
Intelligent and Converged Networks Volume x, Number x, xxxxxxx 20xx
ISSN xxxx-xxxx 0x/xx ppxxx–xx x DOI: 10.26599/ICN.20xx.90200xx

Topology Design and Graph Embedding
for Decentralized Federated Learning

Yubin Duan, Xiuqi Li, and Jie Wu *

Abstract: Federated learning has been widely employed in many applications to protect the data privacy of

participating clients. Although the data set is decentralized among training devices in federated learning, the model

parameters are usually stored in a centralized manner. Centralized federated learning is easy to implement; however,

a centralized scheme causes a communication bottleneck at the central server, which may significantly slow down

the training process. To improve training efficiency, we investigate the decentralized federated learning scheme. The

decentralized scheme has become feasible with the rapid development of device-to-device communication techniques

under 5G. Nevertheless, the convergence rate of learning models in the decentralized scheme depends on the

network topology design. We propose optimizing the topology design to improve training efficiency for decentralized

federated learning, which is a non-trivial problem, especially when considering data heterogeneity. In this paper, we

first demonstrate the advantage of hypercube topology and present a hypercube graph construction method to reduce

data heterogeneity by carefully selecting neighbors of each training device — a process that resembles classic graph

embedding. In addition, we propose a heuristic method for generating torus graphs. Moreover, we have explored

the communication patterns in hypercube topology and propose a sequential synchronization scheme to reduce

communication cost during training. A batch synchronization scheme is presented to fine-tune the communication

pattern for hypercube topology. Experiments on real-world data sets show that our proposed graph construction

methods can accelerate the training process, and our sequential synchronization scheme can significantly reduce

the overall communication traffic during training.

Key words: Data heterogeneity, decentralized federated learning, graph embedding, network topology.

•Yubin Duan, Xiuqi Li, and Jie Wu are with the Depart-
ment of Computer and Information Sciences, Temple Univer-
sity, Philadelphia, PA 19122, USA. E-mail: {yubin.duan, xli,
jiewu}@temple.edu.

* Corresponding author: Jie Wu, jiewu@temple.edu.

•This research was supported in part by NSF grants SaTC
2310298, CNS 2214940, CPS 2128378, CNS 2107014, CNS
2150152, CNS 1824440, CNS 1828363, and CNS 1757533.

Manuscript received: year-month-day; accepted: year-month-
day

1 Introduction

Federated learning is a promising approach for perform-
ing distributed machine learning while protecting the
data privacy of each participating client. Machine learn-
ing, especially deep learning, has been widely deployed
in many application scenarios, such as natural language
processing and computer vision. In traditional machine
learning schemes, the training data is usually shared
among all training devices. However, centralized data
storage has caused privacy issues. For example, patient
information stored in medical institutions should not be
shared with a third party. To protect data privacy, feder-

2 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

ated learning is proposed [1]. In federated learning, each
training device has its own local data set that would not
be exchanged with other devices.

Although the training data set is decentralized among
devices, many federated learning schemes use a central-
ized server to maintain the parameters of machine learn-
ing models like Fig. 1(a). In particular, each training
device in federated learning has its local model param-
eters. In every training iteration, participating training
devices would update their local models based on their
local data sets. Then, the local updates are aggregated by
a central server and the global model stored in the cen-
tral server would be updated accordingly. Centralized
federated learning is easy to implement and the perfor-
mance of the global model is relatively easy to evaluate.
However, the centralized scheme causes a communica-
tion bottleneck at the central server. Especially when the
network bandwidth is low, the network traffic may cause
congestion at the server side and significantly slow down
the training process [2]. To mitigate the communication
bottleneck, we explore decentralized federated learning
in this paper.

In decentralized federated learning shown in Fig. 1(b),
training devices directly communicate with each other to
synchronize local model updates. With the development
of wireless communication techniques, device-to-device
(D2D) communication has become feasible in real-world
applications using 5G [3]. Utilizing the D2D communi-
cation channels, training devices can directly exchange
model updates with each other without going through
a centralized server, which can amortize the commu-
nication cost among all training devices and avoid the
communication bottleneck. Nevertheless, decentralized
federated learning has its unique challenges, namely,
each training device only synchronizes with its neigh-
bor nodes in each training iteration, which may affect
the convergence property of learning algorithms. [2],
[4], and [5] have analyzed the performance of optimiza-
tion algorithms for decentralized training. [4] and [5]
have shown that the decentralized scheme can achieve
the same convergence rate while avoiding the commu-
nication traffic jam. [5] also shows that the degree of
the network plays an important role in the convergence
rate. It is worthwhile to investigate the topology design

(a) Centralized framework (b) Decentralized framework

Fig. 1 Different federated learning frameworks.

problem for decentralized federated learning.
The convergence rate of decentralized optimization

methods depends on network topology. [6] and [7] have
analyzed the convergence rate of decentralized optimiza-
tion methods for deep learning and have shown that the
network topology impacts the convergence rate. Their
analyses mainly focus on homogeneous training data
sets, i.e. the data samples among training devices are
independent and identically distributed (IID). However,
training data sets in federated learning are usually het-
erogeneous. In this paper, we investigate the topology
design for federated learning and take the data hetero-
geneity into consideration. In particular, we first explore
the hypercube topology, which has log n diameter for n
devices and achieves an efficient information flow rate.
In addition, we investigate the topology design problem
for federated learning with heterogeneous data. We use
data similarity [8] to measure the data heterogeneity.
Given the data similarity among training devices, we
propose the maximization of the sum of data similarities
over the edges in the constructed graph. Intuitively, we
attempt to reduce data heterogeneity in the network and
improve training efficiency.

It is not trivial to construct the optimal topology for de-
centralized federated learning with heterogeneous train-
ing data. Firstly, it is challenging to compare the perfor-
mance of different topologies and identify the optimal
topology. For example, [7] shows that it is difficult to
find a tight bound for the convergence rate of federated
learning with IID training data. If a certain topology
achieves a fast convergence rate on a loss bound of the
convergence rate, there is no guarantee that the topol-
ogy can significantly improve the training efficiency in
practice. In addition, even if the topology is selected, it
is challenging to construct the connectivity graph with
the given topology such that the data heterogeneity is
minimized, which resembles classic graph embedding

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 3

[9]. For example, building a ring topology graph where
the sum of data similarities over edges in the graph is a
traveling salesman problem, which is NP-hard.

In this paper, we first demonstrate the advantage of
the hypercube topology. To improve the training effi-
ciency of decentralized federated learning, we present an
approximate graph construction method to build a hyper-
cube graph and we attempt to maximize the sum of data
similarities over edges in the constructed graph. In addi-
tion, we also show a heuristic algorithm to construct a
torus graph following a greedy approach. Moreover, we
also investigate the communication pattern in hypercube
graphs and propose a sequential synchronization scheme
to reduce the communication cost during training. A
batch synchronization scheme for the hypercube graph
is presented where the communication pattern among
training devices can be fine-tuned. We have conducted
experiments to evaluate our proposed methods using the
CIFAR-10 and CIFAR-100 data sets [10]. Our evalua-
tion results show that our proposed graph construction
methods can efficiently reduce the data heterogeneity
and improve the convergence speed of learning models.
Moreover, the evaluation results show that our proposed
sequential communication scheme for hypercube graphs
can significantly reduce the communication traffic during
training while maintaining the convergence performance
of learning models.

