
A Cloud-Edge Collaborative Framework for

Distributed Triangle Counting on Graph Stream

Ruilin Hu†, Chao Song†*, Jie Wu‡ and Li Lu†

†School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
‡Department of Computer and Information Sciences, Temple University, US

Email: huruilin@std.uestc.edu.cn, {chaosong, luli2009}@uestc.edu.cn, jiewu@temple.edu

Abstract—Graph computing in cloud-edge collaborative envi-
ronments faces critical challenges in distributed task process-
ing, particularly in fundamental operations such as subgraph
isomorphism that underpins triangle counting applications. In
typical architectures where data streams are transmitted from
edge collectors to cloud masters, conventional approaches employ
reservoir sampling to distribute edge streams among workers for
triangle estimation. However, the computational accuracy degra-
dation is caused by cross-domain edge distribution strategies.
In this paper, we propose a cloud-edge collaborative framework
for distributed triangle counting. We employ spectral clustering
analysis to reveal latent domain relationships that guide edges
distribution. Our experimental evaluation uses streaming data
with global relative error measurement across multiple datasets,
demonstrating superior performance over existing algorithms.

Index Terms—cloud-edge collaborative, graph computation,
triangle counting, graph stream

I. INTRODUCTION

Triangle counting is a fundamental algorithmic task in

graph computing frameworks. It aims to identify and quantify

triangular subgraphs, which is critical for analyzing network

cohesion and clustering properties. The research of triangle

counting within networks is deeply rooted in the broader land-

scape of network science, encompassing diverse domains such

as social networks, communication, the Internet of Things, and

information sciences. Despite the structural diversity among

networks in these domains, triangles appear as a universal

topological structure, offering rich senses into network dynam-

ics. The presence of triangles in real-life networks has spurred

the development of metrics like the clustering coefficient

[1] and the transitivity ratio [2] to characterize and analyze

networks effectively. These metrics provide measures of the

level of clustering or cohesion within networks, stressing the

importance of triangles in understanding network structure

and function. In social networks specifically, the existence

of triangles has been studied and explained through various

social science theories such as homophily and transitivity.

These theories explain the propensity for individuals to form

connections with others who share similar attributes or rela-

tionships, thus giving rise to triangular relationships within

social networks. The computational task of counting triangles

in social networks is essential for numerous applications,

including the computation of transitivity ratios and clustering

coefficients. These metrics serve as key indicators for network

* Chao Song is the corresponding author.

0

1

2

3

4

Mobile device Collector

0

1

2

AggregatorMaster

WorkerDomain clustering

1
3

2

0

4

edges

edges

edges

edg
es

ed
ge
s

ed
ge
s

edges

edges

counts

counts

co
un
ts

Edge side Cloud side

Fig. 1. Overview of cloud-edge collaborative framework for distributed
triangle counting.

analysis and evolution model [3], providing valuable insights

into network cohesion and dynamics.

With the popularization of the Internet of Things and smart

terminals, a large amount of graph data has emerged in

real-world scenarios, and there is an urgent need to build

an efficient processing architecture. Based on the collabora-

tive characteristics of edge computing and cloud computing,

researchers uses edge collectors to achieve distributed data

collection and preprocessing, relies on the powerful computing

power of cloud servers to complete complex computing tasks.

In the cloud-edge collaborative scenario, multiple mobile de-

vices are deployed across distinct geographical domains. Each

collector gathers information on the graph edges1 connecting

devices within each domain. Notably, the source nodes of these

edges are identical, effectively resulting in numerous wedges.

In this paper, we propose a Cloud-edge collaborative Frame-

work for Distributed triangle Counting (CFDC) as shown

in Fig. 1. In the example of a mobile social network, the

multiple mobile devices are distributed in various geographic

domains, and each collector collects the edge streams from the

devices in each domain. In the mobile social network, each

node represents a mobile device, and each edge represents

a communication link from a source device to a destination

device. The edges from the source devices at a domain are

transmitted to the master by its connected collector. The master

built a domain-to-domain adjacency matrix for clustering.

According to the results, the master assigns the edges from

the different domains to different workers, thereby enabling the

1The term “edge” collectively refers to graph edges.

distributed counting of triangles in this mobile social network.

