DNN model and do not

sacrifice the inference accuracy, which is important in specific

applications, such as autopilots.

3 MODEL
3.1 Problem Formulation
We use a Directed Acyclic Graph (DAG) to model a DNN. Formally,

let G = (V ,E) denote a DAG, where V is the node set and E is

the edge set. Each node v ∈ V represents a layer in the DNN

instead of a neuron since our partition granularity is layer-wise. A

weighted edge e ∈ E represents the data communication between

two vertices that are incident to e . The edge weight shows the

communication volume. Fig. 3(a) illustrates the structure of the

inception-v4 network [21] and its DAG representation. Although a

DNN could have a complex DAG representation, many widely-used

DNNs are simple and have line structures as shown in Fig. 3(b). For

example, VGG16[20], Tiny YOLOv2[17], and NiN[13] are commonly

used in computer vision applications, and all have line-structure

representations with different sizes.

Let J denote the set of DNN jobs, where j is used to index a

job and n is the number of jobs. Each job j is a DNN inference

task whose computation graph isG. Merely processing the job on

mobile devices could be time consuming because of the weak com-

putational power. A better approach is to offload a part of G to a

cloud server[10]. The collaboration between mobile devices and

the cloud contains three steps: 1) computing parts of G on mobile

devices, 2) offloading intermediate results to the cloud server, and

3) computing the remaining parts of G on the cloud. The cloud

server needs to send inference results back to mobile devices, but

the communication volume is small and negligible. In this approach,

1 2 3 4 5 6 7 8
Layer

0

10

20

30

40

50

T
im

e 
(m

s)

Cloud Comp.
Comm.
Mobile Comp.

(a) Cloud comp. time is negligible

1 2 3 4 5 6 7 8
Layer

0

10

20

30

40

50

60

T
im

e 
(m

s)

Mobile Comp.
Comm.

(b) Trend of time consumption

Figure 4: Time consumption of each layer of AlexNet.

the computation graphG of each job j is partitioned into two parts,

which introduces the model partition problem. After partition, the

mobile device needs to determine the processing sequence of parti-

tioned graphs, which is the scheduling problem.

Although jobs have the same DAG structure, they could have

different ways of partitioning. Let Pj ⊂ V denote the partition of job

j and be a set of cut-points. For line-structure DNNs, the partition set
Pj only contains one cut-point. We can choose a partition layer and

cut the DNN after the layer. For general-structure DNNs, the set Pj
can include multiple cut-points. Specifically, all computation nodes

v ∈ Pj and their predecessors are processed on mobile devices. We

use f (Pj ) to denote the time consumption of processing those nodes

on the mobile device. The output of cut-points v ∈ Pj needs to be

offloaded to the cloud. The time consumption of sending the output

is denoted as д(Pj ). The value of f (Pj ) and д(Pj ) could be predicted
by using regression models[10]. The successors of cut-pointsv ∈ Pj
are computed on the cloud. The computation power of cloud servers

is usually much larger than that of mobile devices. Therefore, the

processing time of the cloud is negligible. Fig. 4(a) shows the time

consumption of each step when partitioning AlexNet on different

layers. The figure shows the cloud processing time is negligible.

The notations are illustrated in Fig. 3(b), where v4 is the cut-point.
Nodes v1,v2,v3,v4 are processed on the mobile device and their

time consumption is denoted as f (v4). The intermediate results

generated by v4 are sent to the cloud, and the communication time

is denoted as д(v4).
After inference jobs are partitioned, the mobile device needs to

schedule their processing sequence. For job j, the mobile device

need to process the cut-pointsv ∈ Pj and their predecessors, which
is referred to the computation stage of j. After the computation

stage is done, intermediate results are sent to cloud servers, which

is denoted as the communication stage of j. When the computation

(resp. communication) stage of job j starts, it acquires all computa-

tion (resp. network) resources. Otherwise, the makespan may be

enlarged [19]. However, the computation and network resources

could be used in a pipelined manner. The computation stage of a

job can overlap with the communication stage of another job. The

lengths of computation and communication stages of job j are f (Pj )
and д(Pj ), respectively. The communication stage cannot start until

the corresponding computation stage is done. The completion time

of job j is denoted as τj . All jobs in J are available at the time 0.

Our objective is tominimize the completion time or themakespan

of n identical DNN inference jobs in J . The makespan is defined as



ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yubin Duan and Jie Wu

𝑓(1)

Comm. 𝑔(1)

𝑓(2)Comp. 𝑓(3)

𝑔(3)𝑔(2)
Time 

(a) Communication-heavy job set

𝑓(4)

Comm. 𝑔(4)

Comp. 𝑓(6)

𝑔(6)
Time 

𝑔(5)

𝑓(5)

(b) Computation-heavy job set

Figure 5: Illustrations of sorted order sets in scheduling.

maxj τj . We jointly consider partitioning and scheduling strategies

in our optimization problem.

3.2 Problem Analysis
The complexity of the problem mainly comes from the correlation

between partitioning and scheduling. Specifically, the lengths of

communication and computation stages of job j are functions of
partition methods Pj . This indicates the potential collaboration

between partitioning and scheduling. It is difficult to determine

what is a good partition of a job, especially when the computa-

tion and network resources are used in a pipelined manner. The

communication stage of a job could be completely hidden behind

the computation stage of the next job, which helps to reduce the

overall makespan. Therefore, it is necessary to jointly consider the

partition of n jobs. However, examining all possible partitions of n
DAGs cannot be done in polynomial time. Formally, assume each

DAG has c ways of partitioning. The number of all possible parti-

tions for n DAGs is O(cn ). This leads to a natural question: do we

need to investigate all possible partitions for n DAGs? What is the

best partition strategy of each DAG when considering the potential

pipelined speedup among multiple jobs?

