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Abstract—Graph computing in cloud-edge collaborative envi-
ronments faces critical challenges in distributed task process-
ing, particularly in fundamental operations such as subgraph
isomorphism that underpins triangle counting applications. In
typical architectures where data streams are transmitted from
edge collectors to cloud masters, conventional approaches employ
reservoir sampling to distribute edge streams among workers for
triangle estimation. However, the computational accuracy degra-
dation is caused by cross-domain edge distribution strategies.
In this paper, we propose a cloud-edge collaborative framework
for distributed triangle counting. We employ spectral clustering
analysis to reveal latent domain relationships that guide edges
distribution. Our experimental evaluation uses streaming data
with global relative error measurement across multiple datasets,
demonstrating superior performance over existing algorithms.

Index Terms—cloud-edge collaborative, graph computation,
triangle counting, graph stream

I. INTRODUCTION

Triangle counting is a fundamental algorithmic task in
graph computing frameworks. It aims to identify and quantify
triangular subgraphs, which is critical for analyzing network
cohesion and clustering properties. The research of triangle
counting within networks is deeply rooted in the broader land-
scape of network science, encompassing diverse domains such
as social networks, communication, the Internet of Things, and
information sciences. Despite the structural diversity among
networks in these domains, triangles appear as a universal
topological structure, offering rich senses into network dynam-
ics. The presence of triangles in real-life networks has spurred
the development of metrics like the clustering coefficient
[1] and the transitivity ratio [2] to characterize and analyze
networks effectively. These metrics provide measures of the
level of clustering or cohesion within networks, stressing the
importance of triangles in understanding network structure
and function. In social networks specifically, the existence
of triangles has been studied and explained through various
social science theories such as homophily and transitivity.
These theories explain the propensity for individuals to form
connections with others who share similar attributes or rela-
tionships, thus giving rise to triangular relationships within
social networks. The computational task of counting triangles
in social networks is essential for numerous applications,
including the computation of transitivity ratios and clustering
coefficients. These metrics serve as key indicators for network

* Chao Song is the corresponding author.

Edge side I Cloud side

Mobile device Collector

Domain clustering

Fig. 1. Overview of cloud-edge collaborative framework for distributed
triangle counting.

analysis and evolution model [3], providing valuable insights
into network cohesion and dynamics.

With the popularization of the Internet of Things and smart
terminals, a large amount of graph data has emerged in
real-world scenarios, and there is an urgent need to build
an efficient processing architecture. Based on the collabora-
tive characteristics of edge computing and cloud computing,
researchers uses edge collectors to achieve distributed data
collection and preprocessing, relies on the powerful computing
power of cloud servers to complete complex computing tasks.
In the cloud-edge collaborative scenario, multiple mobile de-
vices are deployed across distinct geographical domains. Each
collector gathers information on the graph edges' connecting
devices within each domain. Notably, the source nodes of these
edges are identical, effectively resulting in numerous wedges.

In this paper, we propose a Cloud-edge collaborative Frame-
work for Distributed triangle Counting (CFDC) as shown
in Fig. 1. In the example of a mobile social network, the
multiple mobile devices are distributed in various geographic
domains, and each collector collects the edge streams from the
devices in each domain. In the mobile social network, each
node represents a mobile device, and each edge represents
a communication link from a source device to a destination
device. The edges from the source devices at a domain are
transmitted to the master by its connected collector. The master
built a domain-to-domain adjacency matrix for clustering.
According to the results, the master assigns the edges from
the different domains to different workers, thereby enabling the

IThe term “edge” collectively refers to graph edges.



distributed counting of triangles in this mobile social network.

Therefore, the following three challenges are faced: (1)
Previous research adopted a Master-Worker-Aggregator archi-
tecture, in which the master collected a large number of edges
and sent them to workers. (2) How to distribute edges to
maximize triangles formed within each worker. (3) Given the
dynamic edge streams, how can their correlations be detected
and the distribution strategy be updated in real-time?

To address these challenges, our contributions are as fol-
lows: (1) We transform the edge distribution task into assign-
ing domain IDs, which reduces the hash space and reduces
the master’s distribution workload. (2) We perform domain
clustering to ensure that more edges forming triangles are
distributed to the same worker. (3) At each graph snapshot, we
build an adjacency matrix to adjust our distribution strategy
to the dynamic of the streaming edge.

