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Abstract—In cross-silo federated learning (FL), organizations
cooperatively train a global model with their local data. The
organizations, however, may be heterogeneous in terms of data
distributions. In such cases, FL might produce a biased global
model that is not optimal for each organization. Then each
organization faces several fundamental questions: should I join
FL or just remain alone? If joining FL, which organizations
should I cooperate with? In this work, we formulate a coalition
formation game in cross-silo FL to help organizations choose
proper cooperators. We first build an estimation method to
predict personal model performance for each organization before
FL starts, and we treat performance improvement as individual
utility. With estimated utilities, we design a distributed coalition
formation algorithm to find stable coalition structures and
optimize social welfare at the same time. Our simulations based
on MNIST and FMNIST datasets show that the estimation model
can predict the sign of the utility correctly with a probability of
0.9 and has an average relative error of 30%. With the above
errors, the obtained coalition structure performs well from both
perspectives of real social welfare and individual satisfaction.

Index Terms—Federated Learning, Model Performance, Non-
IID, Coalition Formation

I. INTRODUCTION

Federated learning (FL) has become increasingly popular
as a distributed machine learning framework. By FL, multiple
data owners train machine learning models together, with data
staying locally and only local models being transferred. As
a result, data privacy is protected and network bandwidth is
saved.

FL can be classified into two types: cross-device FL and
cross-silo FL. In cross-device FL, an organization acts as the
central server and the participants are usually their clients
who are owners of smart devices. The global model is owned
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Fig. 1: Coalition formation in cross-silo federated learning.

by the organization. In cross-silo FL, a third-party entity
acts as the central server coordinating the training process.
Organizations are participants performing local training. They
own the global model and use it to serve their clients and make
a profit. Recently, cross-silo FL has attracted much attention.
For example, WeBank and Swiss Re have collaborated for
data analysis in finance and insurance. Owkin cooperates with
medical institutions for biomedical data analysis.

In cross-silo FL, each organization cares most about its
personal model performance, i.e., the performance of the
global model on its personal data distribution. A better per-
sonal model performance means a higher potential profit when
applying the model to serve clients. However, samples from
different organizations are usually heterogeneous or non-IID.
As a result, the global model may not suit everyone. For
example, if a bank with small-loan business is federated with
banks with large-loan business, the trained loan risk estimation
model would perform poorly for this bank.

Due to such negative effects of non-IID data, all organiza-
tions being federated together is not always a good idea. We
give an example illustrated by Table I based on a benchmark
FL dataset MNIST. MNIST has handwritten digits from 0 to
9. The organizations have different distributions. Taking A for
example, it has three classes. The data of each class is sampled



TABLE I: Motivation example

ORG Distribution LAccu FAccu CAccu
A {0, 1, 2}, 0.003 0.83 0.80 0.84
B {1, 1, 3}, 0.001 0.75 0.79 0.82
C {5, 6, 7}, 0.005 0.94 0.92 0.94
D {6, 7, 8}, 0.001 0.73 0.91 0.93

from that class of MNIST according to a ratio of 0.003. When
training a model alone, the local accuracy is LAccu. If all of
them are federated together, the personal accuracy is FAccu.
In the last case, A and B form a coalition, perform FL together,
and share the global model. At the same time, C and D form a
coalition. The resulted personal accuracy is CAccu. Compared
with training a model alone, A and C have a lower accuracy
when all organizations are federated. The last case is the best
as the accuracies of all organizations are improved.

The above phenomenon raises some fundamental ques-
tions for each organization aiming to optimize its personal
model performance. Should I federate with others? If yes,
which organizations should I choose? Will they be interested
in collaborating with me? Can we be arranged into stale coali-
tions and if so, what do these coalitions look like? To answer
these questions, we study how to arrange organizations into
coalitions to improve their personal model performance,
as illustrated by Fig. 2.

Solving the coalition formation problem is nontrivial. First,
the personal model performance is the optimization objective,
but it can only be known after FL is done. There is a work
deriving the expected error of personal model performance
in linear regression problems [15]. However, it needs some
impossible-to-know information including the error variance
among all organizations. Some works study the relationship
between the model performance and participants’ contribu-
tions. Unfortunately, the values of contributions are also ob-
tained after FL [13] [14] [10] [11]. Secondly, satisfying all or-
ganizations and optimizing the social welfare at the same time
is difficult. An organization has its own utility. It would not
follow a coalition formation decision not optimizing its utility
even if this decision brings the largest social welfare. Even
worse, the social welfare optimization problem is NP-hard.
Thirdly, we estimate the personal model performance for
each organization before FL and perform coalition formation
according to estimation results. However, the estimation results
have errors. Controlling the effect of the error on coalition
formation is the last challenge we need to overcome.

Many works have explored the issue of non-IID data in FL.
However, most of them deal with this issue by optimizing
FL algorithms, e.g., increasing the weights of disadvantaged
participants when aggregating local models [24] [25], limiting
the deviation degree of each local model from the global
model [19]–[23], fine-tuning the global model according to the
local data set [26]. Distinctly from these works, we overcome
the problem of non-IID data from the new perspective of
data coalition formation. We directly avoid a significant non-
IID degree before FL starts, rather than reducing its negative
impact in the process of FL.

