
 

 

Abstract—UAV-assisted wireless communications facilitate the 

applications of Internet of Things (IoT), which employ billions of 

devices to sense and collect data with an on-demand style. How-

ever, there are numerous malicious Mobile Data Collectors 

(MDCs) mixing into the network, stealing or tampering with data, 

which greatly damages IoT applications. So, it is urgent to build a 

ubiquitous trust communication system. In this paper, a UAV-

assisted Ubiquitous Trust Evaluation (UUTE) framework is pro-

posed, which combines the UAV-assisted global trust evaluation 

and the historical interaction based local trust evaluation. We first 

propose a global trust evaluation model for data collection plat-

forms. It can accurately eliminate malicious MDCs and create a 

clean data collection environment, by dispatching UAVs to collect 

baseline data to validate the data submitted by MDCs. After that, 

a local trust evaluation model is proposed to help select credible 

MDCs for collaborative data collection. By letting UAVs distribute 

the data verification hash codes to MDCs, the MDCs can verify 

whether the exchanged data from the interacted MDCs is reliable. 

Extensive experiments conduct on a real-life dataset demonstrate 

that our UUTE system outperforms the existing trust evaluation 

systems in terms of accuracy and cost. 

Index Terms—5G and beyond networks, unmanned aerial vehi-

cles, trust evaluation, incentive mechanism, data quality. 

I. INTRODUCTION 

n the 5G and upcoming beyond 5G era, billions of sensing 

devices are connected to the Internet of Things (IoT) to 

sense and collect data collaboratively, thus greatly promoting 

the development of IoT based applications [1], [2]. According 

to IoT Analytics, the number of IoT devices worldwide is ex-

pected to reach 22 billion by 2025 [3], and they will generate 

more than 90 zettabytes of data [4]. On the one hand, these 

widely deployed IoT devices enable the network to monitor tar-

gets and collect data in a timely, accurate and comprehensive 

way, thus constructing a ubiquitous data collection platform. 

On the other hand, there are more and more malicious partici-

pants mixing into the network, stealing or tampering with data, 

causing data-based applications to pose huge threats to security 

and data quality [5], [6], [7]. 

Currently, almost all applications are based on data collection 

and analysis. Typical examples include VTrack [8], Waze [9] 

and WeatherLah [10], where VTrack and Waze provide com-

prehensive traffic information by collecting vehicle operating 

status information [8], [9], WeatherLah provides fine-grained 

climate status based on meteorological data collection [10]. 

Real and credible data is the basis and prerequisite for con-

structing high-quality services, malicious data not only deterio-

rates the service quality, but also causes serious human and ma-

terial losses [6], [7]. Therefore, it is urgent to construct a ubiq-

uitous trust communication system. 

To this end, the trust mechanism is proposed by researchers, 

which can protect the system from internal attacks by establish-

ing a quantitative evaluation system [11] [12]. However, as far 

as we know, there are many problems in the existing researches 

to build a ubiquitous trust communication system. 

First, from the perspective of the data collection platform, 

constructing a credible computing environment faces many 

challenges. Creating a credible computing environment has al-

ways been the goal pursued by researchers. However, even in 

the traditional network, it is difficult to achieve. With the devel-

opment of 5G and beyond networks, the number of IoT devices 

connected to the network has increased exponentially. In the 

context of such a heterogeneous, wide-ranging, and large-scale 

network, building a ubiquitous trust communication platform is 

particularly difficult. Also, the trust evaluation methods in the 

past are often constructed for specific applications. On the one 

hand, the cost is very high and not practical in real life; on the 

other hand, it is not universal and is not applicable to common 

scenarios. Furthermore, the past methods often obtain trust by 

observing the interactive behavior and relationship of the eval-

uated objects. Therefore, the reliability is not high, it is easy to 

be deceived and attacked, and the accuracy of the evaluation 

result is difficult to verity. 

Second, from the perspective of mobile data collectors, there 

are many difficulties in constructing a trusted interaction envi-

ronment. As we all know, interactive behavior is the privacy 

attribute of the evaluated object, so it is difficult to obtain from 

the outside due to privacy and security reasons. And observing 

the evaluated object requires certain infrastructure and re-

sources, however, these resources are unavailable or not al-

lowed in many scenarios. What’s more, all trust evaluations 

come from feedback from others, so it is difficult to determine 

their accuracy. For example, when collusion or good/bad mouth 

attacks are initiated, the feedback is invalid [12] [13]. It is more 

difficult to ensure the accuracy of trust evaluation based on 

these uncertain feedbacks. Finally, the trust evaluation in the 

past method is a passive evaluation, which is very limited in 

critical applications, such as in the initialization of the network 

or in a sparse network, there is little or no interaction between 
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data collectors. More importantly, some evaluated subjects do 

not interact during normal times, but only work under certain 

circumstances. Therefore, the previous methods have problems 

such as difficulty in obtaining interactive behavior, inaccurate 

evaluation results, and limited application scenarios. 

The emergence of Unmanned Aerial Vehicles (UAVs) pro-

vides an opportunity to solve the above problems. UAVs could 

be deployed as aerial Base Stations (BSs), Access Points (APs), 

or relays to assist 5G and beyond wireless communications 

from the sky [14], leading to another paradigm known as UAV-

assisted communications [15], [16], [17]. UAV-assisted com-

munications have several promising advantages, such as the 

ability to facilitate on-demand deployment, high flexibility in 

network reconfiguration, and high chance of having Line of 

Sight (LoS) communication links [18], [19]. Applications of 

UAVs have been fast growing during the past few years. One 

of the pivotal applications is data collection in various data-

based applications. 

Here, we argue that UAV-assisted wireless communications 

can facilitate creating a ubiquitous trust communication system 

in 5G and beyond networks, which is significantly different 

from conventional communication systems. Therefore, we pro-

pose a UAV-assisted Ubiquitous Trust Evaluation (UUTE) sys-

tem in this paper, and its contributions are as follows: 

• A ubiquitous trust communication system is constructed, 

which contains two trust evaluation models to provide reliable 

data collection and communication in 5G and beyond networks. 

One is the global trust evaluation model, which can help data 

collection platforms exclude malicious MDCs, thereby con-

structing a clean data collection environment. The other is the 

local trust evaluation model, which can help MDCs create a 

trusted personal interaction environment, thus choosing reliable 

MDCs to exchange data. 