II. RELATED WORK

Streaming triangle counting. Much effort has been given
to developing centralized streaming algorithms for triangle
counting in a large graph stream. Bar-Yossef et al. [4] first
designed streaming algorithms to count triangles in a stream
using the reduction paradigm alone. Subsequently, the algo-
rithm’s space bounds were improved by Tsourakakis et al.
[5], who presented a graph sparsification method by sampling
each edge with equal probability for estimating the count of
global triangles in the sampled graph. Additionally, Ahmed et
al. [6, 7], proposed a method of sampling edges with different
probabilities, which is a more general edge sampling frame-
work. Recently, Shin et al. [8] proposed ThinkD, an algorithm
that accurately estimates the counts of global triangles in a
fully dynamic graph stream with additions and deletions of
edges. Gou et al. [9] proposed SWTC, which can solve unbi-
ased sampling and cardinality estimation issues with bounded
memory usage. Liu et al. [10] use an asynchronous callback
function for in-storage graphs with transparent acceleration
to improve cost and power efficiency in triangle counting.
Kang et al. [11] based on the newly proposed Edge-RLDP
privacy notion, is a privacy-preserved federated estimator for
triangle count with three perturbation algorithms that enhances
estimation accuracy and achieves (e, §)-Edge-RLDP.

Distributed algorithms of triangle counting. Many dis-
tributed algorithms were developed to relieve the comput-
ing pressure of a single machine. These include distributed-
memory [12] and MapReduce [13]. However, these distributed
algorithms do not apply to the real-time counting of trian-
gles in large-scale dynamic graphs since they require all the
edges to be input at once. Recently, numerous studies have
been conducted on distributed streaming algorithms for global
triangle counting. Shin et al. proposed Tri-Fly [14], which
parallels TRIEST-IMPR [15] directly by distributing edges to
all workers. They later developed CoCoS [16] based on Tri-
Fly, improved the accuracy significantly. Finally, Yang et al.
[17] proposed a distributed streaming framework based on the
Master-Worker-Aggregator architecture.

I hash based method clustering based method

le5
5 les
2.0
v
= £138
g1 g
E £1.6
1.4
0

1 2 3 4 5
worker

hash clustering

(a) Triangle counts (b) Distribution

Fig. 2. Distribution of the triangle counts in different workers under the
methods of hash and clustering

TABLE I
FREQUENTLY-USED SYMBOLS

Definition
graph stream of edges
edge arrives at time ¢

Symbol
I=(eM,e@ ..)
e(t)

G® the graph at time ¢

n the numbers of input edges

k the size of the reservoir

A the triangle counts in the graph

|[W| the number of workers

T the estimate of the global triangles count

cluster (e) = j cluster function for mapping edge e to W;
c the number of the clusters

III. PRELIMINARY AND PROBLEM
A. Motivation

Streaming triangle counting is an approximate rather than an
exact result. Reservoir sampling includes a sampling probabil-
ity. This indicates that the more triangles sampled, the more
accurate the estimated value will be when recovered using
the sampling probability. Traditional methods use hashes to
distribute triangles, resulting in an uneven distribution. Fig.
2 shows the distribution of triangles through hashing and the
clustering of triangles among each of the five workers in the
Email-Enron dataset. Fig. 2(a) illustrates the distribution of
triangles to various workers using different strategies. Fig. 2(b)
uses a violin plot to demonstrate this phenomenon, indicating
that the clustering method leads to a more concentrated
distribution of triangles. Our objective was to achieve an
even distribution of triangles among workers to improve the
accuracy of reservoir sampling.

B. Problem Definition

We address the challenge of estimating the counts of global
triangles in a graph stream, denoting a sequence of edges,
and employing multiple machines with constrained storage
capacities. We consider the following conditions: C1 Lack of
prior knowledge: There is a lack of information regarding the
input graph stream, including details such as the number of
edges, degree distribution, etc. These factors cannot be known
in advance. C2 Limited storage capacity: Each of the ||
workers can store a maximum of k(> 2) edges. However,
the number of edges in the input graph stream may exceed



k and even |W| x k. C3 One-pass processing: Edges are
processed sequentially in the order of arrival. Past edges cannot
be accessed unless stored in the limited storage described.

Under these conditions, we define the problem of distributed
estimation of global triangle counts in a graph stream.

Problem 1: Distributed estimation of triangle counts in a
graph stream. Given: A graph stream (e, e(®)...), and
n distributed stores, which can store up to k(> 2) edges.
Maintain: The estimation errors of global triangle count |A®)|
for each time ¢ € 1,2,---. To Minimize: The biases and
variances of the estimates.

