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Abstract—Federated Learning (FL) is an emerging privacy-
preserving distributed machine learning paradigm that enables
numerous clients to collaboratively train a global model without
transmitting private datasets to the FL server. Unlike most
existing research, this paper introduces a Data-Driven FL system
in Unmanned Aerial Vehicle (UAV) networks, named DDFL,
which features an innovative three-layer architecture. In this ar-
chitecture, UAVs, inherently lacking data, serve as mobile clients
and are tasked with periodically collecting desired data from a
group of Points of Interest (PoIs) for FL training. Meanwhile, a
Base Station (BS) coordinates these UAVs to efficiently train a
high-quality global model. Our objective is to determine a data
collection strategy for each UAV to minimize the time required to
meet the global model’s loss requirement within the constraint of
energy consumption. Through theoretical analysis, we establish
a bound for the convergence speed of DDFL and quantify the
impact of collecting data from different PoIs on the global model’s
loss function. Leveraging these analyses, we formulate the PoI
selection problem as a novel two-stage Combinatorial Multi-
Armed Bandit (CMAB) problem with multiple constraints. We
then propose an Adaptive Two-stage CMAB-based algorithm,
named FedATC, to jointly optimize the data collection route and
UAV velocity. Extensive simulations demonstrate that FedATC
significantly reduces the time required to achieve desired model
quality compared to state-of-the-art algorithms.

Index Terms—Data Collection, Data-Driven Federated Learn-
ing, Multi-Armed Bandit, UAVs.

I. INTRODUCTION

Federated Learning (FL) [1] has emerged as a promising
distributed machine learning paradigm, enabling a group of
clients to collaboratively train a global model under the coor-
dination of a central server without the need to transmit private
datasets to the server. This key feature effectively addresses
the challenge of data silos and preserves data privacy, leading
to its broad applications across various industries, including
security [2]–[4], finance [5], [6], and healthcare [7], [8].

In this paper, we introduce and explore a novel Data-
Driven FL system in Unmanned Aerial Vehicle (UAV) net-
works, named DDFL. As shown in Fig. 1, the DDFL system
features an innovative three-layer architecture, comprising a
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Fig. 1: The Data-Driven FL system in UAV networks.

server layer represented by a Base Station (BS), a client
layer represented by UAVs, and a data layer represented by
Points of Interest (PoIs). Consider a practical scenario where
UAVs from different service providers inherently lack data and
are required to periodically collect traffic data from a group
of PoIs to monitor traffic conditions. Service providers are
usually unwilling to share their private data, thus it is necessary
to adopt an FL framework for UAVs to collect data and update
models under the coordination of the BS. Since traffic data
is time-sensitive, it is crucial to minimize the time taken by
UAVs for data collection and to coordinate the training of a
high-quality global model as quickly as possible. Meanwhile,
we need to further take the following two constraints into
consideration. On one hand, in order to ensure the model’s
high quality, the BS needs to keep the global loss function
within a specified limit. On the other hand, UAVs face a signif-
icant constraint on energy consumption during data collection
and model training due to their limited energy resources [9],
[10]. Therefore, a critical issue is how to minimize the time
consumed by UAVs, taking into account both the global loss
function and the UAVs’ energy consumption constraints.

There are two major challenges in the above-mentioned
DDFL system issue. The first challenge arises from the
unknown and dynamic data quality of different PoIs. Since
the performance of the global model significantly depends on
the quality of data [11], the BS aims to collect high-quality
data as efficiently as possible. This requires us not only to
quantify the data quality of PoIs but also to continuously



explore and update it. Several works have been devoted to
the selection of sample data within the client in recent years
[12], [13]. However, most of the existing work assumes that
the data quality of PoIs is known and invariable in advance,
which is not true in practice. The second challenge is the
energy consumption and speed limitations of UAVs, which
make accelerating the DDFL training process through
effective PoI selection more difficult. Given the limited
energy consumption of UAVs, only a few PoIs can be selected
for data collection at a time, limiting the convergence speed
of FL. Additionally, the selection of diverse PoIs, coupled
with the varying speeds of different UAVs, lead to differing
levels of energy consumption and time delays. For instance,
some PoIs may offer high-quality data but are located far
from the UAVs, leading to higher energy use and potentially
rendering them less ideal choices for the UAVs’ data collection
[14]. Therefore, the decision-making process for selecting the
optimal PoIs under multiple constraints is highly challenging.

To address the above challenges, we devise an Adap-
tive Two-stage CMAB-based FL algorithm, named FedATC.
Through rigorous theoretical analysis, we first establish an
upper bound for the convergence speed of the global model
in relation to the data from PoIs, guiding the quantification
of data quality for different PoIs. We then formalize the
PoI selection problem and apply transformations to recast it
as a Combinatorial Multi-Armed Bandit (CMAB) problem.
We employ a two-stage CMAB-based algorithm to obtain an
approximately optimal PoI selection with multiple constraints
and optimize the route using the 2-Opt-TSP heuristic algo-
rithm [15]. We also propose an iteration-based algorithm to
jointly optimize the data collection route and UAV velocity.

