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1. On Problem Solving

How to Solve It (Poyla, 1945)

If you can’t solve a problem, then there is 
an easier problem you can solve: find it.

Is Computing An Experimental Science ? (Milner, 1986) 

A theory can only emerge through 

protracted exposure to application.

Ideas and applications developed side-by-side
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2. Mobile Cloud Computing (MCC)

 Cloud/Edge Computing

 Application-driven: VR/AR, 
video analytics using IoTs

 Better QoE: cloud computing 
and mobile/edge device

 Key indicators: latency, 
accuracy, energy, and privacy

 Latency-sensitive: how to 
bring rich computational 
resources to mobile users? 50 billion IoT devices by 2020
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DNN Inferencing

 Deep Neural Networks (DNNs)
 Technologies:  GPU (graphic) and TPU (tensor)

 AI applications
 Computer vision: AlexNet, VGG-16, Inception, RandWire

 Natural language processing: GPT-3

 Graph models of DNNs
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Convolution NNs

 CNNs (image classification)

 convolution (filtering), pooling (max/avg), fully-connected (neurons)
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Sample CNNs
AlexNet (Red: CONV, Gray: POOL, Blue: FC)
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Offloading

 Three-stage collaborative computation offloading
 Local computation: processing on local devices
 Communication: transmitting intermediate DNN layers’ outputs
 Remote computation:  completing the remote processing in cloud

 Three models
 On-device optimization
 Cloud-only offloading
 Mixed-mode offloading
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Offloading Samples

 Given a partition (i.e., cut)
 Course-grained pipeline: local, comm, and remote
 Fine-grained pipeline: path-based 

(c) fine-grained pipelineT
X



3. Optimal Scheduling
 DNN Computation Offloading Optimization (DCOO)

 DCOO: optimal scheduling (in terms of minimum makespan) 

for a given partition (i.e., cut).

 Cases of DNN
 Line-structure: trivial 
 Multi-path: hard
 DAG: hard

Theorem 1: DCOO is NP-hard for a multi-path DNN.

Proof: Reduce 3-machine flow-shop to DCOO.
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 Single-path

 Straightforward solution, even without a given cut

 Multi-path 

 Path: a path from input to cut or from cut to output

 Non-overlaps among paths (except input and output)

 E.g.,  v1-v2-v4, v1-v3, v6, v5-v6

Theorem 2: In multi-path DNNs, the optimal schedule can 

be achieved via the non-preemptive path-based schedule.

Multi-Path Scheduling



Extended Johnson Algorithm (EJA)

Path p(i) in three stages
 P1(i), P2(i), P3(i)

Linear solution (EJA)

 Dividing paths into H and L

 E.g., H = {1}, L = {3, 4, 2}
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Theorem 3*: If stage 2 is dominated by either stage 1 or 3,     

max{min p1(i), min p3(i)} ≥ max p2(i), EJA is optimal.

If Theorem 3 fails, EJA still achieves an approximation ratio of 5/3+.

 4

Optimality

*Chen et al, A new heuristic for three-machine flow shop scheduling, OR, 1996.
+Framinan et al, A review and classification of heuristics for permutation flow
shop scheduling with makespan objectives, JORS, 2004.
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Simulation

 Local and Cloud
 Local: Raspberry Pi, Cloud: Amazon EC2

 Algorithms
 LO: local only, EJA: Extended Johnson’s Algorithm,

DSL: no fine-grained pipeline, RO: remote only



Extensions
 General structure: DAG

 Conversion to multi-path
 Replicated nodes at join and fork

 Heuristic solution
 Scheduling: EJA on multi-path

 Execution: Replicated node executed once (the first time)
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Multiple DNNs Offloading to Edges
Internet of Vehicles: smart city
 Autonomous driving systems: perception is a key

 Multiple cameras/sensors: multiple (identical) DNNs

 V2X: V (vehicle), I (infrastructure), N (network), P (pedestrian)
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4. Optimal Partition and Scheduling 

 Multiple line-structure DNNs
 AlexNet and VGG-16
 Video analytics and VR/AR

 Optimal partition and scheduling
 Brute force: O(kn)

n: # of copies, k: # of layers

 Existence of a better solution?
 Exploring special application properties



Johnson Algorithm (JA)