Our contributions are summarized as follows:

• We investigate the network topology design prob-
lem to improve the training efficiency of decentral-
ized federated learning with heterogeneous training
data sets.

• We demonstrate the advantage of the hypercube
topology for decentralized federated learning and
present a hypercube graph embedding method to
reduce the data heterogeneity for federated learning
with Non-IID data.

• We present a heuristic graph embedding method
to construct torus graphs with Non-IID data and
maximize the sum of data similarities among the
neighbors.

• We propose a sequential synchronization scheme

for training over the hypercube topology to reduce
the communication cost during training. A batch
synchronization scheme is proposed to fine-tune the
communication pattern during training.

• We test our proposed methods using real-world data
sets. Evaluation results show that the hypercube
and torus graph constructed by our algorithms can
significantly improve the training efficiency.

The remainder of the paper is structured as follows.
We reviewed related work in Section 2. The preliminar-
ies of federated learning and the network model of the
decentralized federated learning scheme are introduced
in Section 3. Section 4 presents our proposed topology
design methods, including hypercube and torus graph
construction algorithms. Section 5 focuses on using
graph embedding to tackle the Non-IID data by max-
imizing the sum of data similarities among neighbors.
Section 6 proposes a sequential communication scheme
to reduce the communication cost during the training
process. Our evaluation setups and results are shown in
Section 7. Finally, Section 8 concludes the paper.

2 Related Work

Federated learning (FL) is a machine learning technique
where training data is stored in local client devices with-
out that data being exchanged with one another [1, 11].
Training without centralized data is an efficient way to
protect data privacy. While the training data is decentral-
ized in FL, the parameters of machine learning models
can be stored in either a centralized or decentralized way.
Depending on where the model parameter is kept, FL
schemes can be categorized as centralized or decentral-
ized.

For centralized FL, the parameter server framework
[12--14] is the most widely deployed training scheme
[2, 15]. In this framework, there is a centralized param-
eter server to maintain model parameters. All training
devices need to synchronize model parameters with the
parameter server, which causes a communication bottle-
neck on the server side. To reduce the communication
cost, existing methods can be categorized in two ma-
jor approaches: reducing the communication frequency
[16, 17], and compressing the communication volume

4 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

[18--20]. In particular, we can reduce the communica-
tion frequency by optimizing the communication scheme
and aggregating multiple iterations of local updates in
each communication round. Although this approach can
efficiently reduce the overall communication cost and
speed up the training process of FL, Wang et al [21] and
Stich [22] show that error terms also accumulate when
aggregating local updates.

Compressing the model updates in each communica-
tion round is another approach for reducing the commu-
nication cost. Common compression techniques include
sparsification [19, 23, 24], quantization [18, 25, 26], and
low-rank methods [27--29]. Specifically, sparsification
reduces the parameter tensor size by selecting a sub-
set of tensor elements. Ozfatura et al [19] present a
time-correlated sparsification to reduce the communica-
tion cost for FL with parameter server implementation.
Quantization decreases the parameter tensor size by en-
coding the tensor in less number of bits. Reisizadeh et
al [18] present FedPAQ that reduces the communica-
tion cost for FL by periodic averaging and quantization.
In low-rank methods, model updates would be decom-
posed into several low-rank matrices, which is a lossy
compression method and may break the convergence
of the machine learning models during training. Error-
feedback strategies [28, 30, 31] are proposed to mitigate
the error introduced by compression and maintain the
convergence of the learning models. Moreover, adap-
tive parameter freezing [20] is a promising approach to
compress the communication volume by avoiding syn-
chronizing stable model parameters during the training
process.

Decentralized FL can resolve the communication bot-
tleneck in centralized schemes by amortizing the commu-
nication cost over participating training devices [32]. De-
centralized optimization methods have been well-studied
[2, 5, 33--36]. Koloskova et al [35] investigate the de-
centralized stochastic optimization algorithms and take
the communication compression into consideration. The
efficiency of decentralized FL also depends on the net-
work topology design [7]. Neglia et al [7] investigate the
impact of network topologies on decentralized FL with
IID data. Unlike the existing work, we investigate the
topology design for learning from Non-IID data and take

data similarities into consideration when constructing
communication graphs. Moreover, we propose sequen-
tial and batch communication schemes to fine-tune the
communication pattern for decentralized FL over the
hypercube topology.

3 Model

3.1 Centralized Federated Learning

Federated learning is a distributed learning framework
where each training device or client has its own data set
and will not share its local data set with other clients. We
use V to denote the set of training devices that participate
in the training process. The number of participating
devices is denoted as |V | = n. Each training device v

has its local data set, which is denoted as Dv. Training
a machine learning or deep learning model with the
federated learning framework can be formulated as the
optimization of the global objective function:

min
x

F (x) =
∑n

v=1
wvfv(x),

where x ∈ Rd is the parameter vector of the learning
model, F : Rd 7→ R is the global objective function, fv :

Rd 7→ R is the local objective function of each training
device v, and wv is the weight of the device v. The local
objective function is usually a loss function, such as the
cross-entropy loss, to measure the performance of the
learning model on its local data set. In common settings,
wv is usually set to 1/n showing that every device has
the same weight, or |Dv|/

∑n
v=1 |Dv| showing that the

weight of every device is based on the size of its data set.
Stochastic gradient descent (SGD) is a commonly ap-

plied algorithm to optimize the global objective function.
Logically, SGD starts from a random solution and it-
eratively moves toward to the optimal point. In every
iteration, each participating device v retrieves a data
sample from its local data set and computes the gradient
∇fv(x) of its local objective function using the data
sample. Then, participating devices would synchronize
their gradient information and update the global model.
This step can be implemented in either a centralized or a
decentralized way.

In the centralized federated learning[1, 37, 38], there
is a central server that coordinates participating training
devices and maintains the global model parameters. As

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 5

shown in Fig. 1(a), every participating training device
needs to communicate with the central server in order
to upload local model updates and download the latest
global model parameters. In a fully synchronized setting,
training devices need to communicate with the server in
every iteration of SGD. In each communication round,
training devices need to pull the latest global model pa-
rameters from the server and push their local updates
to the server, which would easily cause congestion at
the network interface of the server. The congestion at
the central server would significantly extend the train-
ing time. [18] and [39] show that the communication
frequency can be reduced by allowing some stale model
updates, and the global model still can converge. The
overall communication volume can be reduced by de-
creasing the communication frequency. However, the
congestion at the central server still exists and affects
training efficiency.