Our major contributions are summarized as follows:

• We introduce a DDFL system in UAV networks, where
UAVs are required to periodically collect desired data
from a group of PoIs so as to minimize time delays within
the constraints of energy consumption and the global loss
function. To the best of our knowledge, this is the first
FL system that abstracts a data layer in addition to the
conventional server layer and client layer.

• We derive an upper bound for the convergence speed
of the novel DDFL system, whereby we analyze the
relationship between the training loss of the global model
and the data from PoIs. Based on this analysis, we
quantify the data quality of PoIs and model the PoI
selection problem as a novel two-stage CMAB problem.

• We propose the FedATC algorithm. First, we divide the
data collection route problem into two steps: PoI selection
and route planning. We employ a two-stage CMAB-based
algorithm to solve the PoI selection problem and prove
the approximate regret of this algorithm. Subsequently,
we propose an iteration-based algorithm to jointly opti-
mize the data collection route and UAV velocity.

• We conduct extensive simulations based on multiple
datasets. The results demonstrate that the performance
of the FedATC algorithm is superior to other algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

We consider a DDFL system in UAV networks, com-
prising a central BS, a set of UAVs denoted as U ≜
{1, 2, . . . , u, . . . , U}, and a group of PoIs denoted as P ≜
{1, 2, . . . , p, . . . , P}, as illustrated in Fig. 1. The BS updates
the global model and coordinates the flight paths and velocities
of the UAVs. Each UAV u is assigned to collect data and
train the local model along a flight path Rt

u. Hereinafter, the
unordered set of PoIs corresponding to Rt

u is denoted as Pt
u.

Each PoI can be selected by at most one UAV at a time.
Specifically, the whole FL system works as follows.

1) The BS initiates the process by transmitting the initial
model and flight route to the UAVs. All UAVs simultane-
ously commence their flights and begin data collection.

2) Once UAV u has collected data sets Dp from PoI p, it
commences a major training round on Dp, encompassing
m local rounds. The loss function for each local round
is articulated as:
F t
u(w

t−1,i
u ;Dp) =

1

|Dp|
∑

(x,y)∈Dp

f
(
wt−1,i

u , x, y
)
, (1)

where wt−1,i
u denotes the model parameters of UAV u

at the i-th local round within the t-th major round, and
f(·) is a loss function defined by the server, e.g., cross-
entropy loss. Then, all local updates along the path Pt

u

can be cumulatively represented as:

wt
u = wt−1 − ηt

∑
p∈Pt

u

m−1∑
i=0

∇F t
u(w

t−1,i
u ;Dp), (2)

where ηt is the learning rate for the t-th major round.
Here, wt−1 is the global model from the previous major
round, which also serves as the initial model for the
current round. After collecting data and training the
model along path Pt

u, the local model of UAV u is
updated to wt

u. Finally, UAV u uploads wt
u to the server.

3) In an effort to minimize the waiting time for straggling
devices, the BS employs an asynchronous update mecha-
nism. Upon receiving the local model uploaded by UAV
u, the BS updates the global model as follows:

wt =

(
1− 1

U

)
wt−1 +

1

U
wt

u. (3)

After aggregation, the BS then sends wt along with the
updated flight route and flight velocity to UAV u. UAV
u subsequently initiates a new round of data collection
and model training.

Overall, the global loss function is defined as follows:

F (wt) ≜
1

U

U∑
u=1

F t
u(w

t;Dt
u). (4)

where Dt
u is the local training dataset of UAV u. The goal

of the model training process is to obtain the optimal model
parameter vector (wt)∗ so as to minimize F (wt), i.e.,

(wt)∗ = argmin
wt

F (wt). (5)



B. Energy and Time-Delay Model

In this section, we will conduct a detailed analysis of the
energy consumption and time delay incurred during the data
collection and model training process of the UAVs.

Fristly, when the UAV is flying at a velocity vu, the power
consumption (ρu)fly is given by [9]:

(ρu)fly = ρ1

(
1 +

3(vu)
2

v2tip

)
+ ρ2

(
1 +

(vu)
4

4v40
− (vu)

2

2v20

) 1
2

+
1

2
ρ3(vu)

3, (6)

where ρ1, ρ2, and ρ3 are constants corresponding to blade
profile power, induced power, and air resistance, respectively.
The term vtip signifies the tip speed of the rotor blade, while
v0 denotes the mean rotor-induced velocity during hovering.
Additionally, when the UAV collects data, it hovers (i.e., vu =
0). The power consumption, (ρu)hover, is given by:

(ρu)hover = ρ1 + ρ2. (7)

