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Abstract. Mobile Edge Computing (MEC) is a promising method to re-
duce service delay by computational ability at the edge nodes. However,
the limited resources at the edge nodes make it hard to response vari-
ous services simultaneously. Hence, it is challenging to utilize the limited
edge resources to host various service and reduce service response time.
In this paper, we investigate the service placement problem such that
the average service response time is minimized, which affects the user
experience significantly. We define the priorities for nodes and services
according to their contribution values, which indicates the influence for
reducing service response time. Then, we propose a priority placement
(2P) algorithm by taking both priority properties and local optimization
into account. We conduct extensive simulations and the expeimental re-
sults show that the 2P algorithm can reduce the average service response
time by 23%− 46%, which indicates the 2P algorithm has better perfor-
mance in reducing response time compared to the classical methods.

Keywords: Heterogeneity · MEC · service placement · low-latency ·
data-intensive.

1 Introduction

Nowadays, the scale and functions of the Internet of Things (IoT) have in-
creased dramatically, heralding the arrival of the Internet of Everything. In the
near future, the global IoT will expand to tens of billions of application de-
vices [1]. Latency-sensitive application devices are on the rise, with devices such
as augmented reality (AR) and driverless cars requiring real-time data process-
ing. With the rapid development of IoT technology, traditional cloud is no longer
suitable for IoT applications [2].

Mobile edge computing (MEC), which places servers at the edge of the net-
work to offload cloud resources and reduce response delay, has drawn more
and more attention [3]. It allows real-time analysis, testing, optimization on
edge servers and sends data that needs to be processed centrally to the cloud
server [4]. This technology not only reduces the burden on the cloud server, but
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Fig. 1. Overview of cloud-edge in IoT environment.

also improves user experience. Edge computing is not a substitute for the cloud
computing paradigm [5], but adds another layer of computing where it is close
to the user.

However, a research institution predicts that by 2035, there will be 54 million
driverless cars in the world [6]. Cameras on driverless vehicles that capture road
conditions in real time generate about 1GB of data per second [7], even boeing
787 will produce 5GB data per second [8]. The service requests for such data-
intensive applications not only put higher demands on latency, but also take up a
lot of resources. Although the edge computing model has reduced the bandwidth
pressure in network transmission and achieved low-latency response of services,
the computing capacity and storage capacity of edge nodes are limited compared
with those of cloud. This defect causes the services of numberous applications to
be unresponsive and reduces user experience, as shown in Fig. 1. In this case, the
problem of service placement needs to take both the cloud and edge nodes into
account and makes a trade-off between them to achieve the goal of minimum
response time.

In this paper, we investigate the services placement problem for service re-
sponse delay reduction in a heterogeneous MEC system, as shown in Fig. 2.
The cloud has sufficient resources to place all services, but the resources of the
edge nodes are limited, which can communicate through the WAN. The user’s
requests are responded on the edge servers through the base station (BS) [9].
The heterogeneity of MEC implies that:

– the resource capacity of nodes and the requirements of services in the system
are heterogeneous;
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– the computational delays of nodes and the communication delays among
them are heterogeneous.

In MEC system, the users’ requests often change, and frequent service place-
ment will generate a lot of energy consumption. For nodes that contain many
service requests, their resources are constrained, but they have great value in
improving user experience. In response to this situation, we define priorities for
the nodes, and give priority to the placement strategy for the nodes with large
contribution values. In addition, for nodes with tight resources, it is also a prob-
lem to consider which service to place first. So, we define service priorities based
on the heterogeneous nature of services. And, we propose a priority placement
(2P) algorithm to get a placement strategy with the lower system latency. The
main contributions in this paper are as follows:

1) We make a detailed description of the research problem, construct a het-
erogeneous MEC system model, set system parameters, formulate the above
characteristics and research problem.

2) We propose a priority placement (2P) algorithm to achieve services placement
at MEC. The main idea is to set priorities based on service load distribution
and set an upper limit on the number of identical service replicas to attain
the goal of minimizing system response time.

3) We conduct extensive simulations, taking into account the priorities affected
by load factors, as well as conducting comparative experiments. The results
show that our algorithm has a significant improvement in reducing response
delay under different parameters.

The rest of the paper is organized as follows. We summarize the related work
in Section 2. Then, we describe the system model and formulize the service
placement problem in Section 3, and propose our priority placement algorithm
in Section 4. Next, we evaluate the performance of our algorithm in Section 5.
Finally, we give conclusion remarks in Section 6.