3.2 Decentralized Federated Learning

With the development of wireless communication tech-
nology, device-to-device (D2D) communication among
mobile devices become more and more reliable. For
example, Ozyurt et al [40] present a Li-Fi based D2D
communication system for industrial IoT devices. By
utilizing D2D communication, federated learning can
be implemented in a decentralized manner. Specifically,
training devices can directly communicate with peers
and exchange model updates. Decentralized federated
learning does not rely on central servers and avoids con-
gestion at servers, which can improve communication
efficiency and accelerate the training process.

In decentralized federated learning, each device still
needs to sample local data and compute local model up-
dates. Differently from centralized federated learning,
each device needs to maintain a set of local model pa-
rameters. In each training iteration, each device needs to
gather neighbors’ model updates, aggregate them with
local updates, and modify local model parameters with
the aggregated updates. Formally, let xv,t denote the vec-
tor of model parameters at the t-th training iteration of
device v. Then, the model updates in the decentralized
optimization can be formulated as

xv,t+1 = xv,t − α
∑n

j=1
mvj∇fj(xj,t),

where α ∈ [0, 1] is the hyper-parameter representing the
learning rate and mvj ∈ [0, 1] represents the weights
of neighbor updates. The weight mvj = 0 if devices
v and j are not connected. Otherwise 0 < mvj ≤ 1.
In addition, we assume mvj = mjv, which means the
mutual influence between devices v and j are equal.
A common setting is letting mvj = 1/N(v), where
N(v) represents the number of neighbors of device v.
This setting means that every neighbor makes the same
contribution of the model updates.

We use a graph G = (V,E) to model the network
topology of training devices, as illustrated in Fig. 1(b).
The vertex set consists of training devices. There is an
edge (i, j) ∈ E if devices i and j are connected. No-
tably, we assume the D2D communication channels are
full-duplex, and edges in E are undirected. To analyze
the network topology, we use a connectivity matrix M

to model the graph G. For n participating devices, M
is a n× n matrix. The matrix element M(i, j) = mij

shows the weight of connections between devices i and
j. Notably, we assume a device is connected to itself
by default, and M(i, i) = mii > 0. For the undirected
graph G, the connectivity matrix M is symmetric. More-
over, we assume M is a doubly stochastic matrix, i.e.,
each of the rows and columns in M sums to 1 or for-
mally

∑
i M(i, j) =

∑
j M(i, j) = 1. The spectral

gap δ(M) of the matrix M can measure the information
flow efficiency in graph G. The formal definition of the
spectral gap is shown as follows.

Definition 1 For a symmetric double stochastic
matrix M with eigenvalues |λ1(M)| ≤ · · · ≤
|λn−1(M)| < |λn(M)| = 1, its spectral gap δ(M)

is the difference between the moduli of the two largest
eigenvalues of M . Formally, δ(M) ≜ 1− |λn−1(M)|.

3.3 Data Heterogeneity

In addition to the network topology, we also consider the
impact of data heterogeneity on federated learning. In
particular, training data on participating devices in feder-
ated learning usually are not independent and identically
distributed (Non-IID). For example, sensor data gathered
from IoT devices located in different areas is Non-IID.
We use the similarity among local data sets of training
devices to measure the data heterogeneity. Formally, let

6 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

Table 1 Notations and Explanations

Notation Explanation

V The set of training devices

v An individual training device

n The number of participating devices in V

G = (V,E) The topology of decentralized federated learning

Dv The training data set of device v

F The global objective function

fv The local objective function of device v

xv,t Device v’s model parameter at the t-th iteration

M,M(i,j) The connectivity matrix and its element

S,S(i,j) The data similarity matrix and its element

λi(M) The i-th smallest eigenvalue of M

δ(M) The spectral gap of M

Hd The connectivity graph of the d-D hypercube

S ≜ [S(i, j)]1≤i,j≤n denote the data similarity matrix,
where S(i, j) is the similarity between local data sets
of device i and j. The similarity S(i, j) is defined as
the probability that a data sample from Di is similar to
at least one data sample from Dj . The standard that
measures whether two data samples are similar varies
with application scenarios. For image classification ap-
plications, two data samples are similar if they have the
same ground-truth label. Moreover, there are different
formulations to evaluate the data heterogeneity. Bars et
al [41] present a quantity named neighborhood hetero-
geneity. For a node, its neighborhood heterogeneity is
based on aggregating the differences with its neighbors
with 2-norm. We follow a similar approach while using
1-norm based on graph embedding.

4 Topology Design

The convergence rate of distributed federated learning
heavily depends on the network topology. Theoretical
analyses [35] have shown that the convergence rate of
distributed training is closely related to the spectral gap
of the connectivity matrix M . Formally, the model pa-
rameter xv,t at the t-th training iteration of device v

converges linearly when the connectivity matrix M is
symmetric doubly stochastic, as stated in Theorem 1.

Theorem 1 The model parameter xv,t converges
linearly to x̄ = 1

n

∑n
i=1 xv,0 with the rate∑n

i=1
∥xv,t−x̄∥2 ≤ (1−γδ(M))2t

∑n

i=1
∥xv,0−x̄∥2,

Fig. 2 4-dimensional hypercube graph.

where γ ∈ (0, 1] and M is a symmetric doubly stochas-
tic connectivity matrix.

Notice that γδ(M) ∈ (0, 1] and (1 − γδ(M)) ∈
[0, 1), we have limt→+∞(1 − γδ(M))2t = 0. This
shows that the model parameter xv,t will converge even-
tually. Moreover, from the convergence rate shown in
Theorem 1, we notice that the spectral gap δ(M) of the
connectivity matrix M plays an important role. Espe-
cially when the number of devices n is large, the differ-
ence in the spectral gap δ of different network topologies
becomes significant. It is shown in [35] that the spectral
gap δ of a ring and 2-dimensional (2-D) torus is O(1/n2)

and O(1/n), respectively. According to Theorem 1, a
greater δ leads to a higher convergence rate. Therefore,
compared to the ring topology, the 2-D torus graph has
a faster convergence speed. This difference shows it is
worth optimizing the network topology design for im-
proving the training efficiency of distributed federated
learning. To optimize the network topology, a natural
question to ask is: what causes the significant difference
in the spectral gaps of different graphs?

By comparing the difference between ring and torus
topology, we observe that the diameter of the ring graph
is greater than the diameter of the torus graph, given the
same number of vertices in the graph. Intuitively, the
larger diameter of the ring graph may cause the smaller
spectral gap and the slower convergence speed. Inspired
by the observation, we investigate the hypercube topol-
ogy whose diameter increases in O(log n) with the num-
ber of vertices n in the graph. There are n = 2d ver-
tices in a d-dimensional (d-D) hypercube. The vertex
set of the hypercube graph is defined on {0, 1}d. In
the d-dimensional hypercube, each vertex has exactly
d neighbors. Two vertices are connected if their labels
(in binary code) differ in exactly one dimension. For
example, the structure of a 4-dimensional hypercube is

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 7

Fig. 3 Training ResNet-50 on CIFAR-100 with 64 workers.

shown in Fig. 2. Let Hd denote the connectivity matrix
of the d-dimensional hypercube. Hd can be recursively
defined by the following equation:

Hd =
1

d+ 1

[
dHd−1 I2d−1

I2d−1 dHd−1

]
,

where I2d−1 represents the 2d−1 × 2d−1 identity matrix,
and the base case H0 = [1]. Given the connectivity ma-
trix, we can calculate the spectral gap of the hypercube
topology, as shown in Theorem 2.

