Distributed Game-Theoretical Route Navigation for Vehicular Crowdsensing

En Wang¹, Dongming Luan¹, Yongjian Yang¹, Zihe Wang², Pengmin Dong¹, Dawei Li³, Wenbin Liu¹, and Jie Wu⁴

¹Jinlin University, ²Renmin University of China
³Montclair State University, ⁴Temple University
I. Motivation and Problem

II. Challenges

III. Contributions

IV. System Model

V. Strategy

VI. Theoretical Analysis

VII. Performance Evaluation
Motivation

- **Mobile Crowdsensing (MCS)**
 - Vehicular crowdsensing
 - The existing task allocation strategies:
 - A heavy computation complexity
 - Fail to satisfy the preferences of users and the system.

Mobile Crowdsensing (MCS)

- Traffic monitoring
- Noise monitoring

Platform

Distributed task allocation with the route navigation
Problem

Question: How to find an equilibrium state?

Solution:

<table>
<thead>
<tr>
<th>Approach</th>
<th>Solution</th>
<th>Profit</th>
<th>Equilibrium</th>
</tr>
</thead>
</table>
| Maximum profit | $u_1: r_2$
 | $u_2: r_3$
 | $u_3: r_4$ | $u_1: 6/3=2$
 | $u_2: 6/3=2$
 | $u_3: 6/3=2$ | 6 | No |
| Distributed equilibrium | $u_1: r_1$
 | $u_2: r_3$
 | $u_3: r_4$ | $u_1: 5$
 | $u_2: 6/2=3$
 | $u_3: 6/2=3$ | 11 | Yes |
| Centralized optimal | $u_1: r_1$
 | $u_2: r_3$
 | $u_3: r_5$ | $u_1: 5$
 | $u_2: 6$
 | $u_3: 1$ | 12 | No |

Note: u_3 can select r_4 to get more profit.
Challenges

- How to construct a distributed model to achieve the equilibrium while guaranteeing the profit performance?

- How to design a unified distributed algorithm such that it could take the requirements of both the platform and users into consideration?

- How to guarantee a lower performance bound with respect to the centralized optimal solution?
System model

Profit of user i under strategy profile s: $s = (s_i, s_{-i})$

$$P_i(s) = \alpha_i \cdot \sum_{k \in \mathcal{L}_{s_i}} \frac{w_k(n_k(s))}{n_k(s)} - \beta_i \cdot d(s_i) - \gamma_i \cdot b(s_i)$$

- the cost incurred by traveling the detour distance
- the cost incurred by the congestion

User parameters: $\alpha_i, \beta_i, \gamma_i$

System parameters: φ, θ

An illustrative example of the influence of φ and θ

Profit function for u_i: $P_i(r_j) = \frac{w(r_j)}{n(r_i)} + \varphi \cdot h(r_j) + \theta \cdot c(r_j)$

<table>
<thead>
<tr>
<th>r_1</th>
<th>r_2</th>
<th>$h(r_i)$</th>
<th>$c(r_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Achieve different purposes by adjusting the values of φ and θ.
Theoretical Analysis

- NP-hardness of The Centralized Problem

Theorem 1. The problem of finding the solution with the maximum total profit in a centralized manner is NP-hard.

- Nash equilibrium
 No user can improve the profit by altering the strategy unilaterally in a Nash equilibrium

- Potential game
 ✓ Nash equilibrium existence ✓ Finite improvement property

- Potential game proof

Theorem 2. The multi-user route navigation game is a weighted potential game and has a Nash equilibrium and finite improvement property.
Strategies

Initialization Phase

For user

Algorithm 1 Distributed Game-Theoretical Route Navigation Algorithm for user $i \in U$.

1: Input $\alpha_i, \beta_i, \lambda_i$, the initial location and the destination.
2: Receive the recommended routes R_i.
3: Initialize $s_i(0) = r$ by randomly selecting a route $r \in R_i$.
4: Report $s_i(0)$ to the platform.
5: Receive n_k for each task k that is covered by $s_i(0)$.
6: Calculate the profit P_i.
7: Receive $d(r)$ and $b(r)$ for each route r in R_i.
8: **repeat** for each decision slot t.
9: Obtain n_k for each task k that is covered by R_i.
10: Compute the best route set $\Delta_i(t)$.
11: **if** $\Delta_i(t) \neq \emptyset$ **then**
12: Send the request to contend the opportunity for updating decision.
 if Win the opportunity **then**
 Update the route selection decision $s_i(t)$ by selecting a route $r \in \Delta_i(t)$.
 Report $s_i(t)$ to the platform.
 else
 Choose the original decision $s_i(t) = s_i(t - 1)$.
13: **until** The termination message is received.

For platform

Algorithm 2 Information Update Algorithm for the platform.

1: Send the recommended route set R_i to the user $i \in U$.
2: Receive $s_i(0)$ from each user $i \in U$.
3: Calculate n_k for each task $k \in L$.
4: Send $n_k, d(r)$ and $b(r)$ to the corresponding user.
5: **repeat** for each decision slot t.
6: Receive the request from the users and let U' denote the set of users that send the request.
7: **if** $U' \neq \emptyset$ **then**
8: Select a set of users μ by SUU or PUU algorithm.
9: Inform the users in μ to update the decisions.
10: Receive $s_i(t)$ from user $i \in \mu$ and update n_k for each task k.
11: **until** No request is received from the user.
12: Send the termination message to all users.

Update strategy

Terminate the algorithm

Send the information to users

Select a set of users to update the strategy
Performance Evaluation

- Convergence for Nash equilibrium

![Figure 3: User profit vs. decision slot.](image1)

![Figure 6: Potential function and total profit vs. decision slot.](image2)
Performance Evaluation

- Coverage and reward

Figure 8: Coverage vs. user number.

Figure 9: Average reward vs. task number.
Performance Evaluation

- The influence of user and system parameters

![Graphs showing average reward, detour distance, and congestion level](image)

Figure 12: The influence of system parameters.

Table 5: The influence of the user parameters.

<table>
<thead>
<tr>
<th>α_i</th>
<th>reward</th>
<th>β_i</th>
<th>detour</th>
<th>γ_i</th>
<th>congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>7.74</td>
<td>0.1</td>
<td>12.24</td>
<td>0.1</td>
<td>12.03</td>
</tr>
<tr>
<td>0.2</td>
<td>7.85</td>
<td>0.2</td>
<td>10.97</td>
<td>0.2</td>
<td>10.48</td>
</tr>
<tr>
<td>0.3</td>
<td>7.94</td>
<td>0.3</td>
<td>9.88</td>
<td>0.3</td>
<td>9.52</td>
</tr>
<tr>
<td>0.4</td>
<td>7.96</td>
<td>0.4</td>
<td>9.38</td>
<td>0.4</td>
<td>8.75</td>
</tr>
<tr>
<td>0.5</td>
<td>7.98</td>
<td>0.5</td>
<td>8.84</td>
<td>0.5</td>
<td>8.48</td>
</tr>
<tr>
<td>0.6</td>
<td>8.08</td>
<td>0.6</td>
<td>8.38</td>
<td>0.6</td>
<td>8.20</td>
</tr>
<tr>
<td>0.7</td>
<td>8.10</td>
<td>0.7</td>
<td>8.07</td>
<td>0.7</td>
<td>8.05</td>
</tr>
<tr>
<td>0.8</td>
<td>8.16</td>
<td>0.8</td>
<td>7.99</td>
<td>0.8</td>
<td>7.97</td>
</tr>
</tbody>
</table>
Thanks for listening

Q&A