To overcome the challenges and limitations of existing
works, we solve two problems: personal model performance
estimation and coalition formation based on the estimated
results. For the first problem, we find 8 critical factors influenc-
ing personal model performance by correlation analysis based
on the benchmark FL dataset MNIST. Then we use neural
networks to fit the personal model performance with these
factors as inputs. The factors include non-IID degree, data
volume, local performance trained by each organization alone,
and so on. Calculating these factors needs some private infor-
mation about organizations, such as their data distributions.
We use differential privacy to protect them. And fortunately,
it does not bring a much higher error to our estimation method.
With the estimated results as inputs, we design distributed
coalition formation algorithms based on the idea of better
response dynamics. The algorithms converge to Nash-stable
solutions or individually stable solutions depending on whether
joining a coalition needs original members’ permissions. By
carefully designing the initial coalition structure, the social
welfare of the obtained solution is very close to the optimal
social welfare.

• To the best of our knowledge, we are the first to study
how to form coalitions to optimize each organization’s
personal model performance for general cross-silo FL
problems.

• At the same time, we are the first to propose a
personal model performance improvement estimation
method which works before FL starts. This method can
predict whether the improvement is positive or negative
in about 90% cases. It has an average relative error of
30%.

• We design a coalition formation algorithm converging to
stable coalition structures and close to the optimal one.
Although we use the estimated utilities with errors, the
obtained coalition structure performs well from both per-
spectives of real social welfare and individual satisfaction.
90% of organizations prefer our coalition structure to
forming a grand coalition.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Consider a set N of organizations. Each organization i

has a local sample set Wi = {(x, y)}. The vector x =
{x1, x2, ..., xm} represents a specific value of input feature
vector X = {X1, X2, ..., Xm} and y is the value of label
Y . The set X̂ of most important features describing char-
acteristics of organizations’ clients is a subset of X ∪ {Y }.
For example, when hospitals train a disease prediction model
together, characteristic vector X̂ may include two features:
the age of each patient and the label of whether having the
target disease. The data distribution of organization i about
X̂ is Pi(X̂) = {pi(x̂)}. For each specific vector value x̂,
pi(x̂) = ni(x̂)/ni where ni = |Wi| and ni(x̂) is the number
of samples whose X̂ is equal to x̂. The local sample set Wi is
divided into a training set Di and a test set Ti, both of which
follow distribution Pi(X̂).



When some organizations form a data coalition C ⊆ N ,
they collaboratively perform federated learning and get a
machine learning model f(θ) with θ as the parameter vector.
We adopt the most widely used FL algorithm, FedAvg [2],
whose aim is to train a model f(θ) minimizing the average loss∑

i∈C |Di|l(θ,Di)/
∑

i∈C |Di| of all organizations in coalition
C. The notation l(θ,Di) is the loss over dataset Di given θ.
In FedAvg, the training process goes on round by round. In
each round, a central server first distributes the global model
f(θ) to each organization. Then each organization i initializes
its local parameters as θ and trains a local model f(θi) based
on the local training set Di. After all organizations submit
local models, the central server updates the parameters θ of
the global model as

∑
i∈C |Di|θi/

∑
i∈C |Di|. This process

continues until the global model converges.
Organizations in a coalition C care most about the per-

formance of f(θ) on their personal data distributions Pi(X̂),
which is called the personal model performance vi(C). This is
because organizations usually use f(θ) to serve their clients.
Better model performance can bring more profit. Here, the
model performance means accuracy, F1-score or other metrics
measuring a model’s prediction ability. Then vi({i}) is the
model performance trained by the local set Di alone. The
utility ui(C) of organization i in coalition C is the personal
model performance improvement formulated as follows.

Definition 1 (Utility of an Organization: Personal Model
Performance Improvement). For organization i, it’s utility
ui(C) is the difference between the personal model perfor-
mance vi(C) obtained by joining coalition C and vi({i})
obtained by training the machine learning model alone.

ui(C) = vi(C)− vi({i}), i ∈ C (1)

B. Coalition Formation Framework in Cross-silo FL

To help organizations form proper coalitions, we propose
a coalition formation framework which describes the inter-
actions between the platform and organizations, as shown in
Fig. 2. The platform can be the central server coordinating
the federated learning process as mentioned in Section II-A. It
can also be a new one only helping coordinate the coalition
formation process.

In the framework, each organization first submits two pieces
of information to the platform. The first is the number ni(x̂)
of training samples of each x̂. The second is the performance
vi(x̂, {i}) of model f(θl) trained alone on each x̂ in the local
test set Ti, e.g., the accuracy of f(θl) on samples whose X̂ is
equal to x̂ in Ti.