After investigating some typical DNNs, we notice that f and д
functions have useful monotonicity and convexity properties when

the DAG has a line structure, which could help us answer those

questions. Many widely used DNNs in computer vision applica-

tions have line structures, such as VGGNet[20] and YOLO[17]. The

line structure makes partitioning easier since the partition Pj only
contains one vertex, and both f and д become unary functions.

More importantly, if we index vertices in the DAG by their depths

as shown in Fig. 3(b), then f is monotonically increasing and д is

non-increasing. The computation time f increases as the partition

layer moves forward because more layers need to be processed

on the local mobile device. Admittedly, the communication time

may increase as the partition layer goes deep. However, we can

cluster the layers, after which the offloading volume increases, as a

virtual block without missing the optimal partition point. Partition

after any layer in the virtual block would enlarge the offloading

communication volume and the local computation time. Therefore,

it must not be the optimal partition point. We use the DAG in Fig.

3(b) to illustrate the monotone property. If the cut-point changes

to v5 instead of v4, then the mobile device needs to process an

additional average pooling layer that corresponds to v5. At the
same time, the additional average pooling layer could reduce the

volume of the intermediate results, and the communication time

could be reduced. Other types of layers such as convolutional layers

or normalization layers would maintain the intermediate results

size. Therefore, the communicationworkload is non-increasing. The

monotonic properties of f andд are also revealed by Fig. 4(b). Notice

Algorithm 1 DNN Scheduling Algorithm

Input: Set of partitions P = {P1, P2, . . . , Pn }.
Output: The optimal scheduling for the mobile device.

1: Evaluate f (Pj ),д(Pj ) with regression models for each j ∈ J .
2: Communication-heavy set S1 ← {j ∈ J | f (Pj ) < д(Pj )}.

Computation-heavy set S2←{j ∈ J | f (Pj )≥д(Pj )}.
3: S1←Sort S1 for ascending order of f (Pj ).
4: S2←Sort S2 for descending order of д(Pj ).
5: S←S1 | |S2.
6: return S as the optimal schedule.

that the layer shown in the figure represents a block of convolution,

pooling, and activation operations. Based on the property, we could

simplify the formulation of the makespan. The details are shown

in Section 4.

Furthermore, we notice that the evolution of f and д function

values w.r.t. the depth of cut-points could be fit by linear and convex

functions, respectively. Typical line-structure DNNs are repeatedly

built with units of convolutional and pooling layers. The duration

of computing a unit is usually fixed. Therefore, the evaluation

computation workload is nearly linearly increasing. Each unit can

usually reduce the volume of intermediate results by half. Therefore,

the function д fits in a convex function. By examining the convex

properties, we find that partitioning all jobs in the same cut-point is

sufficient for optimal scheduling when functions f andд are relaxed
to continuous spaces R+. More details can be found in Section 5.

4 DNN SCHEDULING
In this section, we first show an optimal scheduling algorithm

for arbitrary partition strategies. Then, we focus on line-structure

DAGs and formulate the optimal makespan, which could guide the

partition strategy design.

4.1 Scheduling for Arbitrary Partitions
Scheduling for partitioned DAGs can be viewed as flow shop prob-

lems [2] and can be optimally solved by Johnson’s rule [9]. Given

the partition Pj for each job j ∈ J , we obtain the value of f (Pj ) and
д(Pj ) by applying regression techniques [10]. With those known

values, the scheduling problem can be categorized as a 2-stage flow

shop problem. With an objective of minimizing the makespan of

all jobs, Johnson’s rule [9] can be applied to optimally solve the

scheduling problem.

The procedures of the scheduling algorithm based on the John-

son’s rule are illustrated in Alg. 1. Specifically, at line 1, we evaluate

the values of f (Pj ) andд(Pj )with regressionmodels. Lines 2-5 show

the procedures of Johnson’s rule. Jobs in J are first split into two

groups. The communication-heavy set S1 contains all jobs whose
communication stage is longer than the computation stage. The

computation-heavy set S2 contains the other jobs. Then, the jobs
in the communication-heavy set are sorted based on the ascending

order of their computation stage lengths. The jobs in S1 are stored
in increasing order of f (Pj ) . Jobs in S2 are sorted in descending

order of д(Pj ). Illustrations of the sorted S1 and S2 are shown in

Fig. 5. Finally, the sorted jobs in S2 are concatenated after jobs in

S1, and S stores the optimal solution.



Joint Optimization of DNN Partition and Scheduling for Mobile Cloud Computing ICPP ’21, August 9–12, 2021, Lemont, IL, USA

𝑓(𝑙!)

Comm. 𝑔(𝑙!)

𝑓(𝑙")

𝑔(𝑙")

Comp. 𝑓(𝑙#)

𝑔(𝑙#)

𝑓(𝑙$)

max 𝑓 𝑙! + 𝑓 𝑙" + ⋯+ 𝑓 𝑙# ,	
𝑔 𝑙$ + 𝑔 𝑙! + ⋯+𝑔 𝑙#%$

𝑔(𝑙$) Time 

⋯

⋯

Figure 6: An illustration of makespan calculation.

4.2 Makespan of Line-Structure DAG
For line-structure DAGs, the partition P only contains one element,

after which the line-structure DAG is partitioned. Therefore, the

functions f and д become unary functions in discrete domains. Let

x j denote the index of the cut-point for DAG j . Then, the makespan

maxj τj has a closed-form formulation. Concatenating the S2 shown
in Fig. 5(b) after the S1 shown in Fig. 5(a) would cause idle time

slots for either computation or communication resource but not

both. Therefore, we have the following proposition.

Proposition 4.1. For line-structure DAGs, if mobile devices sched-
ule partitioned DAGs based on Johnson’s rule, then the makespan of
n jobs is maxj τj = f (x1) + max{

∑n
i=2 f (xi ),

∑n−1
i=1 д(xi )} + д(xn ).