2 Related Work

The research on service placement has attracted a lot of attention in recent
years and there have been many research results. The most direct approach is to
place the service on the local edge server, and [10] shows that this approach is
feasible. In the case of adequate node resources, this strategy minimizes response
time in the system, but if the resources are limited, most services will only be
placed in the centralized cloud. Therefore, this strategy is obviously not the most
efficient.

The authors in [11] study the scenario of overlapping node coverage and
use random rounding technology to solve the service placement method under
resource constraints. The service placement strategy studied in [12] and [13]
fails to take the limitations of node capacity, computing power and transmission
bandwidth into account, so the strict resource constraints of edge nodes cannot
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be captured. In our paper, the scenario we studied is that node coverage does
not overlap and resources are limited.

Xu et al. [14] weigh the delay and cost in the homogeneity MEC environment
to obtain the placement strategy. He et al. [15] adopt greedy strategy, and the
algorithm performance is better under the condition of homogeneous service
performance. But the resource requirements for services are different and the
performance is heterogeneous in general.

The authors in [16] adopt the way of node division to select the service with
the greatest reward in a heterogeneous MEC system. This algorithm results in
multiple placements of the same service replica on the uniform node. And fre-
quent service placements increase system power consumption. And [17] adopts
the linear programming method to jointly consider the service placement and
request scheduling policies, but it is no work to consider the uneven load distri-
bution of services in the case of heterogeneous MEC systems, which will have a
great impact on the placement results.

In our paper, we define priorities for nodes and services based on the heteroge-
neous characteristics of nodes and services, then we propose a priority placement
(2P) algorithm.

3 Problem Statement

3.1 Scenario and Notation

We focus on service placement issues within the heterogeneous MEC system,
as shown in Fig. 2. The system is composed of some edge nodes and a remote
centralized cloud. For the cloud, there are sufficient computing and storage re-
sources to place services, which will generate faster computing speed. However,
due to the distance from the data source and the limitation of communication
bandwidth, the communication delay is high. So, it is suitable to place large
services with insensitive latency. For edge nodes, they have limited resources to
place services, which results in a longer calculation delay, but a lower communi-
cation delay. They are suitable to place small delay-sensitive services. The node
characteristics and service requirements in MEC system are different. In this
part, we use special symbols to represent the heterogeneous characteristics.

The set of nodes in the system is represented by N, and the cloud is signed
by N0. For each node n ∈ N has a special performance 〈Rn, Γn〉.

– Rn represents the resource capacity of node n;
– Γn represents the communication delay time between node n and the cloud
N0.

The set of services in the system is represented by S, and the performance
attributes 〈rl, Pl〉 of each service l ∈ S are different.

– rl represents the resources that service l needs to consume when the service
responds;

– Pl represents the number of replicas of service l in the system.
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Fig. 2. System model.

In addition to the above characteristics, load is also an important factor. Node
load refers to the number of users in the node. The service load refers to the
number of service requests. The load of the nodes varies in different time periods,
and the service load is unevenly distributed. For example, during working hours,
there are more users in the office region than in living and business regions, and
the number of requests for various types of services in the office region is also
higher than in other regions. In other time periods, different phenomena will
occur. In this article, we use Φ to represent service load distribution.

– Φl,n ∈ Φ represents the load of service l within the coverage of node n.

Requests of services can be scheduled among edge nodes. For example, l2 is
not placed on n3, so the users in this region send a request Rq2 for l2, which
cannot be satisfied on the local server. The request is dispatched to node n1 or
n2 in other regions through WAN. Based on the above characteristics, we set
the total response delay as T.

– T l
m,n ∈ T represents the total response delay time when the request Rql

within n region is scheduled to be served on node m.

The transmission time of the same request from n1 to n2 is the same as that
from n2 to n1, but the computing power of n1 and n2 are different. To describe
this characteristic of response time T, we set

T l
m,n = ∂lm,n + βl

m (1)

– ∂lm,n represents the communication delay time when the request Rql within

n region is scheduled to be served on node m, ∂lm,n = ∂ln,m, and ∂ln,n = 0;
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– βl
m represents the computing time of service l on node n.