The total data collection time Tcollect for n PoIs is Tcollect =
τcollect ·n, assuming uniform collection time τcollect for all PoIs.
Moreover, the total UAV motion time Tmove can be calculated
as Tmove = L

vu
, where L is the flying distance and vu is the

UAV’s speed.
The total energy consumption of the UAV, accounting for

both flying and hovering phases, can be calculated as:

Eflight-hover(L, n, vu) = (ρu)fly · Tmove + (ρu)hover · Tcollect. (8)

The energy consumption for local training when collecting
data from n PoIs is given by [16]:

Elocal-train(n) = n ·m · ς · ω · ϑ2 · Z, (9)

where ϑ represents the CPU clock frequency of each UAV u,
ω is the number of CPU cycles required per bit of data, ς
is the energy consumption coefficient of the UAV’s chip, and
Z signifies the number of bits required for one local round
of model training. Based on the above analysis, the overall
energy consumption is calculated as:

Etotal(L, n, vu) = Eflight-hover(L, n, vu) + Elocal-train(n). (10)

For simplicity, we assume that backup energy reserves are suf-
ficient to cover the energy consumption for data transmission
and the return flight to the charging station. Consequently,
these energy costs are not included in Etotal and γEu

.
To minimize the overall time delay, UAVs conduct local

training synchronously during UAV flight. Therefore, the total
time elapsed is:

Ttotal(L, n, vu) = Tmove + Tcollect. (11)

C. Problem Formulation

To jointly design the UAV data collection strategy and the
FL algorithm, we formulate an optimization problem that aims
to minimize the time delay for the requested UAV u, under
the constraints of the loss function and energy consumption.
Additionally, practical considerations require us to account

TABLE I: Description of Major Notations

Variable Description
U , u The set of UAVs and a specific UAV.
P, p The group of PoIs and a specific PoI.

R∗
1,R∗

2 The optimal paths for the first and second stages.
γEu The energy consumption limit of UAV u.
γL The limit of the global model loss function.
F t
u The local loss function of UAV u in the t-th major round.

wt,i
u , wt

u
Model parameters of UAV u in the i-th local round of the
t-th and t-th major rounds.

ηt The learning rate in the t-th major round.

Dt
u,Dp

The local dataset of UAV u in the t-th major round, and
the dataset collected from PoI p.

vu The velocity of UAV.

L, lp
The total flying distance, and the distance between the
UAV’s location and PoI p.

Ttotal The total time in the t-th major round.
Etotal The total energy consumption in the t-th major round.

λ,L The vector of Lagrange multipliers and the Lagrange dual
function in the t-th major round.

qt1, q
t
2

The quality values for PoIs at different stages in the t-th
major round.

c1, c2
The costs for selecting a PoI at a distance l at different
stages in the t-th major round.

B1, B2
Total energy consumption bounds for different stages in
the t-th major round.

for the upper limit on the UAV’s velocity. Consequently, the
minimization problem is formalized as follows:

P1: min
Rt

u,vu
Ttotal(L, n, vu), (12a)

s. t. F (wt)− F ∗(wt) ≤ γL, (12b)
Etotal(L, n, vu) ≤ γEu

, (12c)
0 ≤ vu ≤ vmax, (12d)

where γL and γEu are predetermined positive constants.
F ∗(wt) denotes the minimized global loss function under
the constraints of UAV speed and energy consumption. Our
optimization variables are the UAV’s route Rt

u and velocity
vu, as L, n, and F (wt) are all controlled by Rt

u. For ease of
reference, we list the major notations in Table I.

III. THEORETICAL ANALYSIS

In this section, we derive two theorems that lay the the-
oretical foundation for the algorithm design in Section IV.
Theorem 1 establishes an upper bound on the convergence rate
of the DDFL system, which is beneficial for solving F ∗(wt).
Theorem 2 derives an upper bound for the left-hand side of
Eq. (12b), aiding in the resolution of problem.

To facilitate our theoretical analysis, we adhere to a classical
assumption widely employed in the FL literature [17]–[20].

Assumption 1 (Lipschitz Gradient). For each UAV u ∈
U , the loss function F t

u(w) is Ku-Lipschitz gradient, i.e.,
∥∇F t

u(w1) − ∇F t
u(w2)∥2 ≤ Ku∥w1 − w2∥2, which implies

that the global loss function F (w) is K-Lipschitz gradient
with K = 1

U

∑
u∈U Ku.

Theorem 1 (Global Loss Reduction). Given Assumption 1,
when a UAV collects data along path Rt

u for training local



models, the reduction of the aggregated global loss F (wt) is
bounded as follows:

F
(
wt
)
− F

(
wt−1

)
≤
∑
p∈Pt

u

m−1∑
i=0

∑
(x,y)∈Dp

(
αp

∥∥∇f (wt,i
u , x, y

)∥∥2
−βp

〈
∇F

(
wt−1

)
,∇f

(
wt,i

u , x, y
)〉)

,

(13)

where αp = K
2U2

(
η

|Dp|

)2
and βp = 1

U

(
η

|Dp|

)
.