The information ni(x̂) may be sensitive and expose the
privacy of an organization’s clients. For example, the platform
knowns ni(x̂) is 90 and 91 before and after a client comes to
organization i, respectively. Then it knows that characteristic
X̂ of the client is x̂. Fortunately, this kind of privacy exposure
risk can be effectively reduced by the technique of differential
privacy. Here, we adopt the Laplace mechanism in differential
privacy which adds noise to ni(x̂) according to Laplace

Fig. 2: Coalition formation framework.

distribution L(0,∆f/ϵ) [6]. ∆f is the difference of ni(x̂)
with and without the client. It is equal to 1 in our problem. ϵ
is the privacy budget and we set it as 1.

After getting information from organizations, the platform
solves the following two problems to help organizations form
coalitions:

• Estimate personal model performance improvement:
The platform estimates utility function ui(C) of each
organization i according to nj(x̂) and vj(x̂, {j}) with
j ∈ C. The estimated result is u′

i(C).
• Solve the coalition formation problem: The platform

solves the coalition formation problem based on esti-
mated utilities u′

i(C) by distributed algorithms to satisfy
each organization.

At last, the platform publishes the found solution to organi-
zations, and organizations perform FL collaboratively accord-
ing to the coalition structure.

C. Coalition Formation Problem under Selfishness

The considered problem is how to divide organizations into
proper coalitions so that each organization can be satisfied with
its utility, i.e., personal model performance improvement. At
the same time, we hope the social welfare can be as large
as possible. Solving this problem helps encourage organiza-
tions to continuously participate into cross-silo FL, which is
extremely important to cross-silo FL applications.

As each organization aims to optimize its own utility, we
treat them as selfish players and formulate the considered
problem as a coalition formation game (N,≥). The notation
N = {1, ..., n} is the set of organizations. In set ≥= {≥i

|i ∈ N}, ≥i represents the preference of organization i
over different coalitions. It is a binary and transitive relation
determined by the utility of organization i, i.e., C ≥i C ′ if
and only if ui(C) ≥ ui(C

′).
The solution of game (N,≥) is a coalition partition Π =

{Ck}Kk=1. Ck ⊆ N are disjoint with each other and ∪K
k=1Ck =

N . We use Π(i) to denote the index of the coalition including
i, i.e., i ∈ CΠ(i).

From the perspective of the platform, the optimal coalition
partition is the one maximizing the overall utility of all orga-
nizations. At the same time, the utility of each organization
should not be negative because an organization is usually an
enterprise which needs to make a profit. Finding the optimal



coalition partition is difficult because the related optimization
problem (2) is NP-hard [30].

Definition 2 (The Optimal Coalition Partition). The optimal
coalition partition maximizes the social welfare, i.e., sum of
utilities of all organizations, and satisfies the constraint that
the utility of each organization is non-negative.

maxΠ

∑
i∈N

ui(CΠ(i))

s.t. ui(CΠ(i)) ≥ 0

ui(CΠ(i)) = vi(CΠ(i))− vi({i})
Π(i) = k if i ∈ Ck &Ck ∈ Π

(2)

However, selfish organizations would not stay in the coali-
tion specified by the optimal partition if they can improve their
utilities by moving to other coalitions. Then desirable coalition
structures should be those satisfying all organizations. For such
a coalition partition, organizations would stay stably in the
specified coalition and do not move.

Here, we make use of stable concepts in hedonic games
to formulate desirable coalition structures in our problem. A
coalition formation game is a hedonic game if each players
utility is completely determined by its coalition and is inde-
pendent of other coalitions [30]. In cross-silo FL, the personal
model performance of an organization is totally determined
by organizations in its coalition and has nothing to do with
other coalitions. Therefore, our coalition formation game is a
hedonic game.

In hedonic games, there are two types of stable concepts
about individual deviation. The first is called the Nash stable
partition defined by Definition 3. In a Nash stable partition,
no player has an incentive to unilaterally change its coalition
because it cannot get a higher utility.

Definition 3 (Nash Stable Partition). A coalition partition
Π is Nash stable if CΠ(i) ≥i C ∪ {i} for any i ∈ N and any
C ∈ Π ∪ {∅}.

The Nash stable partition has a default assumption that an
organization can join a coalition as long as it wants. The
Nash stable partition is strong and achieves the well-known
Nash equilibrium. But it is actually difficult to be reached.
According to our evaluation results, Nash stable partitions exist
only in 50% cases.

To deal with non-existence of Nash stable partitions, we
introduce another stable concept: the individually stable parti-
tion. It is adopted when joining a coalition needs the permis-
sions of coalition members. According to Definition 4, in an
individually stable partition Π, no organization would move
to another coalition C ∈ Π ∪ {∅} due to the following two
reasons. First, some of them cannot get a higher utility, i.e.,
ui(CΠ(i)) ≥ ui(C ∪{i}). Second, some organizations can get
a higher utility by moving to target coalition C. But there
exist several members of C not allowing it to join because
their utilities would be decreased, i.e., uj(C ∪ {i}) < uj(C).
Then, the partition would not change anymore and becomes

stable. Individually stable partitions are easier to be achieved
because it is harder for organizations to change their coalitions
when entrance permissions are needed.