According to the above description of the total response delay T, we know
that the response time of the service is related to which node the service responds
to. We measure the efficiency of various algorithms by the response time of
service requests. However, it is closely related to the service placement strategy.

3.2 Problem Formulation

We aim to minimize the service request response time according to a service
placement strategy in a heterogeneous MEC system. So, we use vector X to
represent the service placement scheme in the system. For ∀l ∈ S,m ∈ N,

xl,n =

{
1, service l placed on the node n
0, otherwise

(2)

The response time of system request is represented by vector Y, which is
determined by placement scheme X. We stipulate that if there are nodes that
have placed service l, the requests for l will be scheduled to a node m with the
shortest response delay. Otherwise, it will be scheduled to the cloud. It can be
formalized as follows:

yl,n =Θ

 |N |∑
m=0

xl,m = 0

× Γn +Θ

 |N |∑
m=0

xl,m 6= 0


×min

{
T l
m,n|xl,m = 1

}
, m, n ∈ N, l ∈ S

(3)

Where, if E is true, Θ(E) := 1; otherwise, Θ(E) := 0. yl,n represents the
response time of the request for service l within the scope of node n.

The purpose of our research is to improve the quality of service. In this
paper, our research goal is to minimize the response time of the system, which
is expressed as follows:

min

|S|∑
l=0

|N |∑
n=0

yl,n (4)

s.t.

|s|∑
l=0

xl,n · rl ≤ Rn ∀n ∈ N (4.1)

xl,n ∈ {0, 1} ∀l ∈ S,∀n ∈ N (4.2)

Where the constraint (4.1) means that the services placed on each edge node
should not exceed its capacity.

From the above problem description, we learned that service placement is
really about allocating limited node resources to services. We predict that service
placement problem is an NP-hard problem [18]. Next, we will show the hardness
of this problem.
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Theorem 1. The service placement in a heterogeneous MEC system is NP-
hard.

Proof: We will prove the theorem by a special case, which is constructed
with the following assumptions: 1) We set the case with one cloud and one edge
node, and 2) Only one replica is placed for each service. In this case, the best
strategy is to place services on this edge node to lessen response time. However,
the available resource in edge node is limited, so we need to choose some services
to occupy the node resources such that the response delay is minimized. This
problem can be inferred from the typical knapsack problem.

The typical knapsack problem can be formalized as follows. Given a set of
items A = {ai, 0 ≤ i ≤ n}, where the weight and the value of ai is wi and vi,
respectively. The problem is to select a subset As such that the total weight does
not exceed the capacity W of knapsack and the total value is maximized. Then,
in the scenario we constructed, the set of services is S = {sl, 0 ≤ l ≤ n}, then
for each service sl, let the requirement of sl be rl, and the response time of sl
be yl. We aim to select a subset Ss of services such that the total requirement
does not exceed the resource capacity R of edge node and the response time is
minimized.

If there is a strategy to select a subset As such that
∑

ai∈As
wi ≤ W , and∑

ai∈As
vi is maximized. For each item ai ∈ As, we can select a service sl ∈ S

with rl = wi and 1
yl

= vi. The services that are selected have the lowest response
delay. In addition, if we select a subset Ss of S to minimize the total response
time, we can get the subset As to maximize the value. Because the knapsack
problem is NP-hard, we conclude that the services placement problem in MEC
system is NP-hard.

�

4 Service Placement Strategy

To approximately minimize the response time of the service, we set priorities
for all nodes and services according to the scene parameters, then determine
the placement scheme according to the priority factors, so it is called priority
placement (2P) algorithm. Firstly, the node with the highest priority is selected
to study the placement strategy. Then we choose the service from the service
candidate set of the node in order of the priority to place. In the process of service
placement, we adjust the priority of nodes and services according to the deployed
situation, make a dynamic priority definition. How to define node priority and
service priority is a key point in the 2P algorithm. Next, we will introduce them
one by one.

4.1 Total Delay Algorithm

The process of finding the total delay time in the system is described in
Alg.1. Firstly, the input variables are defined. We set the attributes of nodes and
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Algorithm 1 Total Delay Algorithm

Input: Node set N(n ∈ N), attributes: 〈Rn, Γn〉; Service set S(l ∈ S). attributes:
〈rl, Pl〉; Schedule delay T; Service load distribution Φ; Upper limit of replicas θ.