• A novel UAV-assisted global trust evaluation model is 

proposed in UUTE, which can realize proactive and verifiable 

trust evaluation. Different from previous studies, we make full 

use of the convenience of UAV-assisted communications, and 

dispatch UAVs to specific sites to obtain baseline data to eval-

uate the data provided by MDCs. When the data reported by 

MDCs is consistent with the baseline data, we increase its trust 

to enhance the possibility of data being adopted. Otherwise, its 

trust is reduced to punish it for its negative behavior. The sites 

selected by UAVs are dynamically planned according to fre-

quency and cost. Therefore, it is an evaluation method that can 

be initiated on demand, and does not rely on the interaction be-

tween evaluated objects. 

• A historical interaction based local trust evaluation model 

is proposed in UUTE, which can expand the trust relationship, 

and enable MDCs to obtain a credible personal interaction en-

vironment. In local trust evaluation, UAVs distribute the data 

verification hash code to the MDCs on the flight way. Based on 

the verification code, the data collector can verify the data ob-

tained from other MDCs that have interacted with it, and make 

a local trust evaluation on other MDCs. Due to the one-way and 

irreversible characteristics of the verification code, local trust 

evaluation can be safely implemented while preventing mali-

cious data collectors from deriving the data backwards. Com-

pared with the previous interactive verification, this is a safe 

trust evaluation method. 

• An algorithm for selecting winning MDCs based on incen-

tive mechanism is proposed. In the incentive mechanism, the 

data center selects winning MDCs by weighing the trust and 

cost, so as to improve the data quality while considering the cost. 

Experiments conduct on a real-life dataset demonstrate that the 

UUTE proposed in this paper can more accurately identify ma-

licious MDCs, greatly improve the speed of trust evaluation and 

evolution, expand the scope of evaluation, and reduce the data 

collection cost by up to 34.96%. 

The rest of this paper is organized as follows. Section II in-

troduces related works. The system model and definitions are 

presented in Section III. In Section IV, we propose the UUTE 

framework. Then, Section V and VI provide theoretical and ex-

perimental analysis. Finally, conclusion and future work are 

given in Section VII. 

II. RELATED WORK 

In the past, it has been assumed that the data collectors in 

data-based applications are trustworthy. Recently, with the ex-

pansion of the network scale, more and more malicious attack-

ers enter the network. They behave illegally for various reasons. 

For example, in data collection based on incentive mechanisms, 

many data collectors submit false data to get payment, and some 

malicious data collectors tamper and destroy the data of others 

in order to achieve the purpose of attack, which greatly damages 

the quality of the collected data [13], [20]. Therefore, how to 

identify malicious participants from numerous data collectors 

to ensure the data security and credibility is an important issue. 

Trust mechanism is an effective means to suppress malicious 

data collectors. By establishing a quantitative system, the trust 

is used to measure the credibility of data collectors, which also 

reflects the subjective attitude to participate in tasks [11], [21].  

Researchers first adopted the rating mechanism for trust eval-

uation. In such a mechanism, the evaluator submits a rating of 

the interaction to the system, and then the trust of the evaluated 

object is computed based on the submitted rating. Generally, 

the rating closer to the current time is more important, and de-

cays with the passage of time [22]. Therefore, the time decay 

mechanism is introduced, that is, different ratings submitted at 

different times are given different degrees of importance, then 

all ratings within the valid time are weighted to obtain a com-

prehensive trust [6]. Kim et al. [21] proposes a computational 

social trust framework, which is based on user feedback rating 

data to predict trust connectivity between a pair of users. The 

single rating mechanism assumes that all the evaluators provide 

objective and credible feedback. However, some evaluators 

may submit false ratings, making this trust rating unreliable. So, 

the dual-rating mechanism is proposed. In the dual-rating mech-

anism, both parties of the interaction must submit a rating, and 

only when the ratings submitted by both parties are consistent 

can it be regarded as a valid rating. In the case of the first inter-

action without historical information, Dangelo et al. [23] pro-

poses an algorithm to evaluate the truthfulness of a tuple (rec-

ommender-data/recommendation). The algorithm uses associa-

tion rules to express a confidence-based measure (reputation 

rank), which is used as a reliability ranking of the recom-

mender-data. Although the dual-rating mechanism can prevent 

false evaluations from one party, it cannot identify the colluding 

data collectors because they both submit higher feedbacks. 



 

TABLE I 

Comparison of trust methods 

Methodology Basic idea Advantages Disadvantages References 

Single-rating 

mechanism 

Each evaluator submits a feedback rating, and 

compute the trust of the evaluated object by 

weighting the feedback ratings 

Simple to imple-

ment 

Affected by false 

ratings 

[21] 

Dual-rating 

mechanism 

Both parties of the interaction submit a rating, 

and only when their ratings are consistent can 

it be regarded as a valid rating 

Prevent false 

evaluations from 

one party 

Can't resist collu-

sion attacks 

[13] [20] 

Direct trust Trust is inferred based on direct interactive 

behavior or relationship of the evaluated ob-

ject 

Trust updates fast Not suitable for 

interactive sparse 

scenes 

[7] [24] 

Recom-

mend/Indi-

rect trust 

For situations where there is no direct interac-

tion, introduce a third party who has directly 

interacted with the evaluated object to infer 

trust indirectly 

Wide range of 

evaluation 

Affected by the 

reliability of 

third-party recom-

menders 

[23] [25] 

Active trust Dispatch trusted equipment to obtain baseline 

data, and infer trust through comparison with 

baseline data 

Accurate, verifia-

ble, initiated on 

demand 

Limited evalua-

tion scope and 

high cost 

[6] [22] 

Recent studies have recognized the shortcomings of rating-

based evaluation. Trust reasoning and calculations must be 

judged based on interactive behaviors of data collectors. There-

fore, interactive behavior is an important basis for measuring 

the trust of data collectors. Laniepce et al. [24] surveys reputa-

tion mechanisms that use a monitoring system to overhear the 

next hop node, as a way to watch behavior inside the neighbor-

hood. Shabut et al. [25] proposes a recommendation-based trust 

model that uses clustering technology to dynamically filter out 

attacks. Recommended nodes are selected based on the number 

of interactions, the compatibility of information and the close-

ness between nodes. Trust evaluation based on interactive be-

havior is divided into direct trust and indirect trust [6], [22]. 