Definition 4 (Individually Stable Partition). A coalition
partition Π is individually stable if there does not exist i ∈ N
and coalition C ∈ Π ∪ {∅} such that C ∪ {i} >i CΠ(i), and
C ∪ {i} ≥j C for all j ∈ C.

In this work, we hope to achieve Nash stability or indi-
vidual stability and optimize the social welfare at that same
time. Note that the real utility ui(C) is not available before
FL. Therefore, we perform coalition formation based on the
estimated utility u′

i(C). A partition is stable if organizations
cannot improve u′

i(C) by changing coalitions. Fortunately, the
coalition structure found based on estimated utilities works
well according to the real social welfare and real individual
satisfaction.

III. PERSONAL MODEL PERFORMANCE IMPROVEMENT
ESTIMATION

We find that utility ui(C) of each organization, i.e., its
personal model performance improvement, has correlations
with some factors such as non-IID degree, data volume, the
local performance trained alone, and so on. We have verified
such correlations about 17 factors and selected 8 critical
factors by correlation analysis based on the experiments about
a benchmark FL dataset MNIST [3]. We fit ui(C) by neural
networks with these influence factors as inputs.

A. Critical Factors Influencing Utility

The dataset MNIST consists of handwritten digits uniformly
distributed across 10 labels 0−9. It has around 60000 training
samples and 10000 test samples. The number of organizations
(ORGs) is 9. The characteristic set X̂ = {Y } as it is difficult to
extract other characteristics from pixels. We have two settings.
In the first setting, an organization only has three or four
classes. Its distribution is listed in Table II as P e

i (Y ), which
is represented by a pair of (classes, ratio of data volume of
each class to that class in MNIST). An organization has the
totally same classes with someone and totally different classes
with others. Therefore, this setting is called BD (Bigger data
Difference). The second setting called SD (Smaller Difference)
simulates a more realistic case where each organization has
major and minor classes. The distribution is P r

i (Y ). Major
classes are listed in P r

i (Y ) and all remaining classes are minor

TABLE II: Data distributions of ORGs

ORG P e
i (y) P r

i (y)
1 {0, 1, 2}, 0.001 {0, 1, 2}, 0.001
2 {0, 1, 2}, 0.003 {0, 1, 2}, 0.003
3 {0, 1, 2}, 0.005 {2, 3, 4}, 0.001
4 {3, 4, 5}, 0.001 {2, 3, 4}, 0.003
5 {3, 4, 5}, 0.003 {4, 5, 6}, 0.001
6 {3, 4, 5}, 0.005 {4, 5, 6}, 0.003
7 {6, 7, 8, 9}, 0.001 {6, 7, 8}, 0.001
8 {6, 7, 8, 9}, 0.003 {6, 7, 8}, 0.003
9 {6, 7, 8, 9}, 0.005 {7, 8, 9}, 0.001
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(a) Data volume of an organization.
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(b) Local accuracy of an organization.
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(c) # of members in a coalition.
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(d) Data volume of a coalition.
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(e) Average accuracy of members in a
coalition.
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(f) KL-divergence between ORG and
COA.
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(g) Weighted relative volume differ-
ence between ORG and COA.
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(h) Weighted accuracy difference be-
tween ORG and COA.

Fig. 3: The correlation between the utility and each influence factor

classes whose data volume is 0.05% of that class in MNIST.
An organization may have some same major classes and some
different major classes with another organization.

The selected 8 factors influencing ui(C) can be divided
into three categories: factors about organization i, coalition C
and difference between organization i and the coalition C. We
introduce how they influence ui(C) in Fig. 3. In each figure,
the value of the factor is divided into 10 ranges, and we report
average ui(C) corresponding to each range if there are some
points falling in the range.

1) Factors about organization i: In this category, the first
factor is the training data volume of organization i, which
can be calculated according to submitted information ni(x̂) as
ni =

∑
x̂ ni(x̂). Utility ui(C) has opposite correlations with

this factor as shown in Fig. 3a. In setting SD, the correlation
is negative because larger data volume usually leads to better
local accuracy and smaller improvement with respect to local
accuracy. In setting BD, the correlation is positive because
only when data volume is large enough, organization i would
not be affected by other distributions. We can see that accuracy
improvements are all negative in this setting.

The second factor is the local model performance obtained
by training the model alone. We can calculate its value by
vi({i}) =

∑
x̂ ni(x̂)ui(x̂, {i})/ni. According to Fig. 3b, util-

ity decreases with an increasing local accuracy. It means that
when the local performance is already good, the improvement
got by joining FL is limited. In setting SD, minor classes only
have a small data volume and get low accuracy. Therefore,
their overall accuracies are also low.

2) Factors about coalition C: The factors in this cate-
gory are the number of members |C|, the total data volume∑

i∈C ni and the average local accuracy of all members∑
i∈C vi({i})/|C|. We show how they influence ui(C) in

Fig. 3c-Fig. 3e. We can see that ui(C) has a significantly
positive correlation with the first two factors and a negative

correlation with the last one. In Fig. 3c and Fig. 3d, ui(C)
under BD setting first decreases and then increases. This is
because the non-IID degree in this setting is higher. When the
number of members is not enough or the data volume is small,
the benefit of FL cannot overcome the negative impact brought
by non-IID phenomenon. Even in setting SD, ui(C) decreases
at the beginning when the data volume is very small.