Theorem 2 The spectral gap δ(Hd) is 2/d and
δ(Hd)

−1 = O(d) = O(log n).
Proof. We can verify that the eigenvalues of Hd are

1
d
(n− 2|I|) where I ⊆ {1, . . . , d}. The moduli of the

two largest eigenvalues of Hd are n/d and (n − 2)/d.
According to the definition, the spectral gap δ(Hd) of
Hd is 2/d, and δ(Hd)

−1 = O(d) = O(log n). ■

Based on the spectral gap, we can analyze the con-
vergence speed of the decentralized federated learning
over the hypercube graph. Compared to ring and torus
topologies, the spectral gap of the hypercube is much
larger, especially when the number of participating de-
vices is large. According to Theorem 1, the convergence
speed of distributed federated learning over the hyper-
cube graph is faster.

We have evaluated the convergence rate of SGD over
different network topologies. Fig. 3 shows the prelimi-
nary experiment results when there are 64 participating
training devices. This figure shows the top-1 accuracy
of ResNet-50 model when training on the CIFAR-100
data set. Data samples in the CIFAR-100 are randomly
shuffled and allocated to participating devices. From the
figure, we can observe that the model convergence speed
heavily depends on the topology of the communication
graph. For example, to achieve 60% accuracy, hypercube

takes 73 epochs, while torus and ring need 83 and 144
epochs, respectively. Compared to the hypercube topol-
ogy, torus and ring are 13.7% and 97.3% slower. The
preliminary result shows that optimizing the topology of
the communication graph can significantly improve the
training efficiency for decentralized federated learning.

From the theoretical analyses and the preliminary ex-
periment results, we notice that the network topology
would impact the convergence rate of decentralized fed-
erated learning. In addition to the network topology,
data heterogeneity also affects the convergence rate. Too
many updates from extremely heterogeneous data may
diverge the learning model. In this paper, we propose
to jointly consider those two factors. When scheduling
the communication among participating training devices,
we attempt to find a graph G such that the spectral gap
of the connectivity matrix is maximized and the hetero-
geneity of neighbor nodes in the graph is minimized.
This is not a trivial problem and there may be a trade-off
between the information flow efficiency and the data het-
erogeneity given a set of decentralized training devices.
It is challenging to minimize the data heterogeneity of
neighbor nodes while maintaining a desired network
topology.

There is some recent effort on diameter minimization
based on a fixed node degree for a given number of
nodes, but their results generate a random graph with
probabilistic guarantee [42]. We investigate more deter-
ministic approaches to optimize graph embedding with
multiple graph topologies, and we use the spectral gap
as a mathematical tool to analyze the approximation
property of our proposed methods.

5 Graph Embedding for Non-IID Data

In this section, we focus on optimizing the communi-
cation graph for heterogeneous data. For the similarity,
intuitively, when data distributions of two workers are
similar, we should connect them together so that the dis-
turbance from other non-similar workers can be avoided.
The authors in [43] use this intuition to design the com-
munication graph. The experimental findings in [43]
confirm this intuition. We use data similarity to measure
the data heterogeneity of communication graphs. In par-
ticular, each edge in the communication graph G shows

8 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

Algorithm 1 Max-Similarity Hypercube Construction
Input: The complete graph G = (V,E) with |V | = n = 2d

and similarity matrix S

Output: The d-D hypercube Gd with max-similarity
1: Define G0 = (V0, E0), where V0 = V and E0 = {} //initial-

ization for G0

2: for dimension i = 0 to d− 1 do
3: //determine Gi+1 from Gi

4: for each virtual node pair vn and vn′ in Gi do
5: call Virtual Node Similarity(vn, vn′)
6: Apply Blossom’s algorithm to Vi based on virtual node

similarity in Gi

7: Each matching pair in Vi forms a virtual node in Vi+1

8: A set of one-to-one mapping connections along dimension
i in each matching pair in Vi forms Ei+1, together with
existing links in Ei

9:

10: Virtual Node Similarity(vn, vn′)
11: //determine virtual node similarity in Gi

12: for each node pair (u, v), u ∈ vn, v ∈ vn′ do
13: sum up S(u, v) //both u, v ∈ V

the data similarity between two vertices induced on the
edge. Our objective is to select a set of edges such that
the summation of similarity among neighbors is maxi-
mized and the desired network topology is maintained.
This process resembles classic graph embedding, where
a target graph, i.e., hypercube or ring, is embedded in a
given graph, i.e., a completely connected graph in this
case. This optimization problem is challenging even for
generating the max-similarity for a graph with a simple
ring topology. Finding such a graph with ring topology
is equivalent to a traveling salesman problem, which is
NP-hard. We propose two heuristic graph construction
methods for hypercube and torus topologies from a given
complete graph, respectively.

5.1 Hypercube Graph Construction

Given a complete graph G = (V,E) with the simi-
larity matrix S, we denote the virtual network of level
i as Gi = (Vi, Ei), where i = 0, 1, ..., d − 1. Ini-
tially, G0 = (V0, E0), where V0 is V and E0 is
empty. Our algorithm iteratively constructs Gi+1 from
Gi, i = 0, 1, ..., d − 1. The hypercube construction
algorithm is shown in Algorithm 1. It is a dimension-
based perfect matching using Blossom’s algorithm [44],
which constructs a maximum matching on a graph in

polynomial time. Blossom’s algorithm starts with an
empty matching. Then, it repeatedly increases the size
of the matching by one by finding and utilizing an aug-
mented path in the graph at each iteration. When no
more augmented paths exist, the result is a maximum
matching.

Our hypercube construction process first applies Blos-
som’s algorithm to find matching pairs of physical nodes.
Each matching pair forms a 1-D cube, which is a virtual
node of level 1. Then, Blossom’s algorithm is repeatedly
applied to virtual nodes of level i to form virtual nodes
of level i + 1. Gi+1 is constructed as follows: each
matching pair in Gi is a virtual node in Vi+1. A one-
to-one node-level connection along dimension i in each
matching pair plus all existing links in Gi form Ei+1.
The construction stops when there is only one virtual
node, which is the d-D hypercube, Gd. The construction
of a 3-D hypercube in three iterations is illustrated in
Figure 4.