An illustration of the proposition is shown in Fig. 6. When n
is large or n → ∞, the makespan becomes large or maxj τj →
∞. Therefore, it is more meaningful to investigate the average

makespan (maxj τj )/n. To simplify the following analyses, we first

rewrite the formulation of the average makespan

lim

n→∞

maxjτj

n
= lim
n→∞

max{д(xn )+
∑n
i=1 f (xi ), f (x1)+

∑n
i=1д(xi )}

n

= lim

n→∞
max{

∑n

i=1
f (xi )/n,

∑n

i=1
д(xi )/n}

Then, the objective of our optimization problem is equivalent to

minmax{
∑n
i=1 f (xi )/n,

∑n
i=1д(xi )/n}. Notice that n is a finite num-

ber in real-world applications, it is treated as a finite number in the

following analysis. Nevertheless, the formulation of the average

makespan is still a good approximation. Let k denote the length

of the line-structure DAG, i.e., k = |V |. Use l ∈ {1, . . . ,k} to index

vertices in V from left to right (source to termination node). Our

optimization problem becomes:

P1: min max{
∑n

i=1
f (xi )/n,

∑n

i=1
д(xi )/n}

s.t.

∏k

l=1
(x j − l) = 0,∀j ∈ J

To simplify the problem,we relax the domain of x= (x1,x2,. . . ,xn )
to real numbers, i.e. x ∈ Rn . The relaxed problem becomes:

P2: min max{
∑n

i=1
f (xi )/n,

∑n

i=1
д(xi )/n}

s.t. x j > 0,∀j ∈ J

5 DNN PARTITION
In this section, we first discuss the optimal condition for line-

structure DNN partition. Then, we introduce our partition and

scheduling algorithms in detail.

5.1 Partition for Line-Structure DNNs
The objective of the partition is to minimize the makespan. We first

analyze the relaxed problem P2 in continuous domains, then extend

results to discrete domains.

co
nv

po
ol
in
g

po
ol
in
g

de
ns
e

…
𝑓(𝑥)𝑔(𝑥)

Figure 7: Continuous time consumption functions.

In the continuous domain, we use convexity and monotonicity

properties of functions f and д to analyze the optimal conditions

of the problem. As shown in §3.2, the communication time д(x)
usually decreases exponentially along with x , and the computation

time f (x) usually increases linearly. Based on this observation, we

assume f is an increasing linear (also convex) function and д is a

decreasing convex function in the following analysis. The functions

in the continuous domain are shown in Fig. 7.

When both f and д are convex, the problem P2 becomes an

convex optimization problem.More interestingly, the problem holds

a strong duality as shown in Lemma 5.1. It is mainly because that

summation and the maximum of convex functions are still convex.

Lemma 5.1. Our optimization problem P2 holds a strong duality if
both f (x) and д(x) are convex.

Proof: The objective function of P2 is convex when f (x) and д(x)
are convex since the summation and the maximum of convex func-

tions are still convex. The constraints are also convex. Therefore,

P2 is a convex optimization problem.

The strong duality holds since our convex optimization problem

satisfies the Slater’s condition. Formally, we need to find a point

x = (x1,x2, . . . ,xn ) in the feasible solution domain such that xi >
0,∀i = 1, 2, . . . ,n. Note that xi represents the partition for job i .
Such point exists since the partition of each job is independent and

can be placed at any layer in middle of the DAG. ■
Especially, DNNs are mainly constructed by repeatedly placing

blocks of convolution and pooling layers. The computation time

of each block is similar. It makes the function f (x) almost increase

linearly with x . After each block, the sizes of intermediate results

decrease exponentially because of the pooling layers. Even if the

pooling layer is not inserted between two blocks, the size would

not increase. Hence, д(x) can be fit by a convex function.

Because of the strong duality, we can find the optimal solution to

the problem according to KKT conditions. As shown in Theorem 5.2,

our analysis reveals an interesting property that all of n identical

DNN inference jobs should be cut at the same point when we

investigate the problem in the continuous domain.

Theorem 5.2. After relaxing the partition point into a continuous
space, partitioning all homogeneous line-structure DAGs at the same
point could reach the optimal makespan.

Proof. Before proceeding to further analysis, we smooth the max

function by using the LogSumExp (LSE) function.

max{
∑n

i=1
f (xi )/n,

∑n

i=1
д(xi )/n}

= lim

α→∞

1

α
ln

(
exp(α

∑n

i=1
f (xi )/n), exp(α

∑n

i=1
д(xi )/n)

)
.

According to Lemma 5.1, the strong duality holds. Hence, the

KKT conditions hold at the optimal point. Specifically, x∗ is the op-
timal solution to the primal problem if and only if ∇x limα→∞



ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yubin Duan and Jie Wu

𝑥∗𝑥′ 𝑥′′

𝑔 𝑥! + 𝑔 𝑥!!

2
> 𝑔(𝑥∗)

(a) Continuous domain

𝑔(𝑙) 𝑓(𝑙)

𝑙∗

(b) Discrete domain

Figure 8: Graph explanation of the optimal partition.

1

α ln

(
exp(

α
∑n
i=1 f (xi )
n ), exp(

α
∑n
i=1 д(xi )
n )

)
= 0 and xi > 0,∀i =

1, 2, . . . ,n.
The gradient of the objective function is formed by a vector

of partial orders of xi . Formally, the partial order of each xi is
f ′(xi ) exp

( α
n
∑n
i=1 f (xi )

)
+ д′(xi ) exp

( α
n
∑n
i=1д(xi )

)
.

For each xi , at the optimal point, it satisfies

f ′(xi )exp
(α
n

∑n

i=1
f (xi )

)
= −д′(xi )exp

(α
n

∑n

i=1
д(xi )

)
(1)

In the continuous domain, the computational workload increases

along with x , while the communication volume decreases. There-

fore, f ′(x) > 0 and д′(x) < 0. Then, f ′(xi ) exp
( α
n
∑n
i=1 f (xi )

)
> 0

and −д′(xi ) exp
( α
n
∑n
i=1 д(xi )

)
> 0.