Among them, direct trust is the trust evaluation made by the two 

parties based on the interaction process and results after they 

have directly interacted. Indirect trust is when the evaluation 

object and the evaluated object have no direct interaction, but 

both of them have interacted with a third party, thus relying on 

the trust evaluation made by the third party indirectly. For ex-

ample, ℳ𝐴 has no direct interaction with ℳ𝐶, but ℳ𝐴 has a di-

rect interaction with ℳ𝐵, their direct trust is 𝑇𝐴,𝐵, ℳ𝐵 and ℳ𝐶 

also have direct trust 𝑇𝐵,𝐶. In this way, the indirect trust of ℳ𝐴 

and ℳ𝐶  can be derived, 𝑇′𝐴,𝐶 = 𝑇𝐴,𝐵 × 𝑇𝐵,𝐶 . Obviously, indi-

rect trust strongly depends on the reliability of the third party, 

if ℳ𝐵 is untrustworthy, then the indirect trust is meaningless. 

Many studies usually give a certain weight to direct evaluation 

and indirect evaluation to obtain comprehensive trust evalua-

tion. Jiang et al. [7] proposes an Efficient Distributed Trust 

Model (EDTM) for WSNs. This model calculates direct trust, 

recommendation trust and indirect trust based on the received 

data packets and other information. This interaction-based trust 

evaluation is more advanced than the traditional method, but 

there are some shortcomings, such as difficulty in obtaining in-

teraction, lack of interaction in the initial trust period and lim-

ited application.  

Therefore, researchers began to study active trust evaluation. 

Aiming at the black hole attack, Liu et al. [6] proposes an active 

trust routing in wireless sensor network. Different from the pre-

vious research on how to judge the trust through the interaction 

between nodes, the system initiates an active detection route to 

quickly detect and obtain trust. 

In recent years, with the development of communication 

technology, especially Unmanned Aerial Vehicles, researchers 

hope to find an active and verifiable trust evaluation method, 

that is, to make an accurate trust evaluation by comparing the 

data submitted by data collectors with the real data. Different 

from previous studies, in the paper of Jiang et al. [22], the 

UAVs are dispatched to collect baseline data for evaluating the 

data reported by sensor nodes. However, in their paper, the 

UAVs obtains data directly from the cluster head, and these 

cluster heads are the easiest to be attacked, which makes the 

scheme less secure. 

In summary, trust methods can be roughly divided as single-

rating mechanism, dual-rating mechanism, direct trust, recom-

mend/indirect trust and active trust. The basic idea of these 

methods and their respective advantages and disadvantages are 

given in Table I. 

III. SYSTEM MODEL AND DEFINITIONS 

A. System Model 

The ubiquitous trust communication system proposed in this 

paper considers a wide range of application scenarios. It can not 

only be used as a trust evaluation system for urban data collec-

tion, but is also suitable for trust evaluation of maritime data 

collection. The simplified model is shown in Fig. 1, which in-

cludes sensing devices, mobile data collectors, unmanned aerial 

vehicles and data center. 

• Sensing devices. Sensing devices are heterogeneous IoT 

devices deployed in various areas, such as cameras, mobile 

phones, computers, smart trash cans in cities, monitors and de-

tectors in the ocean [26], [27]. These statically or dynamically 

deployed sensing devices constitute the data collection infra-

structure. Since they are deployed by the system, we assume 

sensing devices are credible, the data they sense is also credible. 

• Mobile Data Collectors (MDCs). MDCs move according 

to preplanned or temporarily planned routes to collect data from 

sensing devices, and finally upload it to data center. As shown 
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Fig. 1. Integrated application scenario of ocean and city 

in Fig. 1, vehicles in the city act as mobile data collectors. They 

collect data from nearby sensing devices during driving, and 

then transmit data to the data center through 5G network com-

munication facilities. Here, an incentive mechanism is adapted 

to stimulate more MDCs to actively collect data. After the sys-

tem publishes tasks, the MDCs who provide effective data are 

rewarded [26], [28]. On the way of consistently moving for data 

collection, each MDC continuously exchanges data with other 

MDCs it encounters, thus obtaining more data and compensa-

tion. As a result, some MDCs fabricate false and malicious data 

in order to cheat on payments. 

• Data center. The data center is the data analysis and stor-

age center of the entire network, and the data is eventually up-

loaded to the data center through MDCs. In the trust evaluation 

model of this article, another important role of the data center 

is to make the global trust evaluation for mobile data collectors. 

After the UAVs obtain the baseline data from the designated 

sites, the data center compares the data provided by MDCs with 

the baseline data, and makes a global trust evaluation based on 

the verification results. 

• Unmanned Aerial Vehicles (UAVs). In previous studies, 

on the one hand, UAVs act as communication relays to support 

the network connection in weak coverage areas and remote ar-

eas [15], [27]. On the other hand, they can be temporary edge 

nodes for simple data processing [16], [17]. With the develop-

ment of 5G and beyond networks, the role of UAVs in this re-

gard is waning. In the trust evaluation of this article, UAVs have 

two functions. One is to collect data from part sites as baseline 

data to help the data center to conduct global evaluation; the 

other is to send data verification hash codes to MDCs within 

visual range during flight, so as to help MDCs make local trust 

evaluation on objects who have interacted with them. Because 

UAVs are dispatched by the system, it is credible. Using UAVs 

to collect baseline data can perform a confirmatory evaluation 

for the data reported by MDCs, which has not been achieved in 

previous studies. It is worth noting that, the trust communica-

tion system proposed in this paper can be applied to many gen-

eral scenarios. The task is an abstraction, which can specifically 

be data collection [27], event perception, and computational of-

floading [28], etc. 

The normalized network is defined as follows: assuming that 

the set of data packets is 𝔻, 𝔻 = {𝒟1, 𝒟2, … , 𝒟𝑖 , … }; the set of 

MDCs is 𝕄, 𝕄 = {ℳ1,ℳ2, … ,ℳ𝑖 , … }, ℳ𝑖 represents the i-th 

mobile data collector in the set; the set of UAVs is 𝕌, 𝕌 =
{𝒰1, 𝒰2, … , 𝒰𝑖 , … }, 𝒰𝑖 represents the i-th UAV in the set. 

B. Definitions 

Metrics used to evaluate the effectiveness of the proposed 

method are as follows: 

(1) Cost 

Cost includes the remuneration paid to incentivize MDCs to 

report data and the cost of dispatching UAVs for baseline data 

collection. It is calculated as follows: 

𝐶 =∑ 𝒫ℳ𝑖
ℳ𝑖∈𝕎

+∑𝛼ℒ𝒰𝑗

𝑀

𝑗=1

.                    (1) 

Where 𝕎  is the set of the winning MDCs in the incentive 

mechanism, 𝒫ℳ𝑖
 is the task remuneration obtained by the win-

ning mobile data collector ℳ𝑖, ℒ𝒰𝑗 is the flight distance of the 

UAV 𝒰𝑗, and α is the conversion factor from distance to cost. 