Therefore, the following three challenges are faced: (1)

Previous research adopted a Master-Worker-Aggregator archi-

tecture, in which the master collected a large number of edges

and sent them to workers. (2) How to distribute edges to

maximize triangles formed within each worker. (3) Given the

dynamic edge streams, how can their correlations be detected

and the distribution strategy be updated in real-time?

To address these challenges, our contributions are as fol-

lows: (1) We transform the edge distribution task into assign-

ing domain IDs, which reduces the hash space and reduces

the master’s distribution workload. (2) We perform domain

clustering to ensure that more edges forming triangles are

distributed to the same worker. (3) At each graph snapshot, we

build an adjacency matrix to adjust our distribution strategy

to the dynamic of the streaming edge.

II. RELATED WORK

Streaming triangle counting. Much effort has been given

to developing centralized streaming algorithms for triangle

counting in a large graph stream. Bar-Yossef et al. [4] first

designed streaming algorithms to count triangles in a stream

using the reduction paradigm alone. Subsequently, the algo-

rithm’s space bounds were improved by Tsourakakis et al.

[5], who presented a graph sparsification method by sampling

each edge with equal probability for estimating the count of

global triangles in the sampled graph. Additionally, Ahmed et

al. [6, 7], proposed a method of sampling edges with different

probabilities, which is a more general edge sampling frame-

work. Recently, Shin et al. [8] proposed ThinkD, an algorithm

that accurately estimates the counts of global triangles in a

fully dynamic graph stream with additions and deletions of

edges. Gou et al. [9] proposed SWTC, which can solve unbi-

ased sampling and cardinality estimation issues with bounded

memory usage. Liu et al. [10] use an asynchronous callback

function for in-storage graphs with transparent acceleration

to improve cost and power efficiency in triangle counting.

Kang et al. [11] based on the newly proposed Edge-RLDP

privacy notion, is a privacy-preserved federated estimator for

triangle count with three perturbation algorithms that enhances

estimation accuracy and achieves (ϵ, δ)-Edge-RLDP.

Distributed algorithms of triangle counting. Many dis-

tributed algorithms were developed to relieve the comput-

ing pressure of a single machine. These include distributed-

memory [12] and MapReduce [13]. However, these distributed

algorithms do not apply to the real-time counting of trian-

gles in large-scale dynamic graphs since they require all the

edges to be input at once. Recently, numerous studies have

been conducted on distributed streaming algorithms for global

triangle counting. Shin et al. proposed Tri-Fly [14], which

parallels TRIÈST-IMPR [15] directly by distributing edges to

all workers. They later developed CoCoS [16] based on Tri-

Fly, improved the accuracy significantly. Finally, Yang et al.

[17] proposed a distributed streaming framework based on the

Master-Worker-Aggregator architecture.

hash based method clustering based method

1 2 3 4 5
worker

0

1

2

tri
an

gl
es

1e5

(a) Triangle counts

hash clustering
1.4

1.6

1.8

2.0

tri
an

gl
es

1e5

(b) Distribution

Fig. 2. Distribution of the triangle counts in different workers under the
methods of hash and clustering

TABLE I
FREQUENTLY-USED SYMBOLS

Symbol Definition

Π = (e(1), e(2), · · ·) graph stream of edges

e(t) edge arrives at time t

G(t) the graph at time t
n the numbers of input edges
k the size of the reservoir

∆(t) the triangle counts in the graph
|W | the number of workers
τ̂ the estimate of the global triangles count
cluster (e) = j cluster function for mapping edge e to Wi

c the number of the clusters

III. PRELIMINARY AND PROBLEM

A. Motivation

Streaming triangle counting is an approximate rather than an

exact result. Reservoir sampling includes a sampling probabil-

ity. This indicates that the more triangles sampled, the more

accurate the estimated value will be when recovered using

the sampling probability. Traditional methods use hashes to

distribute triangles, resulting in an uneven distribution. Fig.

2 shows the distribution of triangles through hashing and the

clustering of triangles among each of the five workers in the

Email-Enron dataset. Fig. 2(a) illustrates the distribution of

triangles to various workers using different strategies. Fig. 2(b)

uses a violin plot to demonstrate this phenomenon, indicating

that the clustering method leads to a more concentrated

distribution of triangles. Our objective was to achieve an

even distribution of triangles among workers to improve the

accuracy of reservoir sampling.