Take the logarithm of both sides of Eq. (1), we have:

ln(f ′(x)) +
α

n

∑n

i=1
f (xi ) = ln(−д′(x)) +

α

n

∑n

i=1
д(xi ).

Rearrange terms in the previous equation, we have:∑n

i=1
(f (xi ) − д(xi )) = (n/α) ln

(
−д′(xi )/f

′(xi )
)

(2)

When α → +∞, the previous equation becomes

∑n
i=1(f (xi ) −

д(xi )) = 0, since −д(xi )/f (xi ) is finite for xi > 0. Let x∗ denote the
point such that f (x∗) = д(x∗). If we set xi = x∗,∀i = 1, 2, . . . ,n,
Eq. (2) holds for all i = 1, 2, . . . ,n. According to the KKT condition,

xi = x∗,∀i = 1, 2, . . . ,n is an optimal solution to our optimiza-

tion problem. It shows that when both f (x) and д(x) are convex
functions, partitioning multiple homogeneous DNNs at the same

location can achieve the optimal result. ■
A graph explanation of the Theorem 5.2 is shown in Fig. 8(a).

For any partition layer other than x∗, it enlarges either the com-

munication or computation time. Besides, the increment of the

communication or computation time cannot be averaged out by

pairing with another job with a different cut-point. In the example,

the average communication time of partitioning at x ′ and x ′′ is still
larger than the optimal.

However, in real-world applications, the partition point is not

continuous. The optimal solution we formulated in the previous

part may not be able to be reached. In this case, partitioning all

DAGs at the same point may no longer be optimal. Inspired by the

optimal partition condition of continuous cases, we try to partition

the discrete layers such that the difference between f and д values

is small. In the discrete domain, f and д have discrete values as

shown in Fig. 8(b). Let l denote the partition layer. f (l) is still in-
creasing along with l andд(l) is non-increasing. Hence, the absolute
difference between f (l) and д(l) first decreases along with l , then
increases. To find the smallest absolute difference, we only need to

find the left-most layer l∗ such that f (l∗) ≥ д(l∗). If f (l∗) = д(l∗),

Algorithm 2 Line-structure DNN Partition

Input: Line-structure DNNs with k layers.

Output: The partition layers of the DNNs and the ratio.

1: Estimate computation and communication time after partition-

ing of each layer f (li ),д(li ).
2: Initialize the partition points l = 1, r = k .
3: while l < r do
4: mid ← ⌊(l + r )/2⌋.
5: if f (mid) < д(mid) then
6: l ←mid + 1.
7: else
8: r ←mid .
9: Ratio ← ⌊(f (l) − д(l))/(д(l − 1) − f (l − 1))⌋.
10: return l − 1, l , and Ratio.

then cutting n identical DAGs after l∗ gives the optimal makespan.

To show it can optimize the makespan, the graph explanation for

the continuous case can be directly applied. If f (l∗) > д(l∗), cut-
ting all DAGs at l∗ is no longer optimal. We consider to use either

l∗ − 1 or l∗ as the cut-point for a DAG. Theorem 5.3 shows that

performing those two types of partitions is sufficient to minimize

the makespan in certain scenarios.

Theorem 5.3. When f (l∗ − 1) + f (l∗) = д(l∗ − 1) + д(l∗) and
д(l∗ − 1) = f (l∗), performing two types of partitions on different
DNNs is sufficient to reach the optimal makespan.

Proof. In the scenario, we partition half of DNNs after layer l∗ − 1
and cut the other half after layer l∗. Note that l∗ is the left-most

layer such at f (l∗) ≥ д(l∗). DNNs partitioned after l∗ − 1 belong to

communication-heavy set S1 in scheduling since f (l
∗−1) < д(l∗−1).

Others belong to computation-heavy set S2. After concatenate the
sorted S2 after S1, the communication time is perfectly hidden af-

ter computation. Swapping a job in S1 with another job which is

partitioned after l ′ < (l∗ − 1) would enlarge the makespan. Al-

though f (l ′) < f (l∗ − 1) after swapping, the communication time

increases since д(l ′) > д(l∗ − 1) and it becomes the bottleneck.

The increment on the communication time д cannot be hidden

behind the computation. Hence, the makespan increases. Similarly,

swapping a job in S2 with another job which is partitioned after

l ′′ > l∗ would enlarge the makespan. Besides, simultaneously per-

forming the two swapping will not reduce the makespan since

д(l ′) + д(l ′′) ≥ д(l∗) + д(l∗ − 1) when l ′ < l∗ − 1 < l∗ < l ′′. If
some of n DNNs are partitioned after layers other than l∗ − 1 and
l∗, its impact on scheduling can be reduced to one of the three

cases mentioned above. None of them would reduce the makespan.

Therefore, performing two types of partitions is sufficient. ■
To satisfy the condition mentioned Theorem 5.3, the difference

between two adjacent partition layers cannot be drastic. Real-world

applications usually do not satisfy the conditions. However, inspired

by the Theorem 5.3, we attempt to reduce the makespan by reducing

accumulated difference between computation and communication

time. When performing two types of partitions, we can adjust the

ratio between them to reduce the accumulated difference. Specifi-

cally, when f (l∗−1)−д(l∗−1) , д(l∗)− f (l∗), the ratio between the
number of DNNs partitioned after l∗ − 1 with the number of DNNs

partitioned after l∗ should be ⌊(f (l∗)−д(l∗))/(д(l∗−1)− f (l∗−1))⌋.



Joint Optimization of DNN Partition and Scheduling for Mobile Cloud Computing ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Algorithm 3 General-structure DNN Partition and Scheduling

Input: A general-structure DNN.

Output: The partition and scheduling of the DNN.