(2) Data coverage 

Data coverage is the coverage of sites that can be achieved 

by data provided by MDCs. Assuming that there are N sites in 

the network, for the i-th site, if its data is covered by ℳ𝑗, then 

ℱ𝑖
𝑗
= 1, otherwise ℱ𝑖

𝑗
= 0. The data coverage of the entire net-

work can be expressed as: 

𝐹 =∑∑ℱ𝑖
𝑗
.

𝑁

𝑗=1

                                        (2)

𝑍

𝑖=1

 

(3) Trust 

The data quality of applications is determined by the data re-

ported by winning MDCs. The higher the trust of the data pro-

viders, the higher the quality of the data they provide. Assuming 

that the number of winning MDCs is K, the trust of the m-th 



 

 

data collector is 𝒯𝑚, then the trust of winning MDCs is calcu-

lated as follows: 

𝑄 = ∑ 𝒯𝑚

𝐾

𝑚=1

𝐾⁄ .                                       (3) 

We hope to maximize data coverage so that the system can 

collect high-quality data at a low cost. Therefore, the research 

objectives can be summarized as follows: 

{
 
 
 
 

 
 
 
 𝑀𝑖𝑛 𝐶, 𝐶 =∑ 𝒫ℳ𝑖

ℳ𝑖∈𝕎
+∑𝛼ℒ𝒰𝑗

𝑀

𝑗=1

,

𝑀𝑎𝑥 𝐹, 𝐹 =∑∑ℱ𝑖
𝑗

𝑁

𝑗=1

𝑍

𝑖=1

,                             

𝑀𝑎𝑥 𝑄, 𝑄 = ∑ 𝒯𝑚

𝐾

𝑚=1

𝐾⁄ .                            

(4) 

IV. OUR PROPOSED UUTE SYSTEM 

A. Overall Design of the UUTE System 

In this paper, we propose a UAV-assisted ubiquitous trust 

evaluation system that integrates global and local trust evalua-

tion models, referred to as UUTE. In order to explain the UUTE 

more clearly, we use urban data collection as a typical applica-

tion scenario to illustrate. First, the running mechanism is given: 

• Before a round of data collection, the data center issues 

data collection tasks and rewards, and informs MDCs of the lo-

cation of the sensing devices; 

• According to task and payment information, MDCs deter-

mine whether to participate in data collection. If participating, 

MDCs move freely or regularly to visit sensing devices, and 

establish communication with sensing devices to obtain data 

through opportunistic routing; at the same time, they exchange 

data with other MDCs on the way; 

• When data collection is completed, MDCs report their data, 

quality and price information to the data center. Based on the 

information provided by all MDCs and combined with the data 

collection requirements, the data center selects some MDCs as 

winners, receives the data they report, and gives them payments; 

• Based on the data reported by MDCs, the data center de-

termines the sites where UAVs to visit for collecting baseline 

data, and dispatches UAVs for collection; 

• The data center verifies the data received in this round, 

compares it with the baseline data collected by UAVs, and 

makes the global trust evaluation for MDCs who submitted the 

data; at the same time, it generates a data verification hash code 

for each baseline data; 

• During the new round of baseline data collection, UAVs 

distribute the data verification hash code to MDCs within the 

line of sight, so as to help MDCs make local trust evaluation for 

objects they have interacted with. 

The above process is executed cyclically to continuously up-

date the global and local trust of MDCs. Here, we use an incen-

tive mechanism to encourage MDCs to actively participate in 

data collection. At the end of each round of data collection, se-

lect some MDCs as winners, purchase the data they reported 

and pay them rewards. Obviously, the data provided by winning 

MDCs determines the data quality of the application. To ensure  

Algorithm 1: Algorithm for selecting the winning MDCs  

Input: 𝕄+ set of all MDCs participating in data collection 

Initial: ℱ𝑡𝑜𝑡=null, 𝕎∗=𝕄+ 

1: Compute the maximum data coverage ℱ𝑀𝐴𝑋 

2: While ℱ𝑡𝑜𝑡 ≠ ℱ𝑀𝐴𝑋 Do 

3:    𝛽𝑀𝐴𝑋=-1 

4:    For each ℳ+
𝑖 ∈ 𝕎∗ Do 

5:          If 𝛽𝑀𝐴𝑋 <
𝒯ℎ𝑖𝑠
𝑖

𝒫ℳ𝑖

 Do 

6:              𝛽𝑀𝐴𝑋 =
𝒯ℎ𝑖𝑠
𝑖

𝒫ℳ𝑖

  

7:              index=i 

8:          End if 

9:     End for 

10:   Let ℳ+
𝑖𝑛𝑑𝑒𝑥 ∈ 𝕎, ℳ+

𝑖𝑛𝑑𝑒𝑥 ∉ 𝕎∗ 

11:   ℱ𝑡𝑜𝑡 = ℱ𝑡𝑜𝑡 ∪ ℱ𝑖𝑛𝑑𝑒𝑥 

12: End while 

13: For each ℳ+
𝑖 ∈ 𝕎 Do 

14:   If ℱ𝑡𝑜𝑡 − ℱ𝑖 = ℱ𝑀𝐴𝑋 Do 

15:       Let ℳ+
𝑖 ∉ 𝕎 

16:   End if 

17:   Else 

18:      𝛽𝑀𝐴𝑋=-1 

19:      For each ℳ+
𝑗
∈ 𝕎∗ Do 

20:          If 𝛽𝑀𝐴𝑋 <
𝒯ℎ𝑖𝑠
𝑗

𝒫ℳ𝑗

 Do 

21:            𝛽𝑀𝐴𝑋 =
𝒯ℎ𝑖𝑠
𝑗

𝒫ℳ𝑗

  

22:            index=j 

23:         End if 

24:         If (ℱ𝑡𝑜𝑡 − ℱ𝑖) ∪ ℱ𝑖𝑛𝑑𝑒𝑥 = ℱ𝑀𝐴𝑋 and 𝒫ℳ𝑖𝑛𝑑𝑒𝑥
< 𝒫ℳ𝑖

 Do 

25:            Let ℳ+
𝑖𝑛𝑑𝑒𝑥 ∈ 𝕎, ℳ+

𝑖 ∉ 𝕎 

26:        End if  

27:      End for  

28: End for 

Output: the set 𝕎 of winning MDCs 

the performance of data collection, the incentive mechanism 

should consider both data quality and data collection cost. 