C. Reservoir Sampling Algorithm

When addressing the problem of triangle counting in large-
scale graph data, traditional methods often encounter memory
bottlenecks. In contrast, the reservoir sampling algorithm, with
its sublinear space complexity, stores only a subset of edges in
the streaming graph, thereby reducing memory consumption
while ensuring sampling uniformity. This characteristic allows
it to efficiently maintain a dynamically updated edge set,
providing a reliable data foundation for subsequent triangle
counting. The reservoir sampling algorithm is sublinear in
terms of space complexity, reducing computational memory
usage while ensuring the uniformity and accuracy of the
sampled edges. In reservoir sampling, for each input edge
n, the probability of including it in the edge sample is k/n.
When the (n + 1)** edge arrives, the probability of replacing
it in the edge sample is P, = k/(n + 1). At the same
time, the probability of the previous edge n will be replaced
is P. = 1/k. Therefore, the probability of the (n + 1)
edge replacing the i'" edge is P;P., and the probability of
the i*" edge not being replaced by the (n + 1)** edge is
P=1-PP.=1—(k/(n+1)(1/k))=1-1/(n+1).

The execution strategy can be divided into three steps.
Determine whether the reservoir is full and whether to sample.
The worker deletes the sampling set when the reservoir is full.
Update the counter after deleting edges from the sampling set,
as the counter represents the exact counts of triangles that
can be formed by the edges in the sampling set. Given the
constraints of large-scale graph data processing, where main-
taining a full adjacency structure is often impractical, reservoir
sampling provides a memory-efficient alternative. By ensuring
uniform sampling, it enables an unbiased representation of
the evolving edge set, thereby preserving essential structural
properties for downstream triangle counting tasks. Moreover,
the stepwise execution strategy allows for dynamic adaptation
to streaming graph updates, which is critical for accurately
estimating triangle counts over time. This makes reservoir
sampling a suitable foundation for the proposed solution, as
it balances computational efficiency with statistical reliability
in large-scale streaming graph environments.

IV. METHODOLOGY

For streaming triangle counting in cloud-edge scenario, we
propose a Cloud-edge collaborative Framework for Distributed
triangle Counting (CFDC) shown in Fig. 1. The collector

collects edges from various domains, and at the same time
tags the edges with a domain, the master clusters through
the received edges, and according to the clustering results,
assigns them to different workers, thereby enabling distributed
counting of triangles. The aggregator collects and consolidates
the estimates received from the workers. An appropriate ag-
gregation technique can determine the estimated values of the
global triangle counts within the graph stream.

A. Domain Clustering

An edge represents a connection between two nodes, namely
the source and target. While the source pertains to a specific
domain, the target may belong to another domain, influenced
by factors like geographic correlation. For instance, in a mobile
social network, the multiple mobile devices are distributed in
various geographic domains, and each collector collects the
devices in each domain. In the mobile social network, each
node represents a mobile device, and each edge represents
a communication link from a source device to a destination
device. The edges from the source devices at a domain are
transmitted to the master by its connected collector. The master
built a domain-to-domain adjacency matrix for clustering. The
collector between domains then creates a relationship, which
is strong or weak. We use the notation w; ; to denote the
flow between domains A and B. An adjacency matrix W is
constructed where greater flow corresponds to higher values.
Next, we describe how to cluster domains using an adjacency
matrix.

Clustering problem: From an intuitive perspective, cluster-
ing is grouping similar data points, ensuring high intra-group
similarity while minimizing inter-group similarity. The most
straightforward approach is to find a partitioning method that
minimizes the total weight of edges between different groups.
We use the methodological framework of the minimum cut
problem to elucidate the relationship between spectral clus-
tering algorithms and subgraph partitioning algorithms. Given
a weight graph with weight adjacency W, the most intuitive
strategy for constructing graph cuts is to solve a minimum cut
problem. Denote the sum of the connection weights between
two sets as W(A,B) = > ,c4 jepwi,j- We marked A as
the complementary set of A. Given a partition of set A into
c subsets, the minimum cut problem can be described as:
Pick a subgraph division cut(Aj,---,A.) and ask for the
function that minimizes this division: cut(A,---,A.) =
130 W(A;, A;). We use a factor of 1 to ensure that each
edge is computed only once. In practice, the loss function
generally does not give a satisfactory partition, as the solution
to this minimum cut tends to divide the entire dataset into a
clump and a very isolated point, which is not the clustering
result we want. An improvement is to constrain the partition
so that Ay,--- , A, are all relatively “large”. Commonly used
loss functions for this purpose are RatioCut, which is defined
as follows. RatioCut(Ay,---,A.) = >i_, %. Ra-
tioCut for any number of clusters c. We can write it as c
clustering numbers of linear programming relaxation. Given a



partition Ay, - - -, A, of the set A, we define c indicator vectors
hj=hig, - hng)".

b 1/\/|A ifv,e A
Wi otherwise.