1: Convert the input into a DAG with independent paths.

2: Initialize the partition set P ← ∅.
3: for each path i in the DAG do
4: v ← Find the cut-point for path i with Alg. 2.

5: P = P ∪v .
6: Schedule the independent paths with modified Alg. 1.

5.2 Binary-Search-Based Partition Algorithm
We propose a binary-search-based partition algorithm to efficiently

find the cut-point for line-structure DNNs in the discrete domain.

The steps of the partition algorithm are shown in Alg. 2. At line

1, we estimate the communication and computation time of each

layer with linear regression models. The time consumption can be

accurately estimated according to the layer type and shape aswell as

the network bandwidth[10]. After acquiring the values of functions

f and д, we initialize two cut-points at line 2. k is the length of the

line-structure DAG. Then, we iteratively update the cut-points by

investigating the middle pointmid of l and r . If f (mid) < д(mid),
the partition layer locates in the right side ofmid . We update l into
mid + 1 accordingly. Otherwise, the partition layer is left tomid
and we update r intomid . The while loop terminates when l = r .
The partition layer could either be l or l − 1. The ratio between the

number of partition at l−1 and l is ⌊(f (l)−д(l))/(д(l−1)− f (l−1))⌋.
The correctness of the partition algorithm can be guaranteed by

the loop invariant. In Alg.2, we can always guarantee that f (l−1) <
д(l − 1) and f (r ) ≥ д(r ). Within the while loop, if the branch

f (mid) < д(mid) shown at line 5 is taken, then we have f (l − 1) <
д(l − 1) after l is updated by line 6. On the other hand, if the other

branch shown at line 7 is taken, then f (r ) ≥ д(r ) is guaranteed
after r is updated. When the while loop terminates, we have l = r .
Taking those loop invariant properties into consideration, we have

f (l − 1) < д(l − 1) and f (l) ≥ д(l). The partition layer would be

either l or l − 1 since any further increments or decrements to

l or l − 1 would enlarge the difference between communication

and computation time after partition. The complexity of the search

algorithm is O(logk).

5.3 Partition for General-Structure DNN
In real-world applications, a DNN model may have more com-

plex structures other than line-structures. The corresponding DAG

contains multiple paths. A path is a sub-graph of the DAG which

has a line-structure that starts from the input layer and ends at

the output layer. For general-structure DAGs, the partition could

spread across different paths as shown in Fig. 9(a). This provides

more opportunities to fine-tune the length of the local computation

and communication. However, the correlation among paths brings

challenges for partition.

To decouple the correlation among paths, we convert the general

DAG into a multi-path DAG structure without changing the partial

order relations. An example of the conversion is shown in Fig. 9.

Specifically, we convert each node in their topological orders. For

a node, if its out-degree is larger than 1, then we duplicate the

v0

v1

v2

v3

v4

v7

v5 v6

(a) Before conversion

v0

v1 v2

v3

v4

v7

v5 v6

v1 v4

(b) After conversion

Figure 9: An illustration of DAG conversion.

node based on its out-degree. Symmetric rules are applied to nodes

whose in-degree is greater than 1.

After the conversion, we focus on DAGs with multiple indepen-

dent paths as shown in Fig. 9(b). Extensively exploring all possible

combinations of cut-points in each path is computationally complex.

We use a heuristic approach that partitions each path individually.

For example, let there be 2 identical DAGs with structure as Fig.

9(a). They are converted into 2 × 3 individual paths, where 3 is the

number of independent paths in each converted DAG. Procedures

of the general-structure DNN partition and scheduling are shown

in Alg. 3. Specifically, after converting the input DAG into a DAG

with multiple individual paths at line 1, we initialize a cut-point set

at line 2. Then, from line 3 to line 5, we find cut-points of different

paths individually by using the searching algorithm illustrated in

Alg. 2. After partition, we use Alg. 1 to schedule the execution

of independent paths. Note that a slight modification of Alg. 1 is

applied, i.e., duplicated nodes are only counted once when they

are executed, although the Johnson’s rule is applied to all nodes,

including duplicated nodes, in determining the scheduling order.

Notice that our heuristic approach omits the potential collabo-

ration opportunity between two different paths in the converted

DAG. Overlapping sub-optimal partitions for the individual paths

of a DAG may lead to an optimal schedule, which is worth further

investigation in future work.

6 EXPERIMENT
6.1 System Setup
Our offloading system testbed consists of a mobile device and a

cloud server. We use a Raspberry Pi model 4B as the mobile device

and a PC in our lab as the cloud server. Specifically, the Raspberry

Pi model 4B uses a quad-core Cortex-A72 (ARM v8) SoC as its

CPU, and it has 4GB RAM. Our PC has a six-core Intel i7-8700

CPU with 32GB RAM and a GTX1080 GPU. The operating system

installed on the PC is Ubuntu 20.04. The communication channel

between themobile and cloud device is set up within a wireless LAN

based on Wi-Fi. To simulate the communication delay at different

bandwidths, we use the wondershaper package to limit the upload

and download bandwidth of the Raspberry Pi.

The prototype of our joint optimization system is implemented

with Python. The client-side is running on the Raspberry Pi and the

server-side is running on the PC. Both client and server use PyTorch
as their machine learning engine to perform DNN inferences. DNN

models used in our experiment are pre-cut at all possible partition

points and initialized for the client and server. The server runs all

inference tasks on its GPU with CUDA. The network communication

between the client and server is established with gRPC. In a round



ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yubin Duan and Jie Wu

Input 1x1 
Conv

3x3
Dwise

1x1
Conv Concat

Bypass Link

[24, 56, 56] [144, 56, 56] [144, 56, 56] [24, 56, 56]

Figure 10: A bottleneck residual module in MobileNet. (The
3-tuple under each link shows the shape of the tensor trans-
mitted between layers.)

of DNN inference task, the client first loads the input image, trans-

forms it to a tensor, and performs the forward propagation on the

partitioned DNN. Then, the client collects the output tensor and en-

codes it as serialization for network transmission. The serialization

is done by calling the tensor.save() method and the encoded

tensor is flushed into a BytesIO which is a virtual interface in

memory. Then, a gRPC client is called to collect bytes array through
the BytesIO and sent it to server a gRPC request message. At the

server-side, the received message is loaded from the BytesIO and
decoded by calling the tensor.load() method. Then, a forward

propagation using the decoded tensor on the remaining DNN is

performed. Finally, the server sends the classification result back to

the client via a gRPC reply message.