Theorem 2. Given Assumption 1, we can derive an upper
bound for the discrepancy between the flight path Rt

u utilized
by UAV u in the t-th major round and the optimal path R∗

1

under the constraints of UAV speed and energy consumption
as denoted in Eq. (12b). The bound is formulated as:

F (wt)− F ∗(wt) ≤
∑
p∈P∗

1

m−1∑
i=0

V p −
∑
p∈Pt

u

m−1∑
i=0

V p, (14)

where the term V p is defined as:

V p = η
U

〈∑
(x,y)∈Dp

1

|Dp|∇f
(
wt−1, x, y

)
,∇F

(
(wt)∗

)〉
+Kη2

2U2

∥∥∥∥∑(x,y)∈Dp

1

|Dp|∇f
(
wt−1, x, y

)∥∥∥∥2 , (15)

and can be interpreted as the data quality for PoI p.

IV. ALGORITHM DESIGN

A. Using the Convergence Bound to Convert Problem

According to Theorem 2, we have obtained an upper bound
for the left-hand side of Eq. (12b), through which we can
control the satisfaction of constraint 12b. Hence, Problem P1
can be reformulated as follows:

P2: min
Rt

u,vu

Ttotal(L, n, vu), (16a)

s. t.
∑
p∈P∗

1

m−1∑
i=0

V p −
∑
p∈Pt

u

m−1∑
i=0

V p ≤ γL, (16b)

Etotal(L, n, vu) ≤ γEu
, ∀u ∈ U , (16c)

0 ≤ vu ≤ vmax. (16d)

According to Problem P2, we need to determine the UAV’s
velocity vu and its flight path Rt

u, because L, n, and Pt
u

are determined by Rt
u. However, path planning is an NP-

hard problem, and finding even an approximate solution in
this scenario is challenging. Furthermore, both Pt

u and vu
simultaneously affect energy consumption and time delay,
making the problem more complex.

To address this challenge, we decouple vu from Rt
u and

divide the path planning problem into two steps: selecting
a subset of PoIs and solving for the optimal path based
on the selected PoIs. In Section IV-B, we assume that the
UAV’s velocity is fixed and formulate the PoI selection prob-
lem as a novel two-stage CMAB problem for resolution. In
Section IV-C, we solve for the optimal path based on the
selected PoIs and adaptively adjust the UAV’s velocity using
an iterative method.

B. CMAB Modeling and Solution

To solve the PoI selection problem, we formulate it as a
CMAB problem. Unlike the typical CMAB problem, P∗

1 is an
unknown set that requires resolution. To tackle this, we adopt
a two-stage CMAB-based approach. In the first stage, we seek
P∗
1 that satisfies only the energy consumption constraint. In

the second stage, based on P∗
1 , we find the optimal set of

PoIs P∗
2 corresponding to Problem P2. However, this problem

is a special case of the 0-1 knapsack problem, which is NP-
hard [21], indicating that there is no polynomial-time optimal
algorithm. To address this problem, we extend the UWR
algorithm [22].

Firstly, we utilize the Lagrangian Dual approach to trans-
form Problem P2 into a max-min problem, denoted as Problem
P3, which is formulated as follows:

P3: max
λ

min
Pt

u

L(Pt
u, λ)

s.t. λ ≥ 0.
(17)

Here, the Lagrange dual function L(Pt
u, λ) is defined as:

L(Pt
u, λ) = Ttotal − λ1g1 − λ2g2, (18)

where:
• g1 = γL −

∑
p∈P∗

1

∑m−1
i=0 V p +

∑
p∈Pt

u

∑m−1
i=0 V p,

• g2 = γEu
− Etotal, for all u ∈ U .

λ = (λ1, λ2) represents the vector of Lagrange multipliers.
To address Problem P3, we first aim to solve the problem

of minPt
u
L(Pt

u, λ), which means we need to derive the
corresponding optimal set of PoIs P∗

2 to minimize L(Pt
u, λ)

for any given λ. However, since P∗
1 is unknown, we need

to derive the optimal solution for the following problem P4,
corresponding to P∗

1 , in the first stage:

P4 minimize F ∗(wt)

s.t. Etotal ≤ γEu
, ∀u ∈ U .

(19)

1) The First Stage: Inspired by the UWR algorithm [22],
we formulate Problem P4 as a CMAB problem. Each available
PoI is treated as an arm, and its contribution to the reduction
of the global model loss function is considered as the reward.

We introduce N t
p and ∇̄f t

p to record the number of times
that PoI p has been selected up to round t and the average
gradient of PoI p, respectively:

N t
p =

{
N t−1

p + 1; p ∈ Pt
u,

N t−1
p ; p /∈ Pt

u,
(22)

∇̄f t
p =


¯∇ft−1
p Nt−1

p +∇ft
p

Nt−1
p +1

; p ∈ Pt
u,

∇̄f t
p; p /∈ Pt

u.
(23)

Then, we substitute ∇̄f t
p for ∇f

(
wt,i

u , x, y
)
. According to

Theorem 1, we define the quality value for each PoI as follows:

qt1(p) =

m−1∑
i=0

∑
x,y∈Dp

(
αp

∥∥∇̄f t
p

∥∥2 − βp

〈
∇F

(
wt−1

)
, ∇̄f t

p

〉)
.