3) Factors about difference between organization i and
coalition C: This category has three factors. The first is
the KL-divergence KL(Pi(X̂)||PC(X̂)) measuring distribu-
tion difference. The second is the weighted relative vol-
ume difference with respect to each value x̂ of variables
X̂ ,

∑
x̂ vi(x̂, {i})(nC(x̂)− ni(x̂))/ni(x̂). The third is the

weighted accuracy difference calculated by equation (3). The
accuracy difference is the difference between the local accu-
racy of organization i about x̂ and the average local accuracy
of all other organizations. The weight is the ratio of ni(x̂) to
the total data volume of organization i.∑

x̂ ni(x̂)(
∑

j∈C vj(x̂, {j})− vi(x̂, {i}))∑
x̂ ni(x̂)

(3)

Fig. 3f-Fig. 3h describe relationships between ui(C) and
these factors. Fig. 3f shows that ui(C) decreases with a larger
KL-divergence. The weighted relative volume difference and
the weighted accuracy difference can explain well how FL
benefits each participator. Only for these two factors, average
ui(C) represented by each point increases to positive values
under BD setting. The trend is more smooth when considering
the weighted accuracy difference because this factor has a
more direct relationship with ui(C).

B. Utility Fitting by Neutral Networks

We train neutral networks by available previous FL results
to fit utility ui(C). This is because the considered 8 factors
influence ui(C) collaboratively. Traditional fitting methods



such as the method of least square error do not work as it
is hard to choose a proper fitting function describing such a
complex collaborative relationship involving many factors.

To reduce the burden of collecting previous FL results when
our method is used in the real-world cross-silo FL system,
we choose a simple network structure shown in Fig. 4. It has
three fully connected layers with a tanh activation function
following each layer. The input is the 8 factors {f1, ..., f8}.

Cold starting. We notice that our estimation method has a
cold starting problem when there are no previous FL results
of the considered machine learning problem to train the
estimation model. Fortunately, our estimation model trained
by a specific machine learning problem still works in similar
learning problems. We verify this transferring ability by ap-
plying the estimation model trained by MNIST dataset to the
learning problem about FMNIST. As shown in the evaluation,
the relative estimation error is about 40%. The accuracy about
sign prediction of ui(C) is about 80%. Coalition formation
results based on this transferred network are still better than
just forming a grand coalition all together.

IV. DESIGN OF COALITION PARTITION ALGORITHM

We design a distributed coalition partition algorithm, i.e.,
Alg. 1 based on the idea of best-response or better-response
dynamics. It takes estimated utilities as inputs and converges to
a Nash stable partition or an individually stable partition when
it terminates. By setting the initial partition as the optimal one
found by Alg. 2 based on dynamic programming, the social
welfare achieved by Alg. 1 is close to the best social welfare.

A. Finding Nash Stable Partition

The main idea of finding a Nash stable partition is based
on best-response dynamics. In Alg. 1, lines 1-5 set an initial
partition. We introduce the details of initialization later. After
initialization, the algorithm goes on round by round. In each
step of a round, one player i can change its coalition if the
best coalition is not the current one. The best coalition is the
one maximizing u′

i(C). If a movement happens, the partition
is updated at lines 12-14. The algorithm terminates when the
number m of movements in a round is equal to 0.

B. Finding Individually Stable Partition

When finding an individually stable partition, commonly
used best-response dynamics do not work. This is because
the members of the best coalition may not accept player
i. Therefore, we extend best-response dynamics to better-
response dynamics. As shown in Alg. 1, when it is player i’s
turn to move, it lists coalitions according to u′

i(Ck ∪{i}) in a

Fig. 4: Utility estimation model

Algorithm 1: Coalition Formation Algorithm
Input: N , {u′

i(C)}C⊆N sent to each i ∈ N , r
Output: Π

1: if |N | ≤ r then
2: Π = OptPar(N, {u′

i(C)}i∈N,C⊆N ), m = 1
3: else
4: Π = {Ci = {i}}i∈N , m = 1
5: Send Π to each i ∈ N
6: while m > 0 do
7: m = 0
8: for i ∈ N do
9: ————-If finding a Nash stable partition————–

10: Ck′ = argmaxCk∈Π∪{∅}u
′
i(Ck ∪ {i})

11: if k′ ̸= Π(i) then
12: m = m+ 1
13: CΠ(i) = CΠ(i)\{i}
14: Ck′ = Ck′ ∪ {i}
15: ———If finding an individually stable partition———
16: Sort Ck ∈ Π ∪ {∅} according to u′

i(Ck ∪ {i}) in a
descending order as C1i , C2i , ...