Therefore, concerning hl.Lh., we have:

h!.Lh. = Zw” (hie — hj,c)2

= > wi/lAd+ D wij/lAd
i€AjEA JjEAjEA

= 2% cut(A., A.) /| Al

According to hiLh; = (H'LH);;, the original equation

min RatioCut(A4y,- -, A.). Substituting the above
Ay, Ac(c€A)

equation, we obtain:

0]

min Trace(H'LH),s.t.H'H = I

177 Ac

2

Here, Trace(-) denotes the trace of a matrix. We can conclude
that the solution to linear programming relaxation at this point
is H = (u1,---,uc), which represents the first ¢ smallest
characteristic root of the Laplacian matrix L.

From the perspective of graph partitioning methods, the
objective converges on the eigen decomposition of the sym-
metric matrix Lgy,,. We begin by constructing the adjacency
matrix W, which encodes the pairwise similarity among the
domains. The degree matrix D, in turn, quantifies the structural
relationships between a given domain and the others, capturing
the number of domains to which it is connected. The domain
graph Laplacian is then formulated as L. = D—W Notably, the
diagonal entries of W encapsulate self-similarity information,
where similarity is defined in terms of edges from one domain
to another. In contrast, the degree matrix encapsulates global
relational information. Since this connectivity information is
intrinsic to the domain itself, and given that the degree matrix
is diagonal, incorporating it into the diagonal of W to construct
the graph Laplacian.

B. Algorithm: CFDC
(t)

The algorithm adopts a clustering function cluster(eqy ) :
E — M to map edges to workers directly with a fixed
probability P = 1/m(m > +/|W|). Each worker executes
the algorithm TRIEST-IMPR and sends the total counts of
global triangles observed to the aggregator, which counts the
final estimations. We introduce the CFDC algorithm in detail.

Collector (lines 4-5): The collector collects the edges of
each domain and tags each edge with the domain ID.

Master (lines 6-9): As shown in Algorithm 1, the master
unicasts edges and clustering label directly to all workers
without any judgment. It ensures that every edge participates
in the counter-update algorithm of each worker.

Worker (lines 10-15): Each worker maintains a global tri-
angle counter Ti(t) indicating the contributions of every triangle

A. Thus, there are two edges eSf)U and efi)w stored in Sl-(t) when

egf)w is observed in II. Here, we abbreviate the triangle A. The

Algorithm 1: CFDC

1 Input: IT = (e™M, e ...)

2 Output: estimate of the global triangles count 7(*)

3 for each day do

4 Collecter:

5 label the edge with domain ID, and send edges to

the master

Master:

while ¢ € TI do
distribute e(*) to workers by cluster lable
Get the next day’s clustering labels by eq. 2

e e N

10 Worker:

11 for e(‘t) from master to range(e?)) do

12 7/ + UpdateCounter(e®)

13 if ReservoirSample(e")) then

14 L UpdateReservoir(e®) | p)

15 send T,L-j and the edge stream to the Aggregator

16 Aggregator:
17 T+ 0;

18 | caleulate 7 by 7 = 27

o . N ¢ k—1)(k—2
contribution of a triangle A is 7;(x, = min(1, W)
Once the worker W; receives the edge eEf,l, from the master,
it unconditionally calls on UpdateCounter (eq(f,)v) directly to

) 6
1ncrease T() (t)( Y w € {u,v} U N{iﬁ,) by |N{? N

|~77it) (line 8). Then, cluster(eq(f?v) determines whether to
sample based on the clustering label, and subsequently sends
the counting result to the aggregator.