Therefore, we set the objective function: 

𝑴𝒂𝒙∑
𝓣𝒉𝒊𝒔
𝒊

𝓟𝓜𝒊𝓜𝒊∈𝕎
.                                    (𝟓) 

Where 𝕎  is the set of winning MDCs, 𝒯ℎ𝑖𝑠
𝑖  is the historical 

comprehensive trust of the mobile data collector ℳ𝑖, and 𝒫ℳ𝑖
 

is the payment of ℳ𝑖. The above optimization function is con-

sidered in terms of trust and payment, which is consistent with 

the desire of the data center to obtain high-quality data at a 

lower cost. For any two MDCs, the function value of the data 

collector with a lower price is higher when they have the same 

trust, and the function value of the data collector with higher 

trust is higher when they have the same payment. 

The algorithm for selecting winning MDCs under the incen-

tive mechanism is as follows. After the data center obtains the 

data and price information from MDCs, compute the maximum 

coverage ℱ𝑀𝐴𝑋 achieved by all MDCs. Then, based on the ob-

jective function shown in Formula 5, each time find a mobile 

data collector ℳ𝑖 with the maximum function value, and let ℳ𝑖 

join the set of winning data collectors 𝕎  until ⋃ ℱ𝑖ℳ𝑖∈𝕎
=

ℱ𝑀𝐴𝑋 , that is, the set of winning data collectors that can achieve 

the maximum data coverage are found. Let the remaining 

MDCs be in the set 𝕎∗. Finally, make optimal verification for 

each mobile data collector ℳ𝑖  in 𝕎 . If ℳ𝑖  is deleted, 



 

 

⋃ ℱ𝑖ℳ𝑖∈𝕎
= ℱ𝑀𝐴𝑋 still holds, then ℳ𝑖 is deleted. If there is a 

vacancy in the data coverage after deletion, try to find a mobile 

data collector ℳ𝑘 from 𝕎∗, if ℳ𝑘 satisfies ⋃ ℱ𝑖ℳ𝑖∈𝕎
= ℱ𝑀𝐴𝑋 

and 𝒫ℳ𝑘
< 𝒫ℳ𝑖

, replace ℳ𝑖  with ℳ𝑘, and let ℳ𝑘 be the win-

ning mobile data collector and update 𝕎. Repeat this until the 

elements in 𝕎 are no longer updated. 

Assuming that the set of MDCs participating in data collec-

tion is 𝕄+ , 𝕄+ = {ℳ+
1,ℳ+

2,ℳ+
3… }, the historical compre-

hensive trust of the ℳ+
𝑖  is 𝒯ℎ𝑖𝑠

𝑖 , its data payment is 𝒫ℳ𝑖
 and its 

data coverage is ℱ𝑖, the process of selecting winning MDCs can 

be represented by Algorithm 1. 

B. Global Trust Evaluation Model in UUTE 

The global trust evaluation of MDCs is made by the data cen-

ter, and is computed based on the comparison with baseline data 

collected by UAVs. Global trust evaluation is an important ba-

sis for the data collection platform to select winning data pro-

viders. It can help the platform exclude malicious data collec-

tors and create a clean data collection environment, thereby en-

suring the quality of data-based applications. As shown in Fig. 

2, the steps of global trust evaluation are as follows:  

• Sensing devices sense surrounding environment and gen-

erates data packets. These sensing devices are deployed by the 

system, so they are trusted. Whenever the sensing device gen-

erates a packet, the data packet is marked in a specific format: 

𝒟 = [𝜏𝑐 , 𝐷𝑒𝑐𝑐 , 𝑇𝑙𝑖𝑛𝑘, 𝐴𝑏𝑠𝐷 , 𝐷𝑎𝑡𝑎].               (6) 
𝜏𝑐 is the time stamp, 𝐷𝑒𝑐𝑐  is the identification of the sensing 

device， 𝑇𝑙𝑖𝑛𝑘 is the data transmission chain, which records the 

transmission process of data from generation to submission to 

the data center. Assuming that the data packet 𝒟𝑥 is generated 

by a device and submitted to the data center via the mobile data 

collector ℳ𝑘, then the 𝑇𝑙𝑖𝑛𝑘 of this data is recorded as: ℳ𝑘. If 

ℳ𝑘 shares 𝒟𝑥 with the data collector ℳ𝐴 during the movement, 

and ℳ𝐴 shares 𝒟𝑥  with another data collector ℳ𝑁 , the 𝑇𝑙𝑖𝑛𝑘 

when 𝒟𝑥 is submitted to the data center via ℳ𝑁 is recorded as: 

ℳ𝑘 →ℳ𝐴 →ℳ𝑁. 𝐴𝑏𝑠𝐷 is abstract information of data. 

• MDCs collect data from sensing devices. Mobile data col-

lectors can be divided into two types, one is full-time MDCs 

who specialize in collecting data and do not engage in other 

tasks, and the other is part-time MDCs who have their main 

tasks to do, but in order to get some extra rewards, collect data 

in their spare time or on the way to work. For full-time MDCs, 

their goal is to obtain more data at the least cost in exchange for 

more rewards. Therefore, such MDCs often plan reasonable 

moving routes based on the tasks and rewards issued by the data 

center, which involves the trajectory optimization of UAVs [17], 

[18]. For part-time MDCs, they do not plan their moving routes 

in advance, but dynamically collect data according to their work 

conditions. MDCs communicate with surrounding objects 

through opportunistic routing during the movement. If they find 

there is a sensing device in communication range, they establish 

a connection and collect data from the device. When the data is 

transferred to the MDC, its 𝑇𝑙𝑖𝑛𝑘 updates. 

• Data exchange between MDCs. MDCs exchange data with 

other MDCs during the movement, so as to obtain more data in 

exchange for more rewards. The reference for data exchange is 

local trust, which we will introduce in the next section. 

• MDCs submit data to the data center. After MDCs com-

plete data collection, they establish a connection with the data 

center through 5G or beyond communication facilities, and sub-

mit the data collection information to the data center. 