(24)



Algorithm 1 The Two-Stage CMAB-Based Algorithm

Require: Initial speed v1, estimated quality q̂ti(p)
Ensure: Optimal set of PoIs Pt

2

1: Initialize total cost = 0
2: while total cost < B1 do
3: For all p such that total cost + c1(lp) < B1, select:

p∗ = argmax
p∈P\Pt

u

q̂t1(p)

c1(lp)
(20)

4: if no p satisfies the constraint then
5: Break
6: Add p∗ to Pt

1

7: total cost += c1(lp∗)

8: Estimate F ((wt)∗) for Pt
1 using Theorem 1 and ∇̄f t

p

9: Compute the sum of Vp for Pt
1 using Equation (17) and

∇̄f t
p, and determine Budget B2

10: Set total cost = 0
11: while total cost < B2 do
12: For all p such that total cost + c2(lp) < B2, select:

p∗ = argmax
p∈P\Pt

u

q̂t2(p)

c2(lp)
(21)

13: if no p satisfies the condition then
14: Break
15: Add p∗ to Pt

2

16: total cost += c2(lp∗)

In order to balance the relationship between exploitation and
exploration, we use q̂ti(p) to denote the UCB-based quality
value. Here, i = 1 is applicable for the first stage, and i = 2
for the second stage. That is,

q̂ti(p) = q̄ti(p) +Qt,p; Qt,p =

√√√√2 ln
(∑

p′∈P N t
p′

)
N t

p

. (25)

The corresponding cost for each PoI is estimated as c1(lp) =
Ttotal(lp, 1, v1), where lp represents the distance between the
UAV’s location and the PoI, with a total energy consumption
bound of B1 = γEu

.
Based on the equations presented earlier, we adopt a greedy

approach to determine the set of PoIs. In the initial stages, Pt
u

is initialized as empty. Subsequently, we search for the element
in P \ Pt

u that can maximally boost the UCB-based quality
function q̂ti(p) per unit cost. In other words, our selection
criterion is the ratio between the marginal value of the function
q̂ti(p) and its cost, as described below:

p∗ = argmax
p∈P\Pt

u

q̂ti(p)

ci(lp)
. (26)

Following this criterion, we ensure that the algorithm priori-
tizes the exploration of PoIs that have not yet been selected
because q̂ti(p) tends to infinity. We continuously select p∗ to
be added to Pt

u until no PoI meets the criterion such that the
cumulative cost c1 remains within the bound B1. At that point,
we have obtained P ∗

1 .

Algorithm 2 The FedATC Algorithm

Require: Local model wt
u, collected gradient information

∇f t
p, threshold for convergence vstep

Ensure: Global model wt, UAV data collection pathR∗
2, UAV

flight speed vu
1: Initialize v1 ← 0, vu ← vmax
2: wt ← U−1

U wt−1 + 1
Uwt

i

3: Update ∇̄f t
p using ∇f t

p and Eq. (23)
4: Update q̂ti(p) using ∇̄f t

p and Eq. (25)
5: while |vu − v1| < vstep do
6: v1 ← vu
7: Pt

2 ← Alg. 1(v1, q̂ti(p))
8: Apply gradient ascent to obtain optimal λ∗ and corre-

sponding P∗
2

9: R∗
2 ← 2-OPT-TSP(P∗

2 , lu)
10: Compute optimal speed vu based on R∗

2

2) The Second Stage: To derive P ∗
2 , we first note that

since λ1 is a positive number, the problem minPt
u
L(Pt

u, λ) is
equivalent to minPt

u

L(Pt
u,λ)

λ1
. After rearranging, the Lagrange

dual function can be expressed as:
L(Pt

u, λ)

λ1
= −

∑
p∈Pt

u

∑m−1
i=0 V p −

[
−

(
1
λ1

Ttotal +
λ2
λ1

Etotal

)

+

(
γL −

∑
p∈P∗

1

∑m−1
i=0 V p + λ2

λ1
γEu

)]
. (27)

Therefore, we replace ∇f
(
wt,i

u , x, y
)

with ∇̄f t
p, to obtain the

new quality value for each PoI as follows:

qt2(p) =

m−1∑
i=0

V p. (28)

Then, the estimated cost for an individual PoI and the total
resource bound are updated as:

c2(lp) =
1

λ1
Ttotal(lp, 1, v1) +

λ2

λ1
Etotal(lp, 1, v1), (29)

B2 = γL −
∑
p∈P∗

1

m−1∑
i=0

V p +
λ2

λ1
γEu . (30)

Finally, similarly to the first stage, we employ a greedy
strategy to select PoIs within the total cost constraint of
B2, ultimately deriving the approximate optimal solution for
minPt

u
L(Pt

u, λ) for any given λ.