17: for each ki do
18: if Cki is CΠi then
19: Break
20: else if

∑
j ∈ Cki1u′

j(Cki
∪{i})≥u′

j(Cki
)/|Cki | >= ρ

then
21: m+ = 1
22: CΠ(i) = CΠ(i)\{i}
23: Cki = Cki ∪ {i}

descending order. Then it moves to the first coalition Cki
in

the list satisfying the following two conditions. Condition 1
is that Cki is better than the current one. Second, the ratio of
members accepting i in Cki is not smaller than threshold ρ. A
member is willing to accept i when adding i into its coalition
would not damage its utility, i.e., u′

j(Cki
∪ {i}) ≥ u′

j(Cki
).

The value of ρ can be flexibly determined by the platform.
If it is 1, player i can join a coalition successfully only when
all members agree. Then Alg. 1 converges to an individually
stable partition as proven in Proposition 1. It can also be set to
another value, such as 0.5. Then a coalition accepts i if half
of its members support i. This is in accordance with voting
mechanisms.

C. Improve Social Welfare of Stable Partitions

Besides considering individual utilities, we hope to optimize
the social welfare at the same time. Specifically, we hope
Alg. 1 converges to the stable partition close to the optimal
one if there are multiple stable solutions. Therefore, we set
the initial coalition structure as the optimal structure. In
the extreme case where the optimal partition satisfies Nash
stability or individual stability, the algorithm would converge
directly. However, the optimal partition is the solution to the
NP-hard problem (2) whose computing time increases fast
with the number |N | of organizations. Therefore, when |N | is
larger than threshold r, we simply let each organization form a
coalition in the initial partition. When |N | < r, we make use
of dynamic programming to further reduce the computation
burden, as shown in Alg. 2.



Alg. 2 compares the optimal partitions having different
number l of coalitions and returns the partition with the highest
social welfare among them. The social welfare of a partition
is represented by s and the highest social welfare found so far
is S.

The optimal partition with a specified l is calculated by
Alg. 3 based on dynamic programming. The recursive structure
of dynamic programming is defined by equation (4) and
realized by lines 7-16 in Alg. 3. To calculate the optimal
partition Πo

N ′,l with set N ′ and l, we determine and fix
the first coalition C in Πo

N ′,l and find the optimal partition
Πo

N ′\C,l−1 whose organization set is N ′\C and number of
coalitions is l − 1. We try every legal coalition C satisfying
the three requirements R1, R2 and R3. Requirement R2 is
that the size of C is not larger than |N ′| − (l − 1) because
the remaining organizations must be enough to form l − 1
coalitions. Requirement R3 means that each member in C
must have a non-negative utility. When the stop condition of
recursion, l = 1, is satisfied, the optimal partition only contains
one coalition. It is returned if it is valid.

Πo
N ′,l =argmaxC:R1−R3s({C} ∪Πo

N ′\C,l−1)

R1 :C ⊆ N ′

R2 :|C| ≤ |N ′| − l + 1

R3 :u′
i(C) ≥ 0, ∀i ∈ C

(4)

D. Theoretical Analysis

We perform theoretical analysis in this subsection. Some re-
lated works about hedonic games analyze theoretically whether
stable partitions exist and whether the stable partition is unique
under the assumption that the utility function is simple. For
example, the utility function is additively separable, symmetric
or single-peaked [30] [31] [32].

Unfortunately, our utility u′
i(C) has complex relationships

with many factors such as data volume, local model perfor-
mance and non-IID degree. It does not have those desirable
properties. According to evaluation results, our coalition for-
mation game has and only has one individually stable partition
in almost all cases. For Nash stability, our game sometimes
does not have stable partitions and sometimes has multiple
stable partitions. The good news is that we can prove our
algorithm converges to stable partitions if they exist.

Proposition 1. If Alg. 1 terminates, the found solution is a
Nash stable partition or an individually stable partition when
threshold ρ is 1.

Proof. Assume that the found partition is Π when Alg. 1
terminates. Obviously, for each organization i, u′

i(CΠ(i)) ≥
u′
i(C ∪ {i}) for all C ∈ Π ∪ {∅} because no one leaves the

current coalition CΠ(i). Therefore, Π satisfies Definition 3 and
Alg. 1 terminates with a Nash stable partition.

When finding individually stable partitions with threshold
ρ = 1, it terminates if for each organization i, one of
the following two conditions is satisfied. First, ui(CΠ(i)) ≥
ui(C ∪ {i}) for all C ∈ Π ∪ {∅}. Second, in any coalition
C ∈ Π ∪ {∅} better than CΠ(i), the utility of at least one

Algorithm 2: Finding Optimal Partition: OptPar()
Input: N , U = {u′

i(C)}i∈N,C⊆N

Output: Π
1: S = 0,Π = {{i}i∈N}
2: for l = 1, ..., N do
3: (s, π) = OptParL(l, N, U)
4: if s ≥ S then
5: S = s,Π = π

Algorithm 3: Finding Optimal Partition with l:
OptParL()