Our scheduler is implemented on the mobile device. Before par-

titioning and scheduling, the scheduler needs to estimate the com-

putation time of local DNN inference and the communication time

of offloading. To reduce the estimation overhead, we build a lookup

table for computation time considering the local computation time

stable. The size of the lookup table is limited since the number of

commonly used DNN types is limited. The communication time

changes with network bandwidth. Therefore, we use a simple linear

regression model to estimate the communication delay. Specifically,

the communication time tn = w0 +w1 · r , wherew0,w1 are regres-

sion parameters and r = s/b is the ratio of the message size s to the
bandwidth d .w0 represents the latency of setting up the communi-

cation channel. The lookup table is pre-built and the parameters

of the regression model are pre-trained. The scheduler would load

them into memory when starting.

We use PyTorch Profiler to measure the performance of DNN

inference on the client and server when building the lookup table.

To measure the communication delay, the gRPC reply message con-

tains a field to record the total computation time tc of the cloud

server. The client will start a timer when it sends the gRPC request

message, and stop the timer when it received the reply message.

The duration of timer td includes the communication delay and

the cloud computation delay. The difference td − tc is the commu-

nication delay. Our preliminary experiment result shows that the

cloud computation delay is usually much smaller than the commu-

nication delay. Therefore, our scheduler only considers a two-stage

scheduling problem and uses the time duration of td to train the

regression model for communication delay.

In the experiments, we validate proposed algorithms on different

types of DNNs which are widely used in CV applications. For the

line architecture, we use AlexNet [5] and MobileNet-v2 [18]. It

is important to mentioned that the MobileNet contains multiple

bottleneck residual modules as shown in Fig. 10. The bottleneck

residual module is a variant of the residual block that indents to

21 23 27 29
Number of DNN Inference Jobs

0

4

8

12

16

T
im

e 
(s

)

AlexNet (JPS) AlexNet (BF) AlexNet' (JPS) AlexNet' (BF)

Figure 11: Compare with brute force search.

create a bottleneck with 1 × 1 convolutions [5]. The 3-tuple under

each link shows the shape of the tensor transmitted between layers.

There is a bypass link in the module. Considering the bypass link,

the MobileNet does not have a line-structure. However, from Fig.

10, we notice that the output sizes of layers within a bottleneck

residual module are not decreasing. Partitioning at a layer within

the module does not bring benefits for scheduling, and it should

be clustered as a virtual block according to our analysis in §3.2.

After clustering and converting, we treat the MobileNet as a line-

structure DAG. For the general architecture, we use GoogLeNet

[22]. GoogLeNet contains several Inception modules illustrated in

Fig. 3(a). The Inception module should not be clustered as a virtual

block, because the output tensor sizes of its intermediate layers

are smaller than input tensor sizes. We treat the GoogLeNet as a

general-structure DAG.

6.2 Comparison Algorithms
We compare our scheme that jointly considers the partition and

schedule (which is denoted as JPS), with partition only (PO), cloud
only (CO), and local only (LO) schemes. For PO, we implement

the state-of-the-art DNN partition algorithm[7], which generates

homogeneous cut-points for all jobs. However, this scheme does not

consider the collaboration between partitioning and scheduling. For

CO, the entire inference workload is done at the cloud server. The

local mobile device upload all input tensors to the server. For LO,

the inference jobs are processed merely on mobile devices without

offloading. In addition, we implement the brute-force (BF) approach

to find the optimal partition and schedule for small size inputs.

6.3 Experiment Results
We first compare our JPS with the BF approach to show the gap

between our schedule with the optimal one. Fig. 11 shows the over-

all time consumption of multiple DNN inference jobs. In AlexNet,

our scheme could generate optimal scheduling when the number of

identical jobs is less than 23. On a synthetic DNN AlexNet
′
, whose

communication time is sampled from the fitted curved, our scheme

could find the optimal schedule. These experiment results verify

that if the conditions stated in Theorem 2 holds, our scheme could

find the optimal schedule for multiple identical DNNs.

We then evaluate our algorithms on line-structure and general-

structure DAGs. In this experiment, we generate 100 repeated jobs

for each type of DNN, and we record the average completion time

over different bandwidths. Specifically, we choose three typical



Joint Optimization of DNN Partition and Scheduling for Mobile Cloud Computing ICPP ’21, August 9–12, 2021, Lemont, IL, USA

AlexNet GoogLeNet MobileNet-v2 ResNet18
0

500

1000

1500

2000

T
im

e 
(m

s)

LO
PO
JPS

(a) 3G (1.1 Mbps)

AlexNet GoogLeNet MobileNet-v2 ResNet18
0

500

1000

1500

2000

T
im

e 
(m

s)

CO
LO
PO
JPS

(b) 4G (5.85 Mbps)

AlexNet GoogLeNet MobileNet-v2 ResNet18
0

500

1000

1500

2000

T
im

e 
(m

s)

CO
LO
PO
JPS

(c) Wi-Fi (18.88 Mbps)

AlexNet GoogLeNet MobileNet-v2 ResNet18

0.8

1

1.2

1.4

T
im

e 
(m

s)

(d) JPS overhead

Figure 12: Comparison of total inference latency.