Theorem 3. Let Alg. 1 be implemented in the DDFL system
and let the number of options for the UAVs be denoted as Pf .
Then, the worst α-approximate regret of Alg. 1, symbolized by
R2(B2), can be expressed as:

R2(B2) = O (Pf ln(B2 + Pf lnB1)) . (31)

C. The FedATC Algorithm

Since Alg. 1 has derived the solution of minPt
u
L(Pt

u, λ)
for any given λ. Then, to solve the Lagrange dual function
for Problem P3, i.e., maxλ minPt

u
L(Pt

u, λ), we only need
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Fig. 2: Performance across UAVs on MNIST
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Fig. 3: Performance across UAVs on FMNIST
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Fig. 4: Performance across UAVs on SVHN
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Fig. 5: Performance across UAVs on CIFAR10

to focus on the problem of maxλ L(P∗, λ), i.e., finding an
optimal λ to maximize L(P∗, λ). However, it is hard to find
the optimal solution to solve this problem. Therefore, we
will find the optimal λ (or locally optimal λ) by computing
subgradients of the dual function and using the gradient ascent
method [23]. At this point, we have successfully solved the
PoI selection problem with the UAV speed set to v1.

Now, having completed the PoI selection problem and
obtained P∗

2 , we next calculate the optimal path. The compu-
tation of this optimal path is a generalization of the Traveling
Salesman Problem (TSP). In this paper, we utilize the 2-Opt-
TSP heuristic algorithm, which serves as a example.

Addressing the UAV’s speed and flight path concurrently
is particularly challenging. So we adopt an iterative approach
to handle these components separately. Specifically, we initiate
the UAV’s speed as v1 and then obtain an approximate solution
to Problem P2 based on the aforementioned method. After
obtaining the optimal path R∗

2 for P2, we then re-estimate the
optimal speed. We can approach the optimal speed solution
using gradient descent, but considering that the UAV speed
is often a positive integer, we can adopt a more efficient
method. We start from vmax and decrement until the first
speed that meets the energy consumption limit, which is
considered the optimal speed. This process is repeated until
the difference in speeds between consecutive iterations is less
than a predetermined threshold.

Finally, we analyze the performance of the FedATC al-
gorithm. The computational complexity of the 2-Opt-TSP
algorithm is O(NTP

2), where NT represents the number of
iterations and has been proven to converge [15]. Assuming
Step 5 of FedATC requires NL iterations, NL is also bounded
as vmax/vstep. In practical applications, NT and NL can be

manually capped to provide a balance between computational
resources, time efficiency, and model performance. Conse-
quently, the computational complexity of FedATC, dominated
by the main loop (Steps 5-10), is O(P 2vmax(NL+NT )/vstep).

V. PERFORMANCE EVALUATION

A. Evaluation Methodology

1) Simulation Setup: Our research involves extensive sim-
ulations utilizing four major datasets: MNIST [24], Fashion-
MNIST (FMNIST) [25], SVHN [26], and CIFAR-10 [27].

In our default simulation setup, we deploy a network of 20
PoIs with an energy bound set to 30× 104. We consider data
distribution across different PoIs to be Independent and Iden-
tically Distributed (IID) by default, and achieve non-IID [28]
effects by controlling the dataset size differences among PoIs
and the ordered splitting of datasets. The default model for
different datasets is Convolutional Neural Network (CNN),
equipped with dataset-specific hyperparameters and learning
rate strategies. We ensure consistency in model initialization,
data distribution, the location of PoIs and the BS, as well as
the initial flight paths across simulations. To note, to mimic the
data quality of different PoIs, we introduce varying degrees of
feature noise and label noise to different PoIs.

2) Algorithms for Comparison: In the context of UAV-
based FL system, our FedATC algorithm addresses data-
driven challenges, for which no existing algorithms are directly
applicable. To the best of our knowledge, the UWR algorithm,
as proposed in [22] and based on the CMAB framework, is the
most relevant existing approach. However, we need to modify
it to adapt to the DDFL system, specifically to minimize the
global model’s loss function under the constraints of UAV
speed and energy consumption.
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Fig. 6: Performance of LR on MNIST
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Fig. 7: Performance on MNIST with non-IID Data

Fig. 8: Time Speedup Ratio

Additionally, we implement the ODE algorithm [11] and
a Random algorithm for a more comprehensive comparison.
Similar to our quantification of data quality for PoI p, denoted
as Vp, the ODE algorithm employs a greedy methodology,
selecting the most valuable sample at each step while ensuring
that energy consumption remains within the defined limits. In
subsequent simulations, we modify the concept of value to
align with the convergence rate derived in Theorem 1, thereby
fitting the unique requirements of our DDFL system.