B. Problem Definition

We address the challenge of estimating the counts of global

triangles in a graph stream, denoting a sequence of edges,

and employing multiple machines with constrained storage

capacities. We consider the following conditions: C1 Lack of

prior knowledge: There is a lack of information regarding the

input graph stream, including details such as the number of

edges, degree distribution, etc. These factors cannot be known

in advance. C2 Limited storage capacity: Each of the |W |
workers can store a maximum of k(≥ 2) edges. However,

the number of edges in the input graph stream may exceed

k and even |W | × k. C3 One-pass processing: Edges are

processed sequentially in the order of arrival. Past edges cannot

be accessed unless stored in the limited storage described.

Under these conditions, we define the problem of distributed

estimation of global triangle counts in a graph stream.

Problem 1: Distributed estimation of triangle counts in a

graph stream. Given: A graph stream (e(1), e(2), . . .), and

n distributed stores, which can store up to k(≥ 2) edges.

Maintain: The estimation errors of global triangle count |∆(t)|
for each time t ∈ 1, 2, · · ·. To Minimize: The biases and

variances of the estimates.

C. Reservoir Sampling Algorithm

When addressing the problem of triangle counting in large-

scale graph data, traditional methods often encounter memory

bottlenecks. In contrast, the reservoir sampling algorithm, with

its sublinear space complexity, stores only a subset of edges in

the streaming graph, thereby reducing memory consumption

while ensuring sampling uniformity. This characteristic allows

it to efficiently maintain a dynamically updated edge set,

providing a reliable data foundation for subsequent triangle

counting. The reservoir sampling algorithm is sublinear in

terms of space complexity, reducing computational memory

usage while ensuring the uniformity and accuracy of the

sampled edges. In reservoir sampling, for each input edge

n, the probability of including it in the edge sample is k/n.

When the (n+ 1)th edge arrives, the probability of replacing

it in the edge sample is Pi = k/(n + 1). At the same

time, the probability of the previous edge n will be replaced

is Pc = 1/k. Therefore, the probability of the (n + 1)th

edge replacing the ith edge is PiPc, and the probability of

the ith edge not being replaced by the (n + 1)th edge is

P = 1− PiPc = 1− (k/(n+ 1)(1/k)) = 1− 1/(n+ 1).
The execution strategy can be divided into three steps.

Determine whether the reservoir is full and whether to sample.

The worker deletes the sampling set when the reservoir is full.

Update the counter after deleting edges from the sampling set,

as the counter represents the exact counts of triangles that

can be formed by the edges in the sampling set. Given the

constraints of large-scale graph data processing, where main-

taining a full adjacency structure is often impractical, reservoir

sampling provides a memory-efficient alternative. By ensuring

uniform sampling, it enables an unbiased representation of

the evolving edge set, thereby preserving essential structural

properties for downstream triangle counting tasks. Moreover,

the stepwise execution strategy allows for dynamic adaptation

to streaming graph updates, which is critical for accurately

estimating triangle counts over time. This makes reservoir

sampling a suitable foundation for the proposed solution, as

it balances computational efficiency with statistical reliability

in large-scale streaming graph environments.

IV. METHODOLOGY

For streaming triangle counting in cloud-edge scenario, we

propose a Cloud-edge collaborative Framework for Distributed

triangle Counting (CFDC) shown in Fig. 1. The collector

collects edges from various domains, and at the same time

tags the edges with a domain, the master clusters through

the received edges, and according to the clustering results,

assigns them to different workers, thereby enabling distributed

counting of triangles. The aggregator collects and consolidates

the estimates received from the workers. An appropriate ag-

gregation technique can determine the estimated values of the

global triangle counts within the graph stream.

A. Domain Clustering

An edge represents a connection between two nodes, namely

the source and target. While the source pertains to a specific

domain, the target may belong to another domain, influenced

by factors like geographic correlation. For instance, in a mobile

social network, the multiple mobile devices are distributed in

various geographic domains, and each collector collects the

devices in each domain. In the mobile social network, each

node represents a mobile device, and each edge represents

a communication link from a source device to a destination

device. The edges from the source devices at a domain are

transmitted to the master by its connected collector. The master

built a domain-to-domain adjacency matrix for clustering. The

collector between domains then creates a relationship, which

is strong or weak. We use the notation wi,j to denote the

flow between domains A and B. An adjacency matrix W is

constructed where greater flow corresponds to higher values.