Let 𝕄 = {ℳ1,ℳ2, … ,ℳ𝑁} represent N MDCs in the system， 

each MDC declares to the data center its attributes such as data 

size and data quality. The attribute information claimed by the 

ℳ𝑖 is expressed as: 

𝒬𝑠𝑒𝑙𝑓
𝑖 = [𝒬𝑠𝑒𝑙𝑓

𝑖,1 , 𝒬𝑠𝑒𝑙𝑓
𝑖,2 , … , 𝒬𝑠𝑒𝑙𝑓

𝑖,𝑘 , … , 𝒬𝑠𝑒𝑙𝑓
𝑖,𝑈 ].        (7) 

𝒬𝑠𝑒𝑙𝑓
𝑖,𝑘

 is the quality of the k-th attribute declared by ℳ𝑖, and U 

is the dimension of attributes. The attributes declared by N 

MDCs is stored in the system through a matrix, expressed as: 

𝒬𝑠𝑒𝑙𝑓
𝐴𝐿𝐿 =

[
 
 
 
 
𝒬𝑠𝑒𝑙𝑓
1,1 𝒬𝑠𝑒𝑙𝑓

1,2

𝒬𝑠𝑒𝑙𝑓
2,1 𝒬𝑠𝑒𝑙𝑓

2,2

… 𝒬𝑠𝑒𝑙𝑓
1,𝑈

… 𝒬𝑠𝑒𝑙𝑓
2,𝑈

… …
𝒬𝑠𝑒𝑙𝑓
𝑁,1 𝒬𝑠𝑒𝑙𝑓

𝑁,2
… …
… 𝒬𝑠𝑒𝑙𝑓

𝑁,𝑈
]
 
 
 
 

.                 (8) 

To normalize the U-dimensional attributes into a comprehen-

sive data quality, use 𝜔𝑘 to represent the weight of the k-th at-

tribute. For ℳ𝑖, its declared normalized data quality is: 

𝒬𝑠𝑒𝑙𝑓
𝑖 =∑𝜔𝑘

𝑈

𝑘=1

𝒬𝑠𝑒𝑙𝑓
𝑖,𝑘 , 

where∑𝜔𝑘 = 1

𝑈

𝑘=1

, 0 ≤ 𝜔𝑘 ≤ 1.                     (9) 

The normalized data quality declared by all MDCs is: 

𝒬𝑠𝑒𝑙𝑓
𝑁𝑂𝑅𝑀 = [𝒬𝑠𝑒𝑙𝑓

1 , 𝒬𝑠𝑒𝑙𝑓
2 , … , 𝒬𝑠𝑒𝑙𝑓

𝑖 , … , 𝒬𝑠𝑒𝑙𝑓
𝑁 ].       (10) 

Call the operation that MDC reports data information to the 

data center once as a data interaction. For ℳ𝑖, its interaction 

with the data center can be expressed as: 

ℛℳ𝑖
= [ℳ𝑖 , 𝒟𝑖 , 𝒬𝑠𝑒𝑙𝑓

𝑖 , 𝜏𝑟𝑒𝑝].                   (11) 

ℳ𝑖 is the identification of MDC participating in data interaction, 

𝒟𝑖 is the set of submitted data, 𝒟𝑖 = {𝒟𝑖
1, 𝒟𝑖

2, … , 𝒟𝑖
𝑚 …}, 𝒬𝑠𝑒𝑙𝑓

𝑖  

is the data attribute quality declared by ℳ𝑖. 𝜏𝑟𝑒𝑝 is the data re-

port timestamp. To improve the accuracy of the trust evaluation, 

a cycle is divided into several timestamps. For a data packet, 

the information reported is (𝜏𝑐 , 𝐷𝑒𝑣𝑐 , 𝐴𝑏𝑠𝐷 , 𝑇𝑙𝑖𝑛𝑘, 𝒬𝑠𝑒𝑙𝑓 , 𝒫𝐷 ). 

And 𝜏𝑐 , 𝐷𝑒𝑣𝑐 , 𝐴𝑏𝑠𝐷 is the time, sensing device and abstract in-

formation of the data, 𝑇𝑙𝑖𝑛𝑘  is the data transmission chain, 

𝒬𝑠𝑒𝑙𝑓  is the data quality declared by itself and 𝒫𝐷  is payment. 

In the system, the data interaction between the data center 

and all MDCs is stored in a set of records. Considering the stor-

age cost, for each MDC, we only save its latest Z interactions. 

The available interaction matrix is: 

ℛℳ
𝐻𝐼𝑆 =

[
 
 
 
ℛℳ1

1 ℛℳ1

2

ℛℳ2

1 ℛℳ2

2

… ℛℳ1

𝑍

… ℛℳ2

𝑍

… …
ℛℳ𝑁

1 ℛℳ𝑁

2
… …
… ℛℳ𝑁

𝑧
]
 
 
 
.                  (12) 

After each round of data collection, the data center selects 

winning MDCs through Algorithm 1 based on the price and 

trust declared by them. 

• When MDCs collect data, the system dispatches UAVs to 

designated sites to collect baseline data. Since the flight cost of 

UAVs is directly proportional to flight distance and the number 

of visiting sites, when the number of sites to be collected is 

larger, the system obtains more baseline data and can verify 

data of more MDCs. However, at the same time, the greater the  
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Fig. 2. Global trust evaluation in UUTE Fig. 3. Local trust evaluation in UUTE 

flight consumption of UAVs, the greater the cost of data collec-

tion. Therefore, let UAVs visit ℋ sites each time, these ℋ sites 

are the most frequently collected by MDCs during the data col-

lection process. The collection frequency refers to the number 

of times that the site is acquired by MDCs. By selecting data 

from sites with high collection frequency as baseline data, more 

MDCs can be evaluated under the fixed cost of ℋ sites. 

• The data center makes global trust evaluation based on the 

baseline data submitted by UAVs. Assume that the data col-

lected by UAVs is 𝔻𝑈𝐴𝑉 = {𝒟𝑈𝐴𝑉
1 , 𝒟𝑈𝐴𝑉

2 , … , 𝒟𝑈𝐴𝑉
𝑖 , … }, then by 

comparing these data with the data submitted by MDCs, the 

verification result can be obtained. There are two situations: 

First, if part of the data submitted by ℳ𝑖 overlaps with the 

data collected by UAVs, then use this overlapped data for trust 

evaluation. Assuming that there are 𝛷 data collected by ℳ𝑖 that 

coincides with the baseline data, and the attribute dimension of 

each data is U, then the global trust of ℳ𝑖 is 

𝒯𝐷𝐶
𝑖 = (∑∑𝜔𝑘

𝑈

𝑘=1

|𝒬𝑈𝐴𝑉
𝑖,𝑗,𝑘

− 𝒬𝑠𝑒𝑙𝑓
𝑖,𝑗,𝑘

|

𝛷

𝑗=1

) 𝛷⁄ , 

where∑𝜔𝑘 = 1

𝑈

𝑘=1

, 0 ≤ 𝜔𝑘 ≤ 1.                         (13) 