B. Evaluation Results

In this section, we present a comprehensive evaluation of the
FedATC algorithm’s performance under various conditions.
Our analysis spans several facets, including algorithmic effi-
ciency across different datasets, the effect of model complex-
ity by transitioning from CNN to Logistic Regression (LR)
models, the robustness of FedATC in non-IID data scenarios,
and the impact of energy bounds and the number of PoIs
on the time speed-up ratio. The results highlight FedATC’s
consistent outperformance of other algorithms and underscore
its adaptability to diverse scenarios and configurations.

First, we compare the cumulative time taken by four algo-
rithms to achieve the required accuracy on different datasets
and with varying numbers of UAVs, as shown in Fig. 2, Fig. 3,
Fig. 4, and Fig. 5. Accuracy measures the number of correct
predictions. For each of the four datasets, we set three typical
accuracy thresholds, specifically the nearest accuracy divisible
by 5 that approximates model convergence. In Fig. 2, it is
observed that, regardless of whether there are 4 or 8 UAVs,
the time taken by FedATC is significantly less than the three
other algorithms. Moreover, the higher the required accuracy,
the more pronounced the time superiority of FedATC is. The
results for FMNIST, SVHN, and CIFAR10, as shown in Fig. 3,

Fig. 4, and Fig. 5 respectively, exhibit similar patterns as the
MNIST dataset.

Upon transitioning from a CNN to a LR model, we conduct
a comparative analysis of the cumulative time taken by the four
algorithms to reach the desired accuracy levels. Due to limited
space, we only illustrate the result of MNIST. As depicted
in Fig. 6, the FedATC algorithm consistently outperforms
the other three algorithms. Additionally, deploying 8 UAVs
significantly reduces the cumulative time compared to 4 UAVs,
although the relative performance gap between the different
algorithms narrows. This reduction could be attributed to
the diminishing number of PoIs available for selection by
each UAV, which in turn slightly diminishes FedATC’s time
efficiency advantage. These results demonstrate the robustness
of the FedATC algorithm across different models.

Furthermore, we extend our analysis to non-IID data sce-
narios to evaluate the robustness of FedATC. As depicted in
Fig. 7, FedATC demonstrates better time efficiency than the
comparative algorithms, particularly at the accuracy thresh-
old of 95%. Nevertheless, the performance gain of FedATC
over other algorithms is less significant with non-IID data,
highlighting the influence of data distribution on algorithm
efficiency. Despite this, the results confirm FedATC’s adapt-
ability and consistent performance advantage, even under the
challenging conditions presented by non-IID data distributions.

Finally, we examine the impact of varying energy bounds
and varying numbers of PoIs on the time speed-up ratio across
different algorithms. The time speed-up ratio is computed
by ∆ = Trandom

T . As depicted in Fig. 8, the analysis on the
MNIST dataset illustrates a non-linear relationship between
the energy bounds and the time speed-up ratio. It is observed
that all considered algorithms shows an initial increase in the
time speed-up ratio with an increase in the energy bound,
reaching a peak at 30 × 104 units. Beyond this energy level,
the performance advantage begins to diminish, suggesting an
optimal energy threshold for maximizing the time speed-up
ratio. Concurrently, a scarcity of PoIs leads to only a marginal
performance improvement over the RANDOM algorithm, indi-
cating limited choices for FedATC. Conversely, an abundance
of PoIs results in a prolonged learning phase for data quality,
thereby increasing the convergence time and reducing the time
speed-up ratio. These findings underscore the importance of
balancing the number of PoIs and the energy bound.



VI. RELATED WORK

Federated Learning: Many studies in FL have focused
on numerous optimizations and efficiency improvements [29]–
[31]. Although some research has considered hierarchical FL
architectures [32], [33], they primarily focus on the edge server
layer and overlook the data layer. Current research in FL on
the data layer mainly concentrates on the selection of sample
data within clients [11]–[13], neglecting scenarios where data
needs to be actively collected. Especially when the data quality
of different PoIs in the data layer is unknown and varies, this
issue becomes more challenging.

UAV Data Collection: Many works have studied UAV-
based data collection in communication networks. For ex-
ample, Zhan et al. [34] optimize the wake-up schedule and
trajectory of UAVs to minimize the energy consumption of
sensor nodes, while Gong et al. [35] minimize the UAV
flight time while ensuring reliable data upload from sensors.
Additionally, recent studies have explored mobile crowdsens-
ing using UAVs to minimize the age of information (AoI)
and energy consumption [9], as well as the energy-efficient
and cooperative data collection from low-level sensors while
recharging from multiple charging stations [10]. However, the
integration of UAV-based data collection with FL is a novel
area that, to the best of our knowledge, remains unexplored.