 Closer look at the optimality for EJA
 max{min p1(i), min p3(i)} ≥ max p2(i)

 However, p3(i) ≈ 0, reduced to 2-stage pipeline

AlexNet

Johnson, Optimal Two- and Three-Stage Production Schedules With Set-
up Time Included, Naval Research Logistics Quarter, 1954.
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JA in Illustration

 Optimality is guaranteed: JA on 2-stage pipeline

 First six layers of AlexNet
 One copy for each partition 6 copies

 H = {1, 2, 3}, increasing order of blue

 L = {4, 5, 6}, decreasing order of red

 Comm.-domination (or comp.-domination)
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Multiple Line-Structure Example
 Two copies of line-structure DNN

 Three possible partitions and scheduling



Special Application Property

 Line-structure (as the layer increases)
 Computation time: linear increasing (convex) function
 Communication time: monotonic decreasing convex function

 Computation vs. communication
 Data size: 2 – 12 MB
 Speed (uplink): 2-5 Mpbs (4G) and 6-54 Mpbs (WiFi)



Optimization Approximation
 Two functions on the continuous space

 Both comp. and comm. are convex
 One increasing and one decreasing

Theorem 4: A uniform partition of n line DNNs at the 
intersection will guarantee an approximation of 1 + 1

𝑛𝑛
.

Formal Proof: convex optimization
 Intersection point has the 

min {max {comp., comm.}} for n copies

 Strong duality, then KKT, the uniform partition has the 

least max { ∑comp., ∑comm. }



Optimization Approximation (cont’d)

 Informal proof
 Pair-wise “merge” and “replaced” by the middle-point

𝑓𝑓 𝑥𝑥 + 𝑓𝑓 𝑥𝑥′

2
≥ 𝑓𝑓(

𝑥𝑥 + 𝑥𝑥′

2
)

 Height of the intersection x* ≤ any max {comp., comm.}

 Two gaps: first pair in comm. and last pair in comp.

0nly one is counted in comm.-domination or comp.-domination

 When n → ∞, 1 + 1
𝑛𝑛

= 1

→



Sufficient Condition for Optimality
 For a given set of partitions

 Left/right most partition:  (comps, comml ) / (compl, comms)
 Intersection partition: (compm,  commm)

Theorem 5: The uniform partition beats the given set if
3compm < comps + compl + comms  and 3commm < comps + comml + comms 



Simulation (cont’d)

 Partition methods
 Joint Partition and Scheduling: JPS, Brute Force: BF

 Application
 VGG-16, AlexNet, and AlexNet’ (curve fitting) with n = 1, …, 29



Simulation (cont’d)

 Discrete version of intersection
 Intersection: 𝑥𝑥 ∗,  right: ⌈𝑥𝑥 ∗⌉ and left: ⌊𝑥𝑥 ∗⌋
 Ratio:  |𝑥𝑥 ∗-⌈𝑥𝑥 ∗⌉ ∶ 𝑥𝑥 ∗ - ⌊ 𝑥𝑥 ∗⌋|

 AlexNet VGG-16



5. Conclusions and Future Work
 Offloading as a Service

 Edge/cloud networks

 Different DNNs
 Single path, multi-path, and DAG

 Joint partition and scheduling
 Johnson’s rule and its extensions using pipelines
 Unique properties of comp. and comm. of DNNs

 Future work 
 Multi-tier offloading: edge and then cloud pipeline
 Optimal partition and scheduling of special DAGs

⌊



6. Some Reflections
Back to the past: interconnection networks
 Randomly wired NNs (random graphs): neuroscience
 Erdos-Renyi (ER): random, Barabasi-Albert (BA): preferential
 Watts-Strogatz (WS): small-world

⌊

Xie et al, Exploring Randomly Wired Neural Networks for Image Recognition, ICCV’19
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Avoiding: Reinventing the Wheel 

Reference searching practice
 1 to 3 iterative process: references, references’ references

Knowledge span 
 Career span: 5 to 7 years in MS + PhD period

Art of citations
 Good practice for citation: yearly distributions

Zheng and Wu, Snowballing Effects in Preferential Attachment, ICCCN’15
T
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Questions

Collaborators: Ning Wang (Rowan U.) and Yubin Duan (Temple U.) 
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