𝒬𝑠𝑒𝑙𝑓
𝑖,𝑗,𝑘

 is the quality of the k-th attribute of the j-th data declared 

by ℳ𝑖, 𝒬𝑈𝐴𝑉
𝑖,𝑗,𝑘

 is the actual quality of it collected by the UAV, 

and 𝜔𝑘 is the weight of the k-th attribute. The trust evaluation 

of ℳ𝑖  in the latest Z interactions is {𝒯𝐷𝐶
𝑖,(1)

, 𝒯𝐷𝐶
𝑖,(2)

, … , 𝒯𝐷𝐶
𝑖,(𝑘),

… , 𝒯𝐷𝐶
𝑖,(𝑍)

}, 0 ≤ 𝒯𝐷𝐶
𝑖,(𝑘) ≤ 1, 𝑘 ∈ [1, 𝑍], Z is maximum valid rec-

ords. {𝒯𝐷𝐶
𝑖,(1)

, 𝒯𝐷𝐶
𝑖,(2)

, … , 𝒯𝐷𝐶
𝑖,(𝑘), … , 𝒯𝐷𝐶

𝑖,(𝑍)
} are arranged in the or-

der of interaction time, 𝒯𝐷𝐶
𝑖,(1)

 is the oldest interaction, 𝒯𝐷𝐶
𝑖,(𝑍)

 is 

the most recent interaction. Based on the most recent Z interac-

tions, the comprehensive global trust of ℳ𝑖 is: 

𝒯ℎ𝑖𝑠
𝑖 =∑𝒯𝐷𝐶

𝑖,(𝑘)ℎ(𝑘)

𝑍

𝑘=1

𝑍⁄ .                                (14) 

ℎ(𝑘) is the decay function, which is used to reasonably weigh 

the trust evaluations that occur at different timestamps. The in-

teraction closer to present has a higher weight, while interaction 

 

Algorithm 2: Algorithm for global trust evaluation 

Input: 𝕄+ set of all MDCs participating in data collection 

Initial: 𝒯𝐷𝐶
𝑖 = 𝑛𝑢𝑙𝑙 

1: For each ℳ+
𝑖 ∈ 𝕄+ Do  

2:      ℳ+
𝑖  submits a data list 𝕃𝑖 to the data center 

3:       Let 𝕃𝑖 ∈ 𝕃 

4: End for 

5: Compute the set 𝕎 of winning MDCs using Algorithm 1 

6: Data center purchases the data 𝔻𝑤𝑖𝑛 from the winning MDCs 

7: UAVs submit baseline data 𝔻𝑈𝐴𝑉 to the data center 

8: For each ℳ𝑖 ∈ 𝕎 Do 

9:       𝔻𝑆𝐴𝑀𝐸 = 𝑛𝑢𝑙𝑙 
10:     For each 𝐷𝑘 ∈ 𝔻𝑖 of ℳ𝑖 Do 

11:         For each 𝐷𝑈𝐴𝑉
𝑘 ∈ 𝔻𝑈𝐴𝑉 Do 

12:          If 𝐷𝑘 and 𝐷𝑈𝐴𝑉
𝑘  are data about the same site Do 

13:            Compute the trust 𝒯𝐷𝐼𝐹𝐹
𝑘 = ∑ 𝜔𝑘

𝑈
𝑘=1 |𝒬𝑈𝐴𝑉

𝑖,𝑘 − 𝒬𝑠𝑒𝑙𝑓
𝑖,𝑘 | 

14:            Let 𝐷𝑘 ∈ 𝔻𝑆𝐴𝑀𝐸 

15:            𝒯𝐷𝐶
𝑖 = 𝒯𝐷𝐶

𝑖 + 𝒯𝐷𝐼𝐹𝐹
𝑘  

16:          End if  

17:        End for 

18:     End for 

19:     Compute the one-time trust of ℳ𝑖, 𝒯𝐷𝐶
𝑖 = 𝒯𝐷𝐶

𝑖 |𝔻𝑆𝐴𝑀𝐸|⁄  

20:     Compute the comprehensive trust of ℳ𝑖 using Formula 14 

21: End for 

Output: the global trust of MDCs in 𝕎 

far away from the present has a lower weight. The decay func-

tion is defined as: 

ℎ(𝑘) = {
1, 𝑘 = 𝑍,                            

ℎ(𝑘 + 1) −
1

𝑧
, 1 ≤ 𝑘 < 𝑍.

             (15) 

𝑁𝑢𝑚𝑠𝑢𝑐  and 𝑁𝑢𝑚𝑓𝑎𝑖𝑙  indicate the number of successful and 

failed interactions of MDCs. It is updated based on the verifi-

cation results. In the data list submitted by MDCs to the data 

center, there is a 𝑇𝑙𝑖𝑛𝑘 field for each packet, which records all 

MDCs who have transmitted the data from the sensing device 

to the data center. Compare the data with the baseline data, if it 

is consistent, then all MDCs recorded in 𝑇𝑙𝑖𝑛𝑘 are added a suc-

cessful interaction record 𝑁𝑢𝑚𝑠𝑢𝑐 = 1. Otherwise, all MDCs 

recorded in 𝑇𝑙𝑖𝑛𝑘 are added a failed interaction 𝑁𝑢𝑚𝑓𝑎𝑖𝑙 = 1. 

This is not only helpful for identifying malicious MDCs, but 

also allow MDCs to be more cautious when exchanging data 

with other MDCs. 



 

 

Second, if there is no data submitted by ℳ𝑖  that overlaps 

with the data collected by UAVs, we cannot conduct trust eval-

uation on ℳ𝑖, then let the global trust of ℳ𝑖 be 𝒯𝐷𝐶
𝑖 = 𝑛𝑢𝑙𝑙. 

Assuming the set of MDCs participating in data collection is 

𝕄+, the set of winning MDCs is 𝕎, the set of data provided by 

winning MDCs is 𝔻𝑤𝑖𝑛 , 𝔻𝑤𝑖𝑛 = {𝔻1, 𝔻2, …𝔻𝑖 … }, where 𝔻𝑖 

is set of data reported by ℳ𝑖. The set of data list submitted by 

all MDCs is 𝕃, and the data list of ℳ𝑖 is 𝕃𝑖, 𝕃𝑖 = {𝐿𝐷1 , 𝐿𝐷2 , … }, 

where 𝐿𝐷1 is the record of data packet 𝐷1, 𝐿𝐷1=[𝜏𝑐 , 𝐷𝑒𝑣𝑐 , 𝐴𝑏𝑠𝐷 ,

𝑇𝑙𝑖𝑛𝑘, 𝒬𝑠𝑒𝑙𝑓 , 𝒫𝐷]. The set of baseline data provided by UAVs is 

𝔻𝑈𝐴𝑉 = {𝒟𝑈𝐴𝑉
1 , 𝒟𝑈𝐴𝑉

2 , … , 𝒟𝑈𝐴𝑉
𝑖 , … }. Then the global trust eval-

uation can be represented by Algorithm 2. 