1: Q = averageDelay(T,Φ);
2: G = nodeCandidateSet(Q);
3: L = initServiceCandidateSet(G, 1);
4: X = serviceP lacement(L,G,Q, r, R,Φ, θ);
5: for each l ∈ S do
6: Pl = getSum(X);
7: if Pl == 0 then
8: for each n ∈ N do
9: yl,n = Γn;

10: end for
11: else
12: for each n ∈ N do
13: yl,n = minResponseT ime(X,T);
14: end for
15: end if
16: end for
17: for each l ∈ S do
18: for each n ∈ N do
19: t = t+ yl,n · Φl,n;
20: end for
21: end for
Output: Total delay time is t.

services as well as the upper limit of replicas θ. Through the network prediction,
we can get the distribution of total response time and service load in a period of
time, which is represented by the T and Φ, separately. According to the input
variables, we obtain the node priority through the three-step method of lines 1-3
in Alg.1, which is introduced in detail in Section 4.2. Next, taking the variables
obtained from lines 1-3 as input, line 4 adopts the serviceP lacement() function
to obtain the placement strategy X; see Alg.2 for details.

Afterwards, based on placement scheme X, lines 5-16 calculate the response
time of the service request within the scope of each node. The number of replicas
of each service in the system is calculated by the getSum() function. If Pl = 0,
the system does not have a replica of service l, so the request of service l in each
region must be responded to in the cloud, then yl,n = Γn. If Pl 6= 0, it indicates
that there is at least one replica of this service in the system. Therefore, for
requests in each region, we can define the minResponseT ime() function on the
basis of Eq.3 to get the minimum response time yl,n. Finally, lines 17-21 calculate
the total response time Y for all requests.

4.2 Node Priority

Uneven load distribution will cause a phenomenon that the more load of the
node would lead to a higher value of the contribution to the research target,
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but its resources are relatively tight. Our research goal is to minimize the total
response time of all services in the system (e.g. Eq.4). Therefore, in order to
better achieve the research goal, we properly defined the node priority after
three steps of calculation.

Firstly, we assume that all requests of service l in the system are responded
to node m. According to the input variables Φ and T, we can get the average
response time of service l placed at node m, which is defined as follows:

Ql
m =

∑|N |
n=0 T

l
m,n · Φl,n∑|N |

n=0 Φl,n

, l ∈ S,m, n ∈ N (5)

In the same way, we calculate the value of other services on each node. In
line 1 of Alg.1, we utilize the averageDelay(T,Φ) function to implement Eq.5
and obtain matrix Q(Ql

m ∈ Q, l ∈ S,m, n ∈ N), which is an important factor in
the 2P algorithm.

Secondly, because the average delay time of each request Rql that was sched-
uled to diverse node is different

(
Ql

m 6= Ql
n, l ∈ S,m, n ∈ N

)
, we find the ideal

node set of service according to the sequence of Q, as follows:

Gl =
{
np1 , np2 · · ·npi · · · |Ql

np1
≤ Ql

np2
≤ · · · ≤ Ql

npi
≤ · · · , npi

∈ N
}

(6)

Where Gl,1 = np1
indicates that the first ideal node of service l is np1

,
Gl,2 = np2

indicates that the second ideal node of service l is np2
, . . . , and

Gl,i = npi indicates that the ith ideal node of service l is npi .
In line 2 of Alg.1, we adopt the nodeCandidateSet (Q) function to obtain

the two-dimensional matrix GS×|N|, which represents the ideal node sequence
for each service. The matrix G is composed of variables Gl,i ∈ N, where l ∈
S, i ∈ |N|. Furthermore, we get a verdict from the two-dimensional matrix G:

– row vector Gl,|N| shows the ideal node sequence of service l;

– column vector GS,i shows the ith ideal node of all services.

Thirdly, we use function initServiceCandidateSet() based on G to obtain
the initial service candidates set L of each node, as shown in Alg.1 in line 3. It
is defined as follows:

Ln =
{
lp1
, lp2

, · · · lpi
· · · |Glpi,1

= n, lpi
∈ S
}

(7)

Initially, we put all services whose ideal node is n in the set Ln, and define
them as the candidate service set of node n. The set Ln will be dynamically
adjusted according to the placement situation. The more services in the set Ln,
the higher the value of node n. So, the modulo |Ln| is defined as the value of
node n, also known as the priority.