Figure 5 shows two virtual nodes (i.e. two 3-D hyper-
cubes). The virtual node on the left is matched to the
virtual node on the right with the maximum similarity.
To find the maximum similarity matching between two
virtual nodes of level k (i.e. two k-D hypercubes), there
are k!2k choices (i.e. the number of automorphisms). At
level 0, the virtual node is the real node and therefore
the matching is at the maximum. In subsequent levels,
our construction algorithm approximates the maximum
using the total pairwise similarity between two virtual
nodes, which is the sum of pairwise similarity between
two physical nodes with one from each virtual node of
level k. This approximation has a complexity of (2k)2.
Once matching pairs are constructed in the i-th iteration,
our algorithm randomly selects one-to-one node-pair
(i.e. nodes in the original G) connections along the i-th
dimension without considering different rotations.

Our proposed method for hypercube graph construc-
tion has an approximation ratio of 1/d, i.e., the sum of
data similarities over edges in the graph is at least 1/d
of the optimal solution. The complexity of our proposed
method is shown in Theorem 3. The approximation prop-
erty of our proposed method is shown in Theorem 4.

Theorem 3 The hypercube graph construction
method shown in Algorithm 1 has a complexity of

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 9

Fig. 4 A 3-D max-similarity hypercube construction process.

O(n4), where n is the number of nodes.
Proof. For each dimension i, when Blossom’s

Algorithm is applied to Gi, the time complexity is
O(|Ei||Vi|2) = O(|Vi|4) based on [44]. O(|Vi|4) =

O((2d−i)4) = O((n2−i)4). The time complexity of
calculating the similarities of all virtual node pairs in Gi

is O(|Vi|2(2i)2) = O((n2−i)222i) = O(n2). The time
complexity of our hypercube construction algorithm is∑d−1

i=0 (O((n2−i)4) + O(n2)) = O(
∑d−1

i=0 (n2
−i)4) +

O(
∑d−1

i=0 n2) = O(n4) +O(n2log n) = O(n4). ■

Theorem 4 The hypercube graph construction
method shown in Algorithm 1 is 1/d-approximate.

Proof. Our hypercube graph construction method
would iteratively maximize the similarities over edges
in every dimension. In the first iteration, our method
would pick 1/d of total edges for the hypercube graph.
Considering that we apply the maximum weight perfect
matching in this iteration, any other matching plans that
select a 1/d portion of total edges would have a smaller
sum of data similarities. Therefore, sum of data similari-
ties over edges in the graph generated by Algorithm 1 is
at least 1/d of the optimal solution. ■

5.2 Torus Graph Construction

In addition to the hypercube topology, we have inves-
tigated the torus graph construction for heterogeneous
data such that the sum of data similarities over edges in
the graph is maximized.

Given the complete graph G = (V,E) of n nodes
with the similarity matrix S, our torus construction algo-
rithm creates a 2-D torus in two major steps: ring con-

Fig. 5 Max-similarity hypercube matching in G3.

struction and ring matching. We define m =
√
n. The

ring construction step creates m rings, R1, R2, ..., Rm,
in sequence. Each ring contains m nodes. The ring
matching step connects the m rings, R1, R2, ..., Rm, to
form a ring of rings, which is a 2-D torus. This process
is described in Algorithm 2.

To construct a new ring Ri (i = 1, 2, ...,m) of size
m, our algorithm randomly selects an unmatched node u
in G as the head in the ring. It then finds an unmatched
node v with the maximum similarity to u. This new
node v is set to be the new head. Repeat these two steps
until the new ring size is m. Then, connect the head
and tail in the new ring to form a circle. This new ring
construction process is repeated m times to create m

rings.
The ring matching process begins with randomly

choosing an unmatched ring R as the head of the rings
of rings, i.e. the 2-D torus. Then our algorithm finds an
unmatched ring R′ with the maximum similarity to R.
Next, ring R′ is set to be the new head. To match each
ring Ri (i = 1, 2, ...,m− 1), repeat the last two steps.
Then connect the head and tail of the rings of rings to
form a 2-D torus.

The 2-D torus construction algorithm is also heuristic.
Clearly, the ring of rings created is a 2-D torus. The max-
imum ring similarity between two rings is the summation
of one-to-one node pair similarities. There are totally
m2 possible matchings with various rotations, including
m rotations of a given ring and another m rotations after
flipping the ring. Figure 6 shows an example for m = 6.
The ring on the left is matched to the ring on the right
with the maximum similarity rotation (flip, then rotate)
among all possible rotations. The complexity of our
proposed method is shown in Theorem 5.

Theorem 5 The torus graph construction method
shown in Algorithm 2 has a complexity of O(n2), where

10 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

Fig. 6 Ring matching through rotation and flipping (the
rightmost ring).

n is the number of nodes.
Proof. In Construct Rings, the outer for-loop in Line

5 repeats
√
n times. The inner for-loop in Line 7 iter-

ates
√
n − 1 times. In Line 8, at most n − 1 nodes

are checked. The total run time of ring construction is
O(

√
n
√
n n) = O(n2).

In Match Rings, the for-loop in Line 14 repeats
√
n−1

times. In Line 15, at most
√
n − 1 rings are checked.

For each pair of rings of size
√
n, the time complexity

of computing their similarity is O(
√
n
√
n) = O(n).

The total run time of ring matching is O(
√
n
√
n n) =

O(n2). The time complexity of our torus construction
algorithm is O(n2) +O(n2) = O(n2). ■

6 Reducing Communication Frequency

In addition to the network topology design, adjusting the
communication frequency among training devices can
reduce the communication volume and efficiently speed
up the training process. Existing studies mainly follow
either a synchronous or asynchronous approach. In syn-
chronous federated learning, all participating devices
need to synchronize their model parameters in every l

iteration, where l ≥ 1 is a hyper-parameter representing
the staleness limitation. A large l can efficiently reduce
the communication frequency, but may also break the
convergence of machine learning models [13].

In an asynchronous scheme, training devices no longer
need to wait for neighbors for model synchronization.
However, the overall communication volume is not sig-
nificantly reduced in the asynchronous scheme. Differ-
ent from existing approaches, we present a batch syn-
chronization scheme for distributed federated learning
over the hypercube topology. Intuitively, our proposed
scheme can fine-tune the synchronization frequency of
nodes in each dimension in the hypercube graph, which

Algorithm 2 Max-Similarity Torus Construction
Input: The complete graph G with the similarity matrix S

Output: 2-D torus with the maximum total similarity G′

1: m←
√
n

2: call Construct Rings
3: call Match Rings
4:

5: Construct Rings
6: for i = 1 to m //construct Ri do
7: randomly select an unmatched node u in G

8: for j = 2 to m do
9: find an unmatched node v in G that has the maximum

similarity to u

10: set v to u //v becomes the head of Ri

11: connect the head and tail of Ri.
12:

13: Match Rings
14: //connect R1, R2, ..., Rm to form a ring of rings
15: randomly select an unmatched ring R

16: for i = 2 to m //match Ri−1 do
17: find an unmatched ring R′ with the maximum similarity to

R

18: set R′ to R // R′ becomes the head of the ring of rings
19: connect the head and tail of the ring of rings to form a 2-D

torus

helps to reduce the network traffic during training and to
improve the training efficiency.