Aggregator (lines 16-18): The aggregator aggregates the
estimates of workers and calculates the probability that a
triangle in G(*) can be counted to find the final estimations 7(*)
and 7 (u). We use a cluster lable cluster(egf,)v) E—> M
to map edges to workers, where M_cluster = {1,2,--- |k},
Therefore, the probablhty of mapping eSL )1, to W, is P e, =

P[cluster(eg)v) i] = () and es to
(t)

denote e, thus, the probablllty of mapping the two edges
e1 and ep to the same worker (i.e., W; )is P, ;- P, ; = %
Therefore, the probability that a triangle in th) can be counted
in a single worker, and the aggregator calculates the global

triangle counts 7(*) as 7() = Z‘Wl 1)

For example, a triangle A(a,b,c) consists of three edges:
(a,b), (a,c), and (b,c). When using a hash-based edge dis-
tribution approach, these three edges can be sent to different
workers with some probability. In contrast, under the clustering
method, the edges forming a triangle are sent to the same
domain, such that (a,b) and (a,c) belong to one domain,
while (a,c) and (b, c) belong to another. The entire triangle
A(a, b, c) can be counted within the same worker by merging
these two domains into a single cluster.

+. We use e; to denote ey,
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V. EXPERIMENT

This section presents experiments to analyze accuracy and
clustering effects. All experiments were conducted on a ma-
chine with 24 CPUs x Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz and 128GB RAM.

A. Datasets

In our evaluation, we used real-world graph datasets to
assess the effectiveness of our algorithms. The datasets are
publicly available and sourced from the SNAP4? (Stanford
Large Dataset Network Collection). These datasets represent
a diverse range of network structures and characteristics. To
ensure consistency in our analysis, we exclude self-loops
and consider the edges as undirected. This simplification
allows us to focus on the fundamental properties of graph
structures and evaluate the performance of our algorithms in a
standardized manner. By using these public datasets, we ensure
the reliability and reproducibility of our findings. Since there is

Zhttps://snap.stanford.edu/data/index.html

and the aggregator averages the counts. CoCoS [16]: The
master distribution strategy optimizes the “Lucky” approach to
reduce communication overhead, while workers reduce their
sampling range and facilitate redundancy between workers.

C. Evaluation Metrics

We consider the following metrics to evaluate the accuracy
and distributed performance. Global Relative Error (GRE)
[14]: The GRE metric quantifies the accuracy of the estimated
global triangle counts compared to the ground truth values.
It provides a measure of how closely the estimated value, de-
noted 7(*), aligns with the true value, denoted 7(*). The Global

Relative Error is defined as follows: GRE = M
Elapsed Time: When multiple CPUs process tasks simulta-
neously, the CPU time will be greater than the elapsed time.
In this paper, elapsed time refers to the total running time of

the entire distributed architecture.

D. Performance of CFDC

1) Clustering Effect: As shown in Fig. 3 axes are the two-
dimensional representations of the original high-dimensional



data, created to preserve the structure and relationships be-
tween data points in a simplified form. Clustering performed
well across multiple domains on four different datasets. This
suggests that the clustering algorithm is effective in distin-
guishing and categorizing data across various domains. The
phenomenon implies that the clustering algorithm possesses a
certain level of generalization capability, allowing it to adapt
to different types and structures of data.

The results of this experiment indicate that the clustering
algorithm performs well across diverse domains of data. The
cross-domain clustering efficacy reflect some universal simi-
larities or structures among the data, enabling the algorithm
to capture the underlying patterns and relationships.

2) Accuracy: Fig. 4 presents a comparative analysis of
the accuracy of triangle counting across various datasets and
over time. The figure is composed of multiple subfigures,
each corresponding to a different dataset, namely Email-Enron,
DBLP, Gowalla, and YouTube. The subfigures show the Global
Relative Error (GRE) of triangle counts daily, indicating how
the accuracy of the triangle counting evolves with each passing
day. The CFDC algorithm provides a lower global relative
error across various datasets, demonstrating its superiority in
the task of distributed triangle counting. These results support
the effectiveness of the algorithm proposed in the paper and
provide a basis for its application in similar scenarios in the
future.

3) Elapsed Time: The results in Fig. 5 show that the CFDC
method outperforms both CoCoS and Tri-Fly in terms of
elapsed time. This indicates that CFDC computes triangle
counts in graph streams more efficiently. Moreover, the lower
elapsed times exhibited by CFDC suggest that it is better
suited for processing large-scale graph data, which is critical
for applications requiring real-time analytics.

VI. CONLUSION

We propose a cloud-edge collaborative framework in dis-
tributed triangle counting in graph streams. We employ spec-
tral clustering analysis to reveal latent domain relationships
that guide edges distribution. The approach’s superiority over
existing algorithms in terms of counting accuracy and elapsed
time has been substantiated through experiments on various
datasets.
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