Next, we describe how to cluster domains using an adjacency

matrix.

Clustering problem: From an intuitive perspective, cluster-

ing is grouping similar data points, ensuring high intra-group

similarity while minimizing inter-group similarity. The most

straightforward approach is to find a partitioning method that

minimizes the total weight of edges between different groups.

We use the methodological framework of the minimum cut

problem to elucidate the relationship between spectral clus-

tering algorithms and subgraph partitioning algorithms. Given

a weight graph with weight adjacency W , the most intuitive

strategy for constructing graph cuts is to solve a minimum cut

problem. Denote the sum of the connection weights between

two sets as W (A,B) =
∑

i∈A,j∈B wi,j . We marked Ā as

the complementary set of A. Given a partition of set A into

c subsets, the minimum cut problem can be described as:

Pick a subgraph division cut(A1, · · · , Ac) and ask for the

function that minimizes this division: cut(A1, · · · , Ac) =
1
2

∑c

i=1 W (Ai, Āi). We use a factor of 1
2 to ensure that each

edge is computed only once. In practice, the loss function

generally does not give a satisfactory partition, as the solution

to this minimum cut tends to divide the entire dataset into a

clump and a very isolated point, which is not the clustering

result we want. An improvement is to constrain the partition

so that A1, · · · , Ac are all relatively “large”. Commonly used

loss functions for this purpose are RatioCut, which is defined

as follows. RatioCut(A1, · · · , Ac) =
∑c

i=1
cut(Ai,Āi)

|Ai|
. Ra-

tioCut for any number of clusters c. We can write it as c
clustering numbers of linear programming relaxation. Given a

partition A1, · · · , Ac of the set A, we define c indicator vectors

hj = h1,j , · · · , hn,j)
T .

hi,j =

{

1/
√

|Aj | if vi ∈ A

0 otherwise.

Therefore, concerning h′
cLhc, we have:

h′
cLhc =

∑

i,j

wi,j(hi,c − hj,c)
2

=
∑

i∈A,j∈Ā

wi,j/|Ac|+
∑

j∈A,j∈Ā

wi,j/|Ac|

= 2 ∗ cut(Ac, Āc)/|Ac|

(1)

According to h′
iLhi = (H ′LH)ii, the original equation

min
A1,··· ,Ac(c∈A)

RatioCut(A1, · · · , Ac). Substituting the above

equation, we obtain:

min
A1,··· ,Ac

Trace(H ′LH), s.t.H ′H = I (2)

Here, Trace(·) denotes the trace of a matrix. We can conclude

that the solution to linear programming relaxation at this point

is H = (u1, · · · , uc), which represents the first c smallest

characteristic root of the Laplacian matrix L.

From the perspective of graph partitioning methods, the

objective converges on the eigen decomposition of the sym-

metric matrix Lsym. We begin by constructing the adjacency

matrix W , which encodes the pairwise similarity among the

domains. The degree matrix D, in turn, quantifies the structural

relationships between a given domain and the others, capturing

the number of domains to which it is connected. The domain

graph Laplacian is then formulated as L = D−W Notably, the

diagonal entries of W encapsulate self-similarity information,

where similarity is defined in terms of edges from one domain

to another. In contrast, the degree matrix encapsulates global

relational information. Since this connectivity information is

intrinsic to the domain itself, and given that the degree matrix

is diagonal, incorporating it into the diagonal of W to construct

the graph Laplacian.

B. Algorithm: CFDC

The algorithm adopts a clustering function cluster(e
(t)
u,v) :

E → M to map edges to workers directly with a fixed

probability P = 1/m(m ≥
√

|W |). Each worker executes

the algorithm TRIÈST-IMPR and sends the total counts of

global triangles observed to the aggregator, which counts the

final estimations. We introduce the CFDC algorithm in detail.

Collector (lines 4-5): The collector collects the edges of

each domain and tags each edge with the domain ID.

Master (lines 6-9): As shown in Algorithm 1, the master

unicasts edges and clustering label directly to all workers

without any judgment. It ensures that every edge participates

in the counter-update algorithm of each worker.