Input: l, N ′, U = {u′
i(C)}i∈N,C⊆N

Output: S, Π
1: Π = ∅, S = −1, ui = −1, ∀i ∈ N
2: if l = 1 then
3: ui = u′

i(N
′), ∀i ∈ N ′

4: if ui ≥ 0, ∀i ∈ N ′ then
5: Π = {N ′}, S =

∑
i∈N′ ui

6: else
7: for w = 1, ..., |N ′| − (l − 1) do
8: for C ⊆ N ′ with size w do
9: ui = u′

i(C) for i ∈ C
10: if ui ≥ 0, ∀i ∈ C then
11: π = {C}, s =

∑
i∈C ui

12: else
13: continue
14: (∆s,∆π) = OptPart(l − 1, N ′\C,U)
15: if s+∆s ≥ S & ∆s ̸= −1 then
16: S = s+∆s,Π = π ∪∆π

member j is damaged if i joins C, i.e., uj(C ∪{i}) < uj(C).
Then, there does not exist i ∈ N and a coalition C ∈ Π∪{∅}
such that C ∪ {i} >i CΠ(i) and C ∪ {i} ≥j C for all j ∈ C.
Definition 4 is satisfied and Alg. 1 converges to an individually
stable partition.

V. EXPERIMENTAL EVALUATION

A. Methodology and Settings

Our experiments are based on datasets MNIST [3] and
FMNIST [4]. FMNIST has Zalando’s article images with
labels from 10 classes, such as dress, bag, shirt and so on. For
each organization, the number of major classes is randomly
selected in the range of [2,4]. The data volume of each class
is a specific ratio of that class in the original dataset. The
ratio is randomly taken among 0.1%, 0.3% or 0.5%. In the
setting of Bigger Difference (BD), an organization only has
major classes. In the setting of Medium Difference (MD), an
organization can have other minor classes whose data volume
is 0.05% of that class in MNIST or FMNIST. The privacy
budget in Laplace mechanism is 1. Our utility estimation
model is trained by FL results about MNIST. We also use
this model to estimate utility in the learning problem about
FMNIST to verify its transferring ability. All reported results
are the average results of 10 experiments.
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B. Personal Model Performance Improvement Estimation

We evaluate our method of estimating the personal model
performance improvement in this subsection. We have two
metrics. The first is the relative average estimation error
(E[|u′

i(C)|]− E[|ui(C)|])/E[|ui(C)|]. The second is the ratio
of the cases where the estimated utility sign is wrong. This
metric is critical to organization experience. If the platform
tells an organization that you can get a positive utility as long
as you stay in this coalition, but it gets a negative utility finally,
this organization may never join FL anymore.

We show the evaluation results in Fig. 5 and Fig. 6. Fig. 5
describes the relative average estimation error under four
settings, BD, MD, BD_T, and MD_T. In the settings of
BD_T and MD_T, we transfer the estimation model trained
by previous FL results about MNIST dataset to FL about
FMNIST dataset. The error under setting BD converges to
30%. This is the smallest among four settings because the
number of intersected classes among organizations is smaller
and the pattern of mutual influence is relatively simple. The
evaluation results under settings BD_T and MD_T show that
our model has the ability of transferring to similar FL problems
and can be used to deal with cold-staring scenarios. Another
good news is that our estimation method does not need much
previous FL experience as the estimation error starts to be
stable when the number of previous FL results is about 60.

Fig. 6 shows the ratio of estimation results with wrong signs
under the four settings. The performance of our estimation
model is satisfactory. The ratio of wrong signs decreases to
10% when the number of previous FL results is about 120
under setting BD. Even when being transferred to similar FL
problems about FMNIST, the wrong-sign ratio does not exceed

20%.

C. Coalition Formation

In this subsection, we show three types of evaluation results
about coalition formation. The first is the convergence per-
formance, i.e., whether the algorithm can converge to stable
partitions. The second is social satisfaction including estimated
social welfare and actual social welfare obtained after FL
is performed. The last is individual satisfaction measuring
individual utility improvement compared with the optimal
partitions and cases where all organizations are federated
together.

Convergence performance. Fig. 7 shows the probabilities
of at least one stable solution existing and multiple stable so-
lutions existing, respectively. From Fig. 7, Individually Stable
Partitions (ISP) almost always exist and we can find them.
Nash Stable Partitions (NSP) only exist in about 50% cases.
This is because it is much easier for organizations to change
its coalition in the Nash stable setting. The ratio of having
Other Nash Stable Partitions (ONSP) is as low as 10% when
the number of organizations is larger than 6. What’s more,
there is only one ISP in most cases according to the line for
Other Individually Stable Partitions (OISP). In conclusion, it
is better to pursue ISP as there exists one and only one ISP
in most cases.

Social satisfaction. Fig. 8 shows the social welfare calcu-
lated based on the estimated individual utilities. We compare
several types of partitions: the Individually Stable Partitions
(ISP) found by Alg. 1, the Nash Stable Partitions (NSP) found
by Alg. 1, the Optimal Partitions (OP) found by Alg. 2. The
line for OP_N is the average social welfare of OPs when Nash



stable partitions exist. As shown in Fig. 8, the estimated social
welfare increases with more organizations (ORGs). This is
because the optimization space is larger when there are more
ORGs. In addition, ISP performs almost the same as OP, and
NSP performs almost the same as OP_N because we set OP
as the initial partition in Alg. 1. NSP usually exists in cases
where cooperation is better than training alone because the
social welfare for OP_N and NSP is much higher than OP
and ISP.