4.3 Priority Placement Algorithm

Alg.2 describes the service priority placement function serviceP lacement()
in detail. The main idea of the algorithm is to select services in order from the
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Algorithm 2 Service Priority Placement Algorithm

Input: Average delay Q; node candidate set G; service candidate set L; attributes
of nodes 〈Rn, Γn〉; attributes of services 〈rl, Pl〉; service load distribution Φ; Upper
limit of replicas θ .

1: while (! isEmpty (L)) do
2: e← argmaxn∈N |Ln|;
3: Order Le = {lp1 , lp2 , · · · , lpk},so that Ωlpi

≥ Ωlpi+1
, ∀i < k;

4: for each lpi ∈ Le do
5: if rlpi ≤ Re then
6: xlpi ,e = 1;
7: Re ← Re − rlpi ;
8: Plpi

+ +;
9: else

10: xlpi ,e = 0;
11: end if
12: if Plpi

< θ then
13: e′ ←findNextNode (G, lpi , e);
14: update

(
Ωlpi

)
;

15: Le′ ← Le′ ∪ lpi ;
16: end if
17: end for
18: Clear(Le);
19: end while
Output: Service placement strategy is X.

service candidate set of the node e with the highest value (priority) for placement
strategy, and then add the service to the set L′e of its sub-ideal node e′.

Firstly, for the initial service candidate set L of each node, loop lines 1-18
until the service candidate set Ln of all nodes is null. In circulation, we select the
node with the highest priority, which is marked as e, as shown in line 2 of Alg.2.
Then we order the services in Le based on service priority Ω. We consider the
service loads, the number of replicas, the average response time and the response
time gap with the sub-ideal node to define the variable Ω, as follows:

Ωl,e =
∆Ql + k1 ·

∑|N |
n=0 Φl,n

Ql
e + k2 · Pl

, l ∈ S, e, n ∈ N (8)

Suppose that node e is the ith ideal node of service l, Gl,i = e. So, Ql
e is the

average response time of all requests that are scheduled to node e. If Gl,i+1 = e′,

then ∆Ql = Ql
e′−Ql

e. In addition,
∑|N|

n=0 Φl,n is the total load of the service l. Pl

represents the number of replicas of service l. k1 and k2 is a parameter. In Eq.8,
it is known that the time gap and service loads are greater, the service priority
is higher. And the greater the average delay time and the number of replicas are,
the lower the priority is.

Next, lines 5-11 implement placement in order of priority. If the remaining
resources of the node meet the requirements of the service, place it, and make
xl,e = 1. Otherwise, xl,e = 0. Then, we decide whether to continue the placement
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according to the upper limit of service replicas θ on lines 12-16. If the number
of service replicas in the system does not reach the upper limit θ, it will be
added to the service candidate set Le′ of the next ideal node e′ that we use
findNextNode() function to find out. In this case, the priority of service and
node e′ will be adjusted dynamically. We update service priority Ωl,e′ and node
priority |Le′ | according to Eq.8. Finally, through the clear() function shown in
line 18, we clean up the services in the Le set. Continue the placement process
in loops 1-18 until all nodes have zero priority.

5 Evaluation

In this section, we evaluate our algorithm. We take the greedy algorithm as
the baseline and conduct comparative experiments for two significant factors.
The basic strategy of the greedy algorithms is to place the service with the
shortest latency on each node.

A comparison algorithm studies load factors, which we call the non-loaded
algorithm. The non-loaded algorithm does not take into account the number
of service requests in each node, which changes the average delay variable and
service priority variable as follows:

Q′le =

∑|N|
n=0 T

l
e,n

|N|
(9)

Ω′l,e =
∆Q′l

Q′le + k · Pl
(10)

Another comparison algorithm studies the service priority factor, which we
call unitary priority placement (u2P) algorithm. The u2P algorithm redefines
the service priority in Eq.8 as opposed to the 2P algorithm, set

Ω′′l,e = Ql
e (11)

We have carried out a detailed simulation experiment and compared the
experimental results.

5.1 Simulation Settings

There is only one cloud and N edge nodes in the simulation system, and
the resource capacity of the nodes is heterogeneous. We use the unit time (time
slots) to express the response delay time, and the communication delay between
the nodes and the cloud is set to Γn ∈ [50, 60]. The scheduling delay matrix
∂lm,n(m 6= n) is set to be within the range of [5, 15], which is a symmetric

matrix. The response delay jitter is set to βl
m ∈ [1, 5].