To reduce the communication cost, we first present a
sequential communication scheme for decentralized fed-
erated learning in hypercube topology. In traditional fed-
erated learning, all participating devices perform commu-
nication in parallel. For example, if there are 4 devices.
they perform parallel communication in each synchro-
nization round, which can be represented by 0||1||2||3,
where || denotes the parallel communications. For a
d-dimensional hypercube, each device needs to commu-
nicate with d neighbors in each synchronization round.
The traditional synchronization scheme would introduce
a large communication cost. Differently to setting up a
fixed synchronization barrier, we propose letting training
devices synchronize their model parameters in sequence
by each dimension in the hypercube connectivity graph.
In our sequential communication scheme, each device
only synchronizes with one neighbor in each communi-
cation round. The neighbor selection sequence of each
device is sorted by dimension. For example, the commu-

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 11

Algorithm 3 Sequential Communication Scheme
Input: The dimension d of the hypercube graph
Output: A sequential communication schedule

1: while training process is not completed do
2: i← 0

3: for every device v ∈ V do
4: Select the neighbor at the (i mod d)-th dimension for

synchronization
5: i← i+ 1 //iteration i

nication of 4 devices is organized as 0||1, 2||3 in the first
round, and 0||2, 1||3 in the second round. Specifically,
the device 0 only communicates with device 1 in the first
round, and synchronizes with device 2 in the following
round. In the sequential communication scheme, the
communication cost is reduced by 1/d compared to the
traditional federated learning scheme.

Detailed steps of our proposed sequential communi-
cation scheme is shown in Algorithm 3. In particular,
while the training process is not completed. Every train-
ing device would perform model synchronization with
one neighbor node in a communication round. Line 2
initializes a counter to keep a record of the number of
iterations. The loop in lines 3-4 would select a neigh-
bor node for every training device. At iteration i, the
neighbor at the i mod d dimension would be selected
for synchronization, as shown in line 4. Line 5 would
increment the iteration counter i. With the sequential
communication scheme, the overall communication cost
is reduced by 1/d.

In addition to the sequential communication scheme,
we present a more flexible communication scheme for de-
centralized federated learning over the hypercube topol-
ogy. In particular, we can fine-tune the communication
cost in each synchronization round. For training with
n devices, we can use a log2 n-bit binary mask b to in-
dicate which dimensions the synchronization should be
performed on. In the binary mask, 0 represents skipping
the synchronization in the corresponding dimension and
1 means performing the synchronization in this round.
For example, the sequential communication scheme for
a 3-dimensional hypercube with eight devices can be en-
coded as 001, 010, 100, and repeat. The communication
pattern can be fine-tuned by adjusting the binary mask
for each synchronization round.

7 Experiment

7.1 Experiment Setup

Out testbed is built based on a computing cluster that
has 8 NVIDIA Tesla V100 GPUs with 448 GB RAM
and 5.9 TB storage space. All GPUs are connected by
NVLinks that provide 300GB/s bandwidth per GPU.
We have evaluated our proposed methods with different
network sizes. When there are more than eight nodes in
the network, multiple worker nodes would be assigned to
a GPU device. Each device can handle multiple training
processes if the overall workload does not exceed the
GPU memory limitation.

We implement our proposed schemes in PyTorch. We
use the OpenMPI package as the backend that coor-
dinates the communication among training devices. In
particular, we modify the topology module of PyTorch to
integrate our graph construction methods. The network
topology during training is adjusted by the connectiv-
ity matrix generated by our algorithms. We utilize the
CIFAR-10 data set to simulate the heterogeneous data
distribution among training devices. We treat the im-
ages from the same class as homogeneous data and mix
images from different classes to construct the heteroge-
neous data. During the experiment, we assume the data
similarity matrix is known. Given a data similarity ma-
trix, we assign heterogeneous data from different image
classes to training devices to fulfill the data heterogene-
ity indicated by the matrix. When testing our proposed
synchronization scheme, we use both CIFAR-10 and
CIFAR-100 data sets.

In our experiments, we compared the performance
of different graph construction methods. In particular,
our proposed hypercube and torus graph construction
methods are denoted as HGC and TGC, respectively.
We also implement an exhaustive search method to find
the optimal graph where the sum of data similarities
over edges in the graph is maximized. The exhaustive
search method is denoted as ES. ES finds the optimal
solution in non-polynomial time, and cannot be applied
to solve large-scale problems. In the graph construc-
tion experiment, we set n to 16. In addition, we imple-
ment a random construction method, which is denoted
as RC. The RC method can only guarantee the topology

12 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

(a) ResNet-20

(b) ResNet-50

Fig. 7 Evaluation of hypercube construction methods.

of the generated graph, but it cannot reduce the data
heterogeneity of the generated graph. Moreover, we also
compare different synchronization schemes. We denote
our sequential synchronization scheme as SS and the
traditional full synchronization scheme as FS. Based on
our batch synchronization scheme, we also implement a
hybrid synchronization scheme that reduces the commu-
nication frequency of the full synchronization scheme
by 1/3, i.e., performing a full synchronization in every 3
iterations such that the communication cost is equivalent
to SS. The hybrid synchronization scheme is denoted as
HS. When evaluating different synchronization schemes,
the number of devices n is set to 8.

7.2 Experiment Results

The evaluation results of hypercube construction algo-
rithms are shown in Fig. 7. In particular, Fig. 7(a)
shows the experiment results of the ResNet-20 model
and Fig. 7(b) shows the results of the ResNet-50 model.
From 7(a) and 7(b), we can find that our proposed HGC
method achieves a better convergence rate compared to
randomly constructing a hypercube graph in RC. The
experiment results show that finding a hypercube graph

that increases the sum of data similarities over edges in
the graph can improve the training efficiency. In addi-
tion, our HGC method has a similar convergence trace
as ES. This shows that our proposed method can find
the near-optimal graph in terms of data similarity max-
imization. Compared to ES, our proposed method has
polynomial time complexity and is more time efficient
when constructing hypercube graphs.

Experiment results of torus graph construction meth-
ods are shown in Fig. 8. The figure illustrates the model
convergence property when training with the communi-
cation graph constructed by different graph construction
methods. From the figure, we find that our TGC method
outperforms RC in both the ResNet-20 and ResNet-50
models. Our proposed TGC method can reduce the data
heterogeneity in the generated torus graph, which helps
improve the convergence rate of machine learning mod-
els. For example, TGC takes about 30 epochs less than
RC to achieve 95% model accuracy with training with
ResNet-20. In addition, the performance of TGC is close
to the optimal graph construction method ES.