Worker (lines 10-15): Each worker maintains a global tri-

angle counter τ
(t)
i indicating the contributions of every triangle

∆. Thus, there are two edges e
(t)
u,v and e

(t)
u,w stored in S

(t)
i when

e
(t)
v,w is observed in Π. Here, we abbreviate the triangle ∆. The

Algorithm 1: CFDC

1 Input: Π = (e(1), e(2), · · ·)
2 Output: estimate of the global triangles count τ̂ (t)

3 for each day do

4 Collecter:

5 label the edge with domain ID, and send edges to

the master

6 Master:

7 while e(t) ∈ Π do

8 distribute e(t) to workers by cluster lable

9 Get the next day’s clustering labels by eq. 2

10 Worker:

11 for e(t) from master to range(e(t)) do

12 τ ji ← UpdateCounter(e(t))
13 if ReservoirSample(e(t)) then

14 UpdateReservoir(e(t), p)

15 send τ ji and the edge stream to the Aggregator

16 Aggregator:

17 τ̂ ← 0;

18 calculate τ̂ by τ̂ =
∑|W |

i τ̂i

contribution of a triangle ∆ is η
(t)
f(∆) = min(1, (k−1)(k−2)

(l
(t)
i−1)(l

(t)
i−2)

).

Once the worker Wi receives the edge e
(t)
u,v from the master,

it unconditionally calls on UpdateCounter (e
(t)
u,v) directly to

increase τ
(t)
i , τ

(t)
i (w)(w ∈ {u, v} ∪ N

S
(t)
i

u,v) by |N
S

(t)
i

u ∩

N
S

(t)
i

v |·η
(t)
i (line 8). Then, cluster(e

(t)
u,v) determines whether to

sample based on the clustering label, and subsequently sends

the counting result to the aggregator.

Aggregator (lines 16-18): The aggregator aggregates the

estimates of workers and calculates the probability that a

triangle in G(t) can be counted to find the final estimations τ̂ (t)

and τ̂ (t)(u). We use a cluster lable cluster(e
(t)
u,v) : E → M

to map edges to workers, where M cluster = {1, 2, · · · , k},

Therefore, the probability of mapping e
(t)
u,v to Wi is P

e
(t)
u,v,i

=

P [cluster(e
(t)
u,v) = i] = 1

k
. We use e1 to denote e

(t)
u,v and e2 to

denote e
(t)
u,w, thus, the probability of mapping the two edges

e1 and e2 to the same worker (i.e., Wi) is Pe1,i · Pe2,i =
1
k

.

Therefore, the probability that a triangle in G
(t)
i can be counted

in a single worker, and the aggregator calculates the global

triangle counts τ̂ (t) as τ̂ (t) =
∑|W |

i τ̂
(t)
i .

For example, a triangle ∆(a, b, c) consists of three edges:

(a, b), (a, c), and (b, c). When using a hash-based edge dis-

tribution approach, these three edges can be sent to different

workers with some probability. In contrast, under the clustering

method, the edges forming a triangle are sent to the same

domain, such that (a, b) and (a, c) belong to one domain,

while (a, c) and (b, c) belong to another. The entire triangle

∆(a, b, c) can be counted within the same worker by merging

these two domains into a single cluster.

100 0
200

100

0

100

1

2

34

5

6

7
8

9

10

(a) Email-Enron

100 0 100

250

0

250 1
2

3
45

67
8

910

(b) DBLP

200 0

200

0

200 1

2

3
4

5

6
7

8

9

10

(c) Gowalla

250 0 250

200

0

1

2

3

4

5

6
7

89

10

(d) YouTube

Fig. 3. Results of domain clustering in feature space with different datasets.

1 2 3 4 5 6 7 8 910
Day

0

5

G
R
E

CFDC
CoCoS
Tri-Fly

(a) Email-Enron

1 2 3 4 5 6 7 8 910
Day

0

5

G
R
E

CFDC
CoCoS
Tri-Fly

(b) DBLP

1 2 3 4 5 6 7 8 910
Day

0

5

G
R
E

CFDC
CoCoS
Tri-Fly

(c) Gowalla

1 2 3 4 5 6 7 8 910
Day

0

5

G
R
E

CFDC
CoCoS
Tri-Fly

(d) YouTube

Fig. 4. Global relative error of triangle counts per day with different datasets.