Table 1: Latency reduction ratio compared with LO (%)

Model

3G 4G Wi-Fi

PO JPS PO JPS PO JPS

AlexNet 0 22.06 33.33 42.11 63.91 73.43
MobileNet-v2 27.60 56.73 60.00 78.83 82.81 84.69
GoogLeNet 0 52.83 56.13 71.93 66.63 72.17
ResNet18 0 0.73 1.46 28.22 58.52 58.52

bandwidths to simulate 3G, 4G, Wi-Fi network conditions. Accord-

ing to [7], the typical bandwidths of 3G, 4G, and Wi-Fi are 1.1Mbps,

5.85Mbps, and 18.88Mbps, respectively. The experiment results are

shown in Fig. 12. In general, we can see that our joint optimization

scheme JPS has the best performance for all types of DNNs in all

network environments. Over each bandwidth configuration, our

scheme that jointly considers the partition and schedule outper-

forms the other comparison algorithms. The PO scheme ignores

the collaboration among multiple jobs in scheduling, while the LO

scheme does not make use of the powerful cloud.

Fig. 12(a) illustrates the performance comparison on the 3G

network. The CO time is not shown in the figure because it costs

more than 4,000ms to upload the input tensor into the cloud server

for all DNNs. It is much larger than other offloading schemes. From

the figure, we notice that the JPS would significantly reduce the

inference time for AlexNet, GoogLeNet, MobileNet. Especially for

GoogLeNet, the JPS reduce the inference time by 52.5% compared

with LO and PO. The improvement of JPS for ResNet is not obvious.

It is because the network speed is too slow and offloading the

intermediate result of any layer of ResNet would cost more time

than compute the model locally.

When the network bandwidth increased to 5.85 Mbps, our JPS

scheme achieves significant improvement for all DNNs used in

our experiment. Compare Fig. 12(a) and Fig. 12(b), we can notice

that the state-of-the-art PO algorithm can barely reduce the total

inference time for ResNet, even the network condition is improved

from 3G to 4G. Without scheduling, the bandwidth improvement is

wasted. In contrast, our JPS would make full use of the bandwidth

increase and reduce the overall inference time by 27.2% compared

to PO. The reduction ratio of the inference time compared with

LO is summarized in Table 1. Fig. 12(c) shows the performance

comparison on the Wi-Fi network. The bandwidth of Wi-Fi is large

and simply offloading all computation workload to the cloud server

is a good strategy. In this situation, our JPS still could reduce the

inference time for AlexNet, GoogLeNet, and MobileNet. Fig. 12(d)

shows the overhead of our JPS scheme. From the figure, we notice

that the overhead is negligible compared with the inference time.

It is because both binary search and scheduling algorithms are fast.

More importantly, we use a lookup table to store the local inference

time. It saves the time cost of profile estimation. In addition, the

communication time is estimated by using a simple linear regression

model which is also time-efficient.

From Fig. 12, we notice that there is a range in which our JPS

scheme can reduce the over inference time. When the network

condition too poor, offloading brings no benefits. Similarly, when

the bandwidth is large enough, the mobile device should simply

upload all computation workload to the cloud server which is much

faster. It is interesting to investigate the benefit range in which JPS

can reduce the DNN inference time for different types of DNNs.

The benefit range of AlexNet and MobileNet is shown in Fig. 13.

Fig. 13 shows the DNN inference time under different band-

widths. From the figure, we find that our JPS scheme can speedup

both AlexNet and MobileNet in bandwidth range of [1, 20]Mbps,

which covers the bandwidth from 3G network to Wi-Fi network.

Compare Fig. 13(a) and Fig. 13(b), we notice that the AlexNet has a

wider benefit range in which JPS can reduce the inference time. It

shows that even wireless upload bandwidth exceeds 50Mbps, our

JPS scheme is useful.

We also investigate the impact of the ratio between computation-

and communication-heavy jobs. The results are shown in Fig. 14.

From Fig. 14(a), we can see that the optimal ratio between two

types of jobs is not 1, and it varies with the bandwidth configu-

rations. Comparing Fig. 14(a) and Fig. 14(b), we notice that if the

communication-heavy jobs have larger differences between compu-

tation and communication stages, then the optimal ratio between

computation-heavy and communication-heavy jobs is low. Other-

wise, there should be more communication-heavy jobs. The optimal

ratio shifts with bandwidth configurations.

Above all, experiment results show that jointly considering the

DNN partitioning and scheduling could help to further reduce the

makespan. If we only consider the DNN partition problem, the

potential collaboration between different DNN inference jobs is

ignored. The speedup brought by pipeline might be wasted. The

improvement of the JSP varies with different bandwidth. It is more

obvious when the bandwidth is limited.

7 CONCLUSION
In computer vision applications, a mobile device usually generates

multiple DNN inference jobs at the same time. Those DNNs usually



ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yubin Duan and Jie Wu

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

102

103

104

T
im

e 
(m

s)

LO
CO
PO
JPS

(a) AlexNet

0 10 20 30 40 50 60 70 80
Bandwidth (Mbps)

102

103

104

T
im

e 
(m

s)

LO
CO
PO
JPS

(b) MobileNet-v2

Figure 13: Inference latency under different bandwidths.

2 3 4 5 6 7 8 9
Ratio

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

T
im

e 
(s

)

9Mbps
10Mbps
11Mbps

(a) ResNet

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio

2.2

2.4

2.6

2.8

3

3.2

T
im

e 
(s

)

9Mbps
10Mbps
11Mbps

(b) GoogLeNet

Figure 14: The impact of the ratio between two types of jobs.

have homogeneous structures. We consider that the computation

power of mobile devices is usually weak. Offloading parts of the

DNN to a cloud server could speed up the DNN execution. Mobile

devices process the partitioned DNN with computation and com-

munication stages. The partition strategies affect the length of each

stage. Our objective is to minimize the makespan of all inference

jobs. The makespan is correlated with partition and scheduling. We

jointly consider the partition and scheduling problem. Particularly

for line-structure DNNs, we find that if we relax the problem to

continuous solution spaces, then partitioning all DNNs at the same

point is sufficient for makespan optimization. Then, on the dis-

cretized problem space, two types of partitions are sufficient when

the time difference between the two adjacent partition points is not

drastic. We propose a binary-search-based algorithm to efficiently

find the optimal partition points. Experiments on real-world CV

applications show that our joint optimization scheme outperforms

the scheme that only considers the DNN partition or scheduling.