Fig. 9 shows the evaluation results of different syn-
chronization schemes on the ResNet-50 model. Fig. 9(a)
shows the experiment results over the CIFAR-10 data
set and Fig. 9(b) illustrates the results over the CIFAR-
100 data set. From the figure, we can observe that our
sequential synchronization scheme SS requires lower
communication cost to achieve the same model accu-
racy as the traditional FS scheme. For example, when
reaching 80% accuracy for CIFAR-10, SS has a 19%
lower communication cost compared to FS, and the sav-
ing is more significant when reaching the same higher
level of accuracy. In addition, the model trained with
the sequential synchronization scheme converges to the
same accuracy as FS. This shows that our SS scheme
can efficiently reduce the communication cost during
training without harming the model convergence.

8 Conclusion

In this paper, we investigate the topology design problem
for decentralized federated learning with heterogeneous
training data. We demonstrate the advantage of hyper-
cube topology by showing its spectral gap and theoreti-
cal convergence rate. To reduce the data heterogeneity

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 13

(a) ResNet-20

(b) ResNet-50

Fig. 8 Evaluation of torus construction methods.

during the training process, we present graph construc-
tion methods for both hypercube and torus topologies
to carefully select neighbors for each training device
and increase the overall data similarities in the gener-
ated graph. Our hypercube graph construction method is
1/d-approximate. In addition to the topology design, we
propose a sequential synchronization scheme for train-
ing in hypercube graphs. Also, a batch synchronization
scheme is proposed to fine-tune the communication pat-
terns during training. To evaluate our proposed methods,
we conduct experiments over CIFAR-10 and CIFAR-100
data sets. Training traces of ResNet models show that
our proposed graph construction methods can accelerate
the training process. Moreover, our proposed synchro-
nization schemes can significantly reduce the overall
communication cost during training.

References

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A.
T. Suresh, and D. Bacon, Federated learning: Strategies
for improving communication efficiency, arXiv preprint
arXiv:1610.05492, 2016.

[2] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and

(a) CIFAR-10

(b) CIFAR-100

Fig. 9 Evaluation of synchronization schemes.

J. Liu, Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent, Advances in Neural Informa-
tion Processing Systems, vol. 30, 2017.

[3] R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani, S.
Mumtaz, J. Rodriguez, and J. J. Rodrigues, 5g d2d networks:
Techniques, challenges, and future prospects, IEEE Systems
Journal, vol. 12, no. 4, pp. 3970–3984, 2017.

[4] I. Hegedűs, G. Danner, and M. Jelasity, Decentralized learn-
ing works: An empirical comparison of gossip learning
and federated learning, Journal of Parallel and Distributed
Computing, vol. 148, pp. 109–124, 2021.

[5] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Mas-
soulié, Optimal algorithms for smooth and strongly convex
distributed optimization in networks, in Proc. of Interna-
tional Conference on Machine Learning. PMLR, 2017, pp.
3027–3036.

[6] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, De-
centralized deep learning with arbitrary communication
compression, in ICLR 2020 - International Conference
on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=SkgGCkrKvH

[7] G. Neglia, C. Xu, D. Towsley, and G. Calbi, Decentralized
gradient methods: does topology matter?, in Proc. of Inter-
national Conference on Artificial Intelligence and Statistics.
PMLR, 2020, pp. 2348–2358.

14 Intelligent and Converged Networks, xxxxxxx 20xx, x(x): xxx-xxx

[8] S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chi-
ang, and C. G. Brinton, Device sampling for heterogeneous
federated learning: Theory, algorithms, and implementa-
tion, in Proc. of IEEE INFOCOM 2021- IEEE Conference
on Computer Communications. IEEE, 2021, pp. 1–10.

[9] F. T. Leighton, Introduction to parallel algorithms and ar-
chitectures: Arrays, trees, hypercubes, Morgan Kaufmann
Publishers, Inc. 1992.

[10] A. Krizhevsky and G. Hinton, Learning multiple layers
of features from tiny images, Technical Report, Computer
Science Dept., Univ. of Toronto, CA, 2009.

[11] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X.
Shen, Distributed artificial intelligence empowered by end-
edge-cloud computing: A survey, IEEE Communications
Surveys & Tutorials, vol. 25, no. 1, pp. 591–624, 2023.

[12] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen,
and A. Smola, Parameter server for distributed machine
learning, in Big learning NIPS workshop, vol. 6, no. 2,
2013.

[13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing, More effective
distributed ml via a stale synchronous parallel parameter
server, in Advances in neural information processing sys-
tems, 2013, pp. 1223–1231.

[14] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, Commu-
nication efficient distributed machine learning with the pa-
rameter server, Advances in Neural Information Processing
Systems, vol. 27, 2014.

[15] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, Opti-
mal distributed online prediction using mini-batches. Jour-
nal of Machine Learning Research, vol. 13, no. 1, 2012.

[16] V. Smith, S. Forte, M. Chenxin, M. Tak´aˇc, M. I. Jor-
dan, and M. Jaggi, Cocoa: A general framework for
communication-efficient distributed optimization, Journal
of Machine Learning Research, vol. 18, p. 230, 2018.

[17] J. Wang and G. Joshi, Adaptive communication strategies
to achieve the best error-runtime trade-off in local-update
sgd, in Proc. of Machine Learning and Systems, vol. 1, pp.
212–229, 2019.

[18] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, Fedpaq: A communication-efficient federated
learning method with periodic averaging and quantization,
in International Conference on Artificial Intelligence and
Statistics. PMLR, 2020, pp. 2021–2031.

[19] E. Ozfatura, K. Ozfatura, and D. Gündüz, Time-correlated
sparsification for communication-efficient federated learn-
ing, in 2021 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2021, pp. 461–466.

[20] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G.
Zhang, Communication-efficient federated learning with
adaptive parameter freezing, in Proc. of IEEE ICDCS. IEEE,
2021, pp. 1–11.

[21] J. Wang and G. Joshi, Cooperative sgd: A unified frame-
work for the design and analysis of communication-efficient
sgd algorithms, arXiv preprint arXiv:1808.07576, 2018.

[22] S. U. Stich, Local sgd converges fast and communicates
little, arXiv preprint arXiv:1805.09767, 2018.

[23] H. Sun, Y. Shao, J. Jiang, B. Cui, K. Lei, Y. Xu, and J.
Wang, Sparse gradient compression for distributed sgd, in
DASFAA. Springer, 2019, pp. 139–155.

[24] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica,
and R. Arora, Communication-efficient distributed sgd with
sketching, arXiv preprint arXiv:1903.04488, 2019.

[25] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A.
Schwing, H. Esmaeilzadeh, and N. S. Kim, A network-
centric hardware/algorithm co-design to accelerate dis-
tributed training of deep neural networks,” in MICRO. IEEE,
2018, pp. 175–188.

[26] Y. Yu, J. Wu, and J. Huang, Exploring fast and communica-
tion efficient algorithms in large-scale distributed networks,
arXiv preprint arXiv:1901.08924, 2019.

[27] H. Wang, S. Sievert, Z. Charles, S. Liu, S. Wright, and D.
Papailiopoulos, Atomo: Communication-efficient learning
via atomic sparsification, arXiv preprint arXiv:1806.04090,
2018.