There are 100 services in the simulation system, and the amount of resource
block occupied by each service is set to rl ∈ [2, 14]. The loads of the services
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within each node are distributed within [0, 100], which obeys the Gaussian dis-
tribution. We changed the three variables that are the number of nodes N , the
resource capacity of nodes Rn and the upper limit of replicas θ. And we carried
out three groups of comparative experiments.

In order to analyze our experimental results more clearly, we counted the
average delay of each request, which is a measure to evaluate the superiority
of the algorithms. At the same time, we calculate the reduction rate of the 2P
algorithm in average response time relative to other algorithms. Supposing that
the average response time of each request in the 2P algorithm is t0, while the
other three comparison algorithms are ti, the reduction ratio is

Υ = 1− t0
ti

(12)

5.2 Results Comparing
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Fig. 3. Change the node capacity Rn, where N=9 and θ=2

In Fig.3, we set the number of nodes as 9 and the upper limit of replicas as 2 in
the system, but the amount of node resources increases gradually. According to
Fig.3(a), we find that the delay time of all algorithms decreases with the increase
of node resources. When the system node resources are sufficient, the response
time remains stable. In addition, we also found that the greedy algorithm has
the longest response time, the non-loaded algorithm has a smaller response time
than the u2P algorithm, and the 2P algorithm has the shortest response time.

According to Fig.3(b), we get the response time reduction rate of the 2P
algorithm compared with other algorithms. Within the ranges of [60, 90] and
[90, 120], the response time of the 2P algorithm is about 46% lower than that
of the greedy algorithm. Compared with the non-loaded algorithm, the response
time was reduced by about 23%. Compared with the u2P algorithm, the response
time is reduced by 37%. However, within the range of [1, 30] and [150, 180], the
time reduction rate of the 2P algorithm is relatively low. This is mainly because
resources are at two extremes (too scarce or too abundant).
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Fig. 4. Change the number of system nodes N, where θ=2 and Rn ∈ [50, 100]

In Fig.4, we set the node resource to be within [50, 100] and the upper limit
of replicas as 2 in the system. We infer that the 2P algorithm performs signif-
icantly better than the other three algorithms from 4(a). The response time of
the non-loaded algorithm is lower than that of the u2P algorithm, indicating
that the service load distribution variable has a greater impact on the response
time. When the number of nodes increases gradually, the response time of all
algorithms will decline significantly. The response time of the 2P algorithm is
always the lowest.

In Fig.4(b), we konw that when there are two nodes in the system, the re-
sponse time of the 2P algorithm decreases less than that of the comparison
algorithm. This is mainly because the number of nodes is too small, resulting in
an excessive shortage of system resources, which is consistent with the conclu-
sion in Fig.3(b). However, with the increase of system resources, the reduction
rate of the 2P algorithm increases gradually.

In Fig.5, we set the system to 12 nodes with each resource capacity in the
[50, 100] range and change the upper limit of replicas. From Fig.5(a), the 2P
algorithm has the shortest response time and the best performance based on
stability. The greedy algorithm has the highest response time and the lowest
performance. The delay time of the non-loaded algorithm and the u2P algorithm
is larger than that of the 2P algorithm, but less than that of the greedy algorithm.

From Fig.5(b), we see that when the upper limit of the replica is 1, the re-
duction rate of the 2P algorithm is less than 10%. This is because the resource
is very sufficient and is a limit state, which is consistent with the conclusion of
Fig.3(b). When the upper limit of replicas is in the range of [2, 6], the response
time reduction rate of the 2P algorithm is about 50% relative to the greedy al-
gorithm. Compared with the non-loaded algorithm, the response time is reduced
by about 23%. Compared with the u2P algorithm, the response time is reduced
by about 24%.
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Fig. 5. Change the upper limit of service replicas θ, where N=12 and Rn ∈ [50, 100]

6 Conclusion

In this paper, we investigate the service placement for response delay re-
duction in a heterogeneous MEC system. We set priorities for the nodes and
services, which can be adjusted dynamically according to the placed state. To
model the priority, we analyzed several factors such as service load distribution
or delay time, obtained the service placement strategy in order of priority. We
conduct extensive simulations, and the results show that our 2P algorithm has
significant performance improvement on response delay reduction.
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