Joint partition and scheduling for jobs with multiple individual

paths or heterogeneous jobs is worth further investigation.

ACKNOWLEDGMENTS
This research was supported in part by National Science Foundation

grants CNS 1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS

1651947, and CNS 1564128.

REFERENCES
[1] O. Akgul, H. Penekli, and Y. Genc. 2016. Applying Deep Learning in Augmented

Reality Tracking. In Proceedings of the IEEE SITIS. 47–54.
[2] Peter Brucker and P Brucker. 2007. Scheduling algorithms. Vol. 3. Springer.
[3] Yubin Duan and Jie Wu. 2021. Computation Offloading Scheduling for Deep

Neural Network Inference in Mobile Computing. In IEEE/ACM 29th International
Symposium on Quality of Service (IWQoS’21). Virtual Conference.

[4] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, AlecWolman,

and Arvind Krishnamurthy. 2016. Mcdnn: An approximation-based execution

framework for deep stream processing under resource constraints. In Proceedings
of the ACM MobiSys. 123–136.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE CVPR. 770–778.
[6] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[7] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. 2019. Dynamic adaptive

DNN surgery for inference acceleration on the edge. In IEEE INFOCOM. 1423–

1431.

[8] Rachel Huang, Jonathan Pedoeem, and Cuixian Chen. 2018. YOLO-LITE: a real-

time object detection algorithm optimized for non-GPU computers. In Proceedings
of the IEEE Big Data. IEEE, 2503–2510.

[9] Selmer Martin Johnson. 1954. Optimal two-and three-stage production schedules

with setup times included. Naval research logistics quarterly 1, 1 (1954), 61–68.

[10] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason

Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[11] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei

Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A software accelerator for

low-power deep learning inference onmobile devices. In Proceedings of ACM/IEEE
IPSN. 1–12.

[12] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and

Nicholas D Lane. 2020. SPINN: synergistic progressive inference of neural net-

works over device and cloud. In Proceedings of the ACM MobiCom. 1–15.

[13] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv
preprint arXiv:1312.4400 (2013).

[14] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz. 2019.

PlaneRCNN: 3D Plane Detection and Reconstruction From a Single Image. In

Proceedings of the IEEE CVPR.
[15] Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco.

2020. Distributed Inference Acceleration with Adaptive DNN Partitioning and

Offloading. In Proceedings of the IEEE INFOCOM. 854–863.

[16] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 2017. 3d

bounding box estimation using deep learning and geometry. In Proceedings of
the IEEE CVPR. 7074–7082.

[17] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. arXiv
preprint arXiv:1612.08242 (2016).

[18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE CVPR. 4510–4520.
[19] Wujie Shao, Fei Xu, Li Chen, Haoyue Zheng, and Fangming Liu. 2019. Stage

Delay Scheduling: Speeding up DAG-style Data Analytics Jobs with Resource

Interleaving. In Proceedings of ICPP. 1–11.
[20] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[21] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

2017. Inception-v4, inception-resnet and the impact of residual connections on

learning. In Proceedings of AAAI.
[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going deeper with convolutions. In Proceedings of the IEEE CVPR. 1–9.
[23] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang.

2018. Adaptive selection of deep learning models on embedded systems. arXiv
preprint arXiv:1805.04252 (2018).

[24] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2017. Dis-

tributed deep neural networks over the cloud, the edge and end devices. In

Proceedings of the IEEE ICDCS. 328–339.
[25] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improving the speed

of neural networks on CPUs. (2011).

[26] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier

Gonzalez-Dominguez. 2014. Deep neural networks for small footprint text-

dependent speaker verification. In Proceedings of the 45th IEEE International
Conference on Acoustics, Speech, and Signal Processing. 4052–4056.

[27] Can Wang, Sheng Zhang, Yu Chen, Zhuzhong Qian, Jie Wu, and Mingjun Xiao.

2020. Joint Configuration Adaptation and Bandwidth Allocation for Edge-based

Real-time Video Analytics. In Proceedings of the IEEE INFOCOM. 1–10.

[28] NingWang, YubinDuan, and JieWu. 2021. Accelerate Cooperative Deep Inference

via Layer-wise Processing Schedule Optimization. In IEEE ICCCN. 1–9.
[29] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. 2016. DeepBurning:

automatic generation of FPGA-based learning accelerators for the neural network

family. In Proceedings of the ACM/EDAC/IEEE DAC. 1–6.
[30] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang,

Chaojian Li, Zetong Guan, Deming Chen, and Yingyan Lin. 2020. AutoDNNchip:

An automated dnn chip predictor and builder for both FPGAs and ASICs. In

Proceedings of ACM/SIGDA FPGA. 40–50.


	Abstract
	1 Introduction
	2 Related Work
	3 Model
	3.1 Problem Formulation
	3.2 Problem Analysis 

	4 DNN Scheduling 
	4.1 Scheduling for Arbitrary Partitions
	4.2 Makespan of Line-Structure DAG

	5 DNN Partition 
	5.1 Partition for Line-Structure DNNs
	5.2 Binary-Search-Based Partition Algorithm
	5.3 Partition for General-Structure DNN

	6 Experiment
	6.1 System Setup
	6.2 Comparison Algorithms
	6.3 Experiment Results

	7 Conclusion
	Acknowledgments
	References