Email-Enron DBLP Gowalla YouTube
0

200

400

600

800

El
ap

se
d

Ti
m

e
(s

) CFDC
CoCoS
Tri-fly

Fig. 5. Elapsed time of triangle counts with different datasets.

V. EXPERIMENT

This section presents experiments to analyze accuracy and

clustering effects. All experiments were conducted on a ma-

chine with 24 CPUs x Intel(R) Xeon(R) Silver 4214 CPU @

2.20GHz and 128GB RAM.

A. Datasets

In our evaluation, we used real-world graph datasets to

assess the effectiveness of our algorithms. The datasets are

publicly available and sourced from the SNAP42 (Stanford

Large Dataset Network Collection). These datasets represent

a diverse range of network structures and characteristics. To

ensure consistency in our analysis, we exclude self-loops

and consider the edges as undirected. This simplification

allows us to focus on the fundamental properties of graph

structures and evaluate the performance of our algorithms in a

standardized manner. By using these public datasets, we ensure

the reliability and reproducibility of our findings. Since there is

2https://snap.stanford.edu/data/index.html

no time information in these datasets, we generate timestamps

using a Poisson distribution for the probability of different

edges arriving at the collector.

B. Baseline

We consider two streaming algorithms for triangle counting

in streaming graphs as competitors. Tri-Fly [14]: Tri-Fly is a

simple distributed TRIÈST-IMPR replication using broadcast

edge stream. Each worker runs the TRIÈST-IMPR algorithm,

and the aggregator averages the counts. CoCoS [16]: The

master distribution strategy optimizes the “Lucky” approach to

reduce communication overhead, while workers reduce their

sampling range and facilitate redundancy between workers.

C. Evaluation Metrics

We consider the following metrics to evaluate the accuracy

and distributed performance. Global Relative Error (GRE)

[14]: The GRE metric quantifies the accuracy of the estimated

global triangle counts compared to the ground truth values.

It provides a measure of how closely the estimated value, de-

noted τ (t), aligns with the true value, denoted τ (t). The Global

Relative Error is defined as follows: GRE = |τ̂ (t)−τ (t)|
τ

.

Elapsed Time: When multiple CPUs process tasks simulta-

neously, the CPU time will be greater than the elapsed time.

In this paper, elapsed time refers to the total running time of

the entire distributed architecture.

D. Performance of CFDC

1) Clustering Effect: As shown in Fig. 3 axes are the two-

dimensional representations of the original high-dimensional

data, created to preserve the structure and relationships be-

tween data points in a simplified form. Clustering performed

well across multiple domains on four different datasets. This

suggests that the clustering algorithm is effective in distin-

guishing and categorizing data across various domains. The

phenomenon implies that the clustering algorithm possesses a

certain level of generalization capability, allowing it to adapt

to different types and structures of data.

The results of this experiment indicate that the clustering

algorithm performs well across diverse domains of data. The

cross-domain clustering efficacy reflect some universal simi-

larities or structures among the data, enabling the algorithm

to capture the underlying patterns and relationships.

2) Accuracy: Fig. 4 presents a comparative analysis of

the accuracy of triangle counting across various datasets and

over time. The figure is composed of multiple subfigures,

each corresponding to a different dataset, namely Email-Enron,

DBLP, Gowalla, and YouTube. The subfigures show the Global

Relative Error (GRE) of triangle counts daily, indicating how

the accuracy of the triangle counting evolves with each passing

day. The CFDC algorithm provides a lower global relative

error across various datasets, demonstrating its superiority in

the task of distributed triangle counting. These results support

the effectiveness of the algorithm proposed in the paper and

provide a basis for its application in similar scenarios in the

future.

3) Elapsed Time: The results in Fig. 5 show that the CFDC

method outperforms both CoCoS and Tri-Fly in terms of

elapsed time. This indicates that CFDC computes triangle

counts in graph streams more efficiently. Moreover, the lower

elapsed times exhibited by CFDC suggest that it is better

suited for processing large-scale graph data, which is critical

for applications requiring real-time analytics.