Multi-Armed Bandit: MAB is a well-established approach
for making decisions that require a balance between explo-
ration and exploitation [36]–[38]. CMAB algorithms provide
solutions for scenarios where decisions are combinatorial in
nature [22], [39]. Recent applications of MAB in FL have
aimed at optimizing resource allocation among clients [40],
[41]. Nonetheless, the application of a Two-stage CMAB-
based algorithm for PoI selection in FL presents a unique and
unexplored challenge that this work seeks to address.

VII. CONCLUSION

In this paper, we introduce a novel DDFL system in UAV
networks, which for the first time abstracts a data layer beyond
the conventional server and client layers. Utilizing UAVs
for data collection, we conduct a theoretical analysis of the
relationship between the convergence speed of the DDFL
system and the data of PoIs. Building on this foundation,
we model the PoI selection problem as a CMAB issue
and employ a two-stage CMAB-based algorithm to achieve
an approximate optimal PoI selection. We then propose the
FedATC algorithm to jointly optimize the data collection
route and UAV velocity, minimizing time latency under the
constraints of energy consumption and the global loss function.
Extensive simulations on four real datasets have substantiated
the efficacy of our approach. Future research will focus on
exploring the heterogeneous data distribution among PoIs.

APPENDIX

A. Proof of Theorem 1
Proof. First, we analyze the convergence rate of the global
loss function in the DDFL system. Based on Assumption 1,

we have
F (wt)− F (wt−1) ≤ ⟨∇F (wt−1), wt − wt−1⟩

+
K
2
∥wt − wt−1∥2. (32)

Next, by utilizing the asynchronous aggregation formula,
Equation (3), we can further expand the above equation as:

(32) = ⟨∇F (wt−1),
1

U
wt

u +
U − 1

U
wt−1 − wt−1⟩

+
K
2

∥∥∥∥ 1U wt
u +

U − 1

U
wt−1 − wt−1

∥∥∥∥2
≤ 1

U
⟨∇F (wt−1), wt

u − wt−1⟩+ K
2U2
∥wt

u − wt−1∥2.
(33)

Integrating Equation (2), we obtain the following equation:

(33) ≤ 1

U

 K
2U

∥∥∥∥∥∥
∑
p∈Pt

u

m−1∑
i=0

η∇F t
u(w

t−1,i
u ;Dp)

∥∥∥∥∥∥
2

−η
∑
p∈Pt

u

m−1∑
i=0

⟨∇F (wt−1),∇F t
u(w

t−1,i
u ;Dp)⟩

 . (34)

Finally, by incorporating the local training loss function,
Equation (1), we can consolidate the following theorem:

(34) ≤
∑
p∈Pt

u

m−1∑
i=0

∑
(x,y)∈Dp

(
αpp∥∇f(wt,i

u , x, y)∥2

−βp⟨∇F (wt−1),∇f(wt,i
u , x, y)⟩

)
, (35)

where αp = K
2U2

(
η

|Dp|

)2
and βp = 1

U

(
η

|Dp|

)
.

B. Proof of Theorem 2
Proof. Combining Equation (1) and Equation (2), we have

wt − (wt)∗ =
η

U

 ∑
p∈P∗

1

m−1∑
i=0

∑
(x,y)∈Dp

1

|Dp|
∇f(wt−1, x, y)

−
∑
p∈P t

m−1∑
i=0

∑
(x,y)∈Dp

1

|Dp|
∇f(wt−1, x, y)

 . (36)

According to Assumption 1, we have

F (wt)− F ∗(wt) ≤ ⟨∇F ∗(wt), wt − (wt)∗⟩

+
K
2
∥wt − (wt)∗∥2. (37)

Substituting Equation (36) in, we get

(37) =
η

U
⟨∇F ∗(wt), gP∗

1
− gP ⟩+

Kη2

2U2
∥gP∗

1
− gP ∥2, (38)

where

gP =
∑
d∈P

m−1∑
i=0

∑
(x,y)∈Dp

1

|Dp|
∇f(wt−1, x, y). (39)

Then, we organize gP and obtain the following conclusion:

F (wt)− F ∗(wt) ≤
∑
p∈P∗

1

m−1∑
i=0

V p −
∑
p∈Pt

u

m−1∑
i=0

V p. (40)



C. Proof of Theorem 3
Proof. Due to limited space, we borrow the basic idea and
some symbol notation in [22] to present our proof sketch. We
can view the first stage of Alg. 1 as a special case of UWR.
Consequently, we obtain the following result:

R1(B1) ≤ α
∑τ⋆(B1)

p=1 q1(p)− E
[∑τ∗(B1)

p=1 q1(p)
]

(41)

= O (Pf lnB1) . (42)

Given that in Alg. 1 we actually use B′
2 estimated by the first

stage, the equation is formulated as follows:

B′
2 ≤ γL −

∑
p∈P∗

1

m−1∑
i=0

V p +O (Pf lnB1) +
λ2

λ1
γEu

. (43)

We can derive the worst α-approximate regret of Alg. 1:
R2(B

′
2) = O (Pf ln(B2 + Pf lnB1)) . (44)
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