[28] T. Vogels, S. P. Karimireddy, and M. Jaggi, Powersgd: Prac-
tical lowrank gradient compression for distributed optimiza-
tion, Neur IPS, 2019.

[29] M. Cho, V. Muthusamy, B. Nemanich, and R. Puri, Gradzip:
Gradient compression using alternating matrix factorization
for large-scale deep learning, Neur IPS, 2019.

[30] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, Er-
ror feedback fixes signsgd and other gradient compression
schemes, in International Conference on Machine Learning.
PMLR, 2019, pp. 3252–3261.

[31] C. Xie, S. Zheng, O. O. Koyejo, I. Gupta, M. Li, and H.
Lin, Cser: Communication-efficient sgd with error reset,
Advances in Neural Information Processing Systems, vol.
33, 2020.

[32] N. Mhaisen, A. A. Abdellatif, A. Mohamed, A. Erbad, and
M Guizani, Optimal User-Edge Assignment in Hierarchical
Federated Learning Based on Statistical Properties and Net-
work Topology Constraints, IEEE Transactions on Network
Science and Engineering, vol. 9, no. 1, pp.55-66, 2021.

[33] Y. Arjevani and O. Shamir, Communication complexity of
distributed convex learning and optimization, Advances in
neural information processing systems, vol. 28, 2015.

[34] A. Nedic, A. Olshevsky, and W. Shi, Achieving geometric
convergence for distributed optimization over time-varying
graphs, SIAM Journal on Optimization, vol. 27, no. 4, pp.
2597–2633, 2017.

[35] A. Koloskova, S. Stich, and M. Jaggi, Decentralized stochas-
tic optimization and gossip algorithms with compressed
communication, in Proc. of International Conference on
Machine Learning. PMLR, 2019, pp. 3478–3487.

Yubin Duan et al.: Topolgy Design and Graph Embedding for Decentralized Federated Learning 15

[36] H. Gao, M. T. Thai, and J. Wu, When decentralized opti-
mization meets federated learning, IEEE Network, 2023.

[37] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-
german, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi,
H. B. McMahan et al., Towards federated learning at scale:
System design, arXiv preprint arXiv:1902.01046, 2019.

[38] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, Federated
learning: Challenges, methods, and future directions, IEEE
Signal Processing Magazine, vol. 37, no. 3, pp. 50–60,
2020.

[39] L. Zhu, H. Lin, Y. Lu, Y. Lin, and S. Han, Delayed gradient
averaging: Tolerate the communication latency for feder-
ated learning, Advances in Neural Information Processing
Systems, vol. 34, 2021.

[40] A. B. Ozyurt and W. O. Popoola, Lifi-based d2d communi-
cation in industrial IoT, IEEE Systems Journal, 2022.

[41] B. L. Bars, A. Bellet, M. Tommasi, E. Lavoie, and A.
marie Kermarrec, Refined convergence and topology learn-

ing for decentralized optimization with heterogeneous
data, in Proc. of The Workshop on Federated Learn-
ing: Recent Advances and New Challenges (in Con-
junction with NeurIPS 2022), 2022. [Online]. Available:
https://openreview.net/forum?id=WBm2z8jrgtP.

[42] Y. Hua, K. Miller, A. L. Bertozzi, C. Qian, and B. Wang,
Efficient and reliable overlay networks for decentralized
federated learning, SIAM Journal on Applied Mathematics,
vol. 82, no. 4, pp. 1558–1586, 2022.

[43] S. Li, T. Zhou, X. Tian, and D. Tao, Learning to collaborate
in decentralized learning of personalized models, in Proc.
of 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2022, pp. 9756–9765.

[44] J. Edmonds, Maximum matching and a polyhedron with 0,
1-vertices, Journal of research of the National Bureau of
Standards B, vol. 69, no. 125-130, pp. 55–56, 1965

Yubin Duan is currently a research scientist
at Meta Platform, Inc. He received his Ph.
D. degree in the Department of Computer
and Information Sciences at Temple Univer-
sity in 2022. He obtained his B.S. degree in
Mathematics and Physics from the Univer-
sity of Electronic Science and Technology

of China in 2017. Currently, he is working at Meta Platforms,
Inc. His research focuses on scheduling algorithms for distributed
systems and parallel computing. He has published nearly thirty
papers in high-impact conferences and journals, such as IEEE
ICDCS, ICPP, IWQoS, TMC, JPDC, etc. He has served as a pro-
gram committee member for top international conferences such
as the Web Conference, ACM WSDM, etc., and a reviewer for
premier journals such as IEEE TMC, IoT journal, TNSE, etc.

Xiuqi Li is an Associate Professor of In-
struction at Department of Computer and
Information Sciences, Temple University,
USA. She was a tenured Associate Profes-
sor at Department of Computer Science and
Mathematics in University of North Car-
olina at Pembroke, USA. She worked as a

senior instructor in Florida Atlantic University, USA, where she
earned her Ph.D. in 2006. She is a PI/Co-PI of multiple grants.
She was an NSF session chair and panelist. She served as a
chair/co-chair/program committee member/referee for a number
of conferences and journals. She holds thirtytwo peer-reviewed
journal and conference papers. Her research interests include
federated learning, blockchain, security, cloud computing, and
computer science education. She is a member of ACM and IEEE.

Jie Wu is Laura H. Carnell Professor at
Temple University and the Director of the
Center for Networked Computing (CNC).
He served as Chair of the Department of
Computer and Information Sciences from
the summer of 2009 to the summer of 2016
and Associate Vice Provost for International

Affairs from the fall of 2015 to the summer of 2017. Prior to join-
ing Temple University, he was a program director at the National
Science Foundation and was a distinguished professor at Florida
Atlantic University, where he received his Ph.D. in 1989. His
current research interests include mobile computing and wire-
less networks, routing protocols, network trust and security, dis-
tributed algorithms, applied machine learning, and cloud comput-
ing. Dr. Wu regularly published in scholarly journals, conference
proceedings, and books. He serves on several editorial boards,
including IEEE/ACM Transactions on Networking, IEEE Trans-
actions on Service Computing, and Journal of Computer Science
and Technology. Dr. Wu is/was general chair/co-chair for IEEE
DCOSS’09, IEEE ICDCS’13, ICPP’16, IEEE CNS’16, WiOpt’21,
ICDCN’22, IEEE IPDPS’23, and ACM MobiHoc’23 as well as
program chair/cochair for IEEE MASS’04, IEEE INFOCOM’11,
CCF CNCC’13, and ICCCN’20. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and
chair for the IEEE Technical Committee on Distributed Process-
ing (TCDP). Dr. Wu is a Fellow of the AAAS and a Fellow of
the IEEE. He is the recipient of the 2011 China Computer Federa-
tion (CCF) Overseas Outstanding Achievement Award. He is a
Member of the Academia Europaea (MAE).