VI. CONLUSION

We propose a cloud-edge collaborative framework in dis-

tributed triangle counting in graph streams. We employ spec-

tral clustering analysis to reveal latent domain relationships

that guide edges distribution. The approach’s superiority over

existing algorithms in terms of counting accuracy and elapsed

time has been substantiated through experiments on various

datasets.

VII. ACKNOWLEDGMENTS

The work of UESTC team was supported by the Na-

tional Natural Science Foundation of China under Grant

No. 62472070, 82241060, 62020106013; the Sichuan Science

and Technology Program No.2024NSFSC0492; the National

Key R&D Program of China under Grant 2021YFB3101303

and 2021YFB3101302; the Full-Time Postdoctoral Research

and Development Fund of West China Hospital of Sichuan

University No. 2023HXBH129.

REFERENCES

[1] C. Grabow, S. Grosskinsky, J. Kurths, and M. Timme,

“Collective relaxation dynamics of small-world net-

works,” CoRR, vol. abs/1507.04624, 2015.

[2] R. D. Luce and A. D. Perry, “A method of matrix

analysis of group structure,” Psychometrika, vol. 14,

no. 2, pp. 95–116, 1949.

[3] C. Aggarwal and K. Subbian, “Evolutionary network

analysis: A survey,” ACM Comput. Surv., vol. 47, no. 1,

pp. 1–36, 2014.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions

in streaming algorithms, with an application to counting

triangles in graphs,” in Proc. of ACM SIAM, 2002.

[5] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Falout-

sos, “DOULION: counting triangles in massive graphs

with a coin,” in Proc. of ACM SIGKDD, 2009.

[6] N. K. Ahmed, N. G. Duffield, J. Neville, and R. R.

Kompella, “Graph sample and hold: a framework for big-

graph analytics,” in Proc. of 20th ACM SIGKDD, 2014.

[7] N. K. Ahmed, N. G. Duffield, T. L. Willke, and R. A.

Rossi, “On sampling from massive graph streams,” Proc.

of VLDB Endow., 2017.

[8] K. Shin, S. Oh, J. Kim, B. Hooi, and C. Faloutsos,

“Fast, accurate and provable triangle counting in fully

dynamic graph streams,” ACM Trans. Knowl. Discov.

Data, vol. 14, no. 2, pp. 12:1–12:39, 2020.

[9] X. Gou and L. Zou, “Sliding window-based approximate

triangle counting over streaming graphs with duplicate

edges,” in Proc. of ACM SIGMOD, 2021.

[10] Y. Liu, T. Wang, Y. Liu, H. Chen, and C. Li, “Edge-

protected triangle count estimation under relationship

local differential privacy,” IEEE Trans. Knowl. Data

Eng., vol. 36, no. 10, pp. 5138–5152, 2024.

[11] S. Kang and S. Jun, “Sting: Near-storage accelerator

framework for scalable triangle counting and beyond,”

in Proc. of DAC, 2024.

[12] S. Arifuzzaman, M. Khan, and M. V. Marathe, “PATRIC:

a parallel algorithm for counting triangles in massive

networks,” in Proc. of ACM CIKM, 2013.

[13] H. Park and C. Chung, “An efficient mapreduce algorithm

for counting triangles in a very large graph,” in Proc. of

22nd ACM CIKM, 2013.

[14] K. Shin, M. Hammoud, E. Lee, and C. Faloutsos, “Tri-

fly: Distributed estimation of global and local triangle

counts in graph streams,” in Proc. of PAKDD, 2018.

[15] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal,

“Trièst: Counting local and global triangles in fully

dynamic streams with fixed memory size,” ACM Trans.

Knowl. Discov. Data, pp. 43:1–43:50, 2017.

[16] K. Shin, E. Lee, J. Oh, M. Hammoud, and C. Faloutsos,

“Cocos: Fast and accurate distributed triangle counting

in graph streams,” ACM Trans. Knowl. Discov. Data,

vol. 15, no. 3, pp. 38:1–38:30, 2021.

[17] X. Yang, C. Song, M. Yu, J. Gu, and M. Liu, “Distributed

triangle approximately counting algorithms in simple

graph stream,” ACM Trans. Knowl. Discov. Data, vol. 16,

no. 4, pp. 79:1–79:43, 2022.