Fig. 9 shows the actual social welfare obtained after FL
is done when different partitions are adopted. ROP means
the Optimal Partition found according to the Real individual
utilities. The line for "All Federated" is the social welfare
when all organizations form one coalition. Its average social
welfare is negative, which means that in cross-silo FL, letting
all organizations be federated together is not a good idea.
The social welfares of OP and ISP are close to ROP, which
represents that the loss of social welfare caused by utility
estimation error can be accepted.

Fig. 10 plots the estimated and real social welfares when
multiple stable partitions exist. The lines for ISP, OISP, ISP_R
(Real social welfare of ISP) and OISP_R (Real social welfare
of OISP) consider the cases where multiple individually stable
partitions are found. Similarly, the lines for NSP, ONSP,
NSP_R and ONSP_R consider the cases where multiple Nash
stable partitions exist. As shown in the figure, ISP is better
than OISP according to both the estimated and actual social
welfares. The same as NSP and ONSP. Then we can say that
by setting the initial partition of Alg 1 as the optimal partition,
the obtained stable solutions are more close to the optimal one
than other stable solutions.

Individual satisfaction. We define two metrics, individual
satisfaction and individual disappointment to measure whether
organizations prefer our coalition formation scheme. Individ-
ual satisfaction of partition Π1 compared to Π2 is defined as
SΠ1,Π2

= |{i|ui(CΠ1(i)) ≥ ui(CΠ2(i))}|/|N |. It is the ratio
of organizations whose utilities are increased in Π1 compared
to Π2. Individual disappointment measures whether those
organizations expecting positive utilities really get positive
utilities. If an organization is told that it can get a positive
utility as long as it follows the stable solution, but it gets a
negative utility after FL is done, the organization would be
disappointed.

Fig. 11 and Fig. 12 show individual satisfaction and indi-
vidual disappointment, respectively. According to Fig. 11, ISP
and NSP found by our algorithms are better than both OP and
AF (All Federated together) because corresponding individual
satisfaction is larger than 0.5, which means more than half
of organizations prefer our coalition partition scheme than OP
and AF. From Fig. 12, the ratio of disappointed organizations
is less than 5%. Then most organizations who expect positive
utilities would really get positive utilities.

VI. RELATED WORK

A. Participant Selection in FL

Most related works consider cross-device scenarios because
the first emerging and popular FL application is in cross-device
scenarios, i.e., Gboard training a next word prediction model
by coordinating many smartphones through FL. These works
usually dynamically select devices having strong computing
ability, fast communication speed or high data contribution
in each FL round [5], [7]–[12], [16]. They aim to decrease
the total training time or improve the model performance.
Whether a device is good can be measured by its performance
in the last round, e.g, the used time to return the local model
and the accuracy contribution. These works cannot be applied
to our problem where members of a coalition need to be
determined before the first round. They need information in
previous rounds to select participants in the next round.

In cross-silo FL, existing works usually assume that all
organizations are federated together because the common
assumption is that more participants lead to better model
performance. And organizations have no limit about comput-
ing ability and communication speed. They would not affect
the training time. Related works study how many training
samples or how many computing resources each contribute
should contribute to minimize the training cost and optimize
the payment minus the cost [17], [18].

There is a work similar to our paper [15]. However, they
only consider the learning problems of average value predic-
tion or linear regression. They derive the expected error of
the global model on each organization’s distribution according
to the error variance among organizations. However, error
variance is impossible to be known. Moreover, the derived
error is an expectation. Moreover, they consider simple FL
where the global model is just the average of local models
trained alone.

B. Model Performance Optimization in Non-IID Scenario

When data distributions of different participants are hetero-
geneous, the convergence of FL process would be slow. And
some participants may obtain poor model performance. Most
works optimize model performance in non-IID scenarios by
improving FL training algorithms. For example, some limit
the deviation degree of each local model from the global
model [19]–[23]. Some increase the weights of disadvantaged
participants when aggregating local models to improve fairness
[24], [25]. Some other works generate personal models for
each participant by fine-tuning the global model or multi-task
training algorithms [26], [27].

These works cannot solve our problem. They try to reduce
the negative impact of non-IID data in the process of FL.
However, we hope to avoid a significant non-IID degree before
FL starts by carefully designing a proper coalition structure.

VII. CONCLUSION

In this paper, we solve a coalition formation problem in
cross-silo federated learning to optimize the personal model
performance for each organization. We first make use of



previous FL results to train a neural network which estimates
the utility function of each organization for the next time of
FL. Based on the estimation results, we help organizations
form stable coalitions by a distributed algorithm. The found
stable coalition structure is close to the optimal one. The
solution performs well with respect to both real social welfare
and individual satisfaction.
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