C. Local Trust Evaluation Model in UUTE 

Local trust helps MDCs decide whether to exchange data, so 

that data can be collected collaboratively between trusted 

MDCs. Based on the data verification hash code issued by 

UAVs, MDCs make local trust evaluation for other MDCs that 

have exchanged data with them. 

Each MDC has a table storing the interaction history locally, 

which records all MDCs who have exchanged data with it, as 

shown in Table 1. 

TABLE II 

Data interaction records of MDCs 

ℳ𝑖𝑛𝑑𝑒𝑥  𝑁𝑢𝑚𝑠𝑢𝑐 𝑁𝑢𝑚𝑓𝑎𝑖𝑙  𝑇𝑟𝑢ℎ𝑖𝑠 

MDC_010 6 1 [0.85, 0.73, 0.88…] 

MDC_010 2 3 [0.80, 0.75, 0.20…] 

… … … … 

ℳ𝑖𝑛𝑑𝑒𝑥  is the identification of the interactive MDC, 𝑁𝑢𝑚𝑠𝑢𝑐 is 

the record of successful interaction, 𝑁𝑢𝑚𝑓𝑎𝑖𝑙  is the record of 

failed interaction, 𝑇𝑟𝑢ℎ𝑖𝑠  is the local trust evaluation made by 

the current MDC to the interactive opponent in the past data 

interactions. 

According to the success and failure interactions and past lo-

cal trust of MDCs, the trust reference value for data interaction 

is calculated as follows: 

𝑇𝑖𝑡𝑎𝑐 = 𝜔1
𝑁𝑢𝑚𝑠𝑢𝑐

𝑁𝑢𝑚𝑠𝑢𝑐 +𝑁𝑢𝑚𝑓𝑎𝑖𝑙

+𝜔2∑𝑇𝑟𝑢ℎ𝑖𝑠
𝑘
ℎ(𝑘)

𝑍

𝑍

𝑘=1

, 

where 𝜔1 + 𝜔2 = 1,𝜔1 < 𝜔2.                       (16) 
𝜔1  and 𝜔2  are weight factors, because 𝑁𝑢𝑚𝑠𝑢𝑐  and 𝑁𝑢𝑚𝑓𝑎𝑖𝑙  

not only record the interactions between MDCs, but also the 

interactions between MDC and the data center. And 𝑇𝑟𝑢ℎ𝑖𝑠  is 

the trust evaluation made by the current MDC on the evaluated 

object, so we assign a higher weight to 𝜔2 . Before deciding 

whether to interact, the MDC has an expected trust 𝑇𝑒𝑥𝑝 . If 

𝑇𝑖𝑡𝑎𝑐 > 𝑇𝑒𝑥𝑝, then agree to the data exchange, otherwise no data 

exchange occurs. 

We mark data exchange between MDCs in a specific format. 

For ℳ𝑖, a data exchange is expressed as: 

ℛ𝑀𝐷𝐶
𝑖 = [𝑁𝑖𝑡𝑎𝑐 , 𝐼𝑡𝑎𝑐ℎ𝑖𝑠 ,ℳ𝑖𝑛𝑑𝑒𝑥 , 𝐴𝑏𝑠𝐷, 𝑇𝑟𝑢𝑖𝑡𝑎𝑐 , 𝜏𝑖𝑡𝑎𝑐].   (17) 

𝑁𝑖𝑡𝑎𝑐  is the interaction number; 𝐼𝑡𝑎𝑐ℎ𝑖𝑠  is used to identify 

whether there has been data interaction with the MDC before; 

ℳ𝑖𝑛𝑑𝑒𝑥  is the identification of the interactive MDC; 𝐴𝑏𝑠𝐷 is the 

abstract information of the interaction data; 𝑇𝑟𝑢𝑖𝑡𝑎𝑐 is the trust 

evaluation of ℳ𝑖𝑛𝑑𝑒𝑥  made by ℳ𝑖 in this interaction. 𝑇𝑟𝑢𝑖𝑡𝑎𝑐  
 

Algorithm 3: Algorithm for local trust evaluation 

1: For each ℳ𝑖 wants to exchange data Do  

2:      Compute trust 𝑇𝑖𝑡𝑎𝑐 of ℳ𝑖𝑡𝑎𝑐 using Formula 16 

3:       If 𝑇𝑖𝑡𝑎𝑐 > 𝑇𝑒𝑥𝑝 Do 

4:           Add an interaction record, and exchange data 

5:           Let 𝐷𝑖𝑡𝑎𝑐 ∈ 𝔻𝑖𝑡𝑎𝑐
𝑖  

6:       End if 

7: End for 

8: UAVs distribute data verification hash code to MDCs 

9: For each ℳ𝑖 receives data verification hash code Do 

10:     For each 𝐷𝑖 ∈ 𝔻𝑖𝑡𝑎𝑐
𝑖  of ℳ𝑖 Do 

11:         If 𝐷𝑖 corresponds to a data verification hash code 𝒽𝑣 Do 

12:            ℳ𝑖 generates the data verification hash code 𝒽𝑖 of 𝐷𝑖 
13:            If 𝒽𝑖 matches 𝒽𝑣 Do 

14:                Let 𝑁𝑢𝑚𝑠𝑢𝑐 = 1 of ℳ𝑖 and ℳ𝑖𝑡𝑎𝑐 

15:            End if 

16:            Else 

17:                Let 𝑁𝑢𝑚𝑓𝑎𝑖𝑙 = 1 of ℳ𝑖 and ℳ𝑖𝑡𝑎𝑐 

18:     End for 

19:     Compute local trust of MDCs interacted with ℳ𝑖 using 

Formula 18 

20: End for 

Output: the local trust of MDCs participating in data exchange 

can be evaluated after data exchange, or after local evaluation 

based on hash verification code, 𝜏𝑖𝑡𝑎𝑐  is interaction timestamp. 

The steps of local trust evaluation are shown in Fig. 3: 

• Generate hash code for data verification. After the data 

center obtains the data from the winning MDCs, it generates 

hash verification codes for the data. The data verification hash 

code is obtained based on the hash function. According to the 

characteristics of the hash function, it is a one-way derivation 

mode. That is, the data verification hash code can be derived 

from the data, but the data cannot be deduced through the hash 

verification code. This prevents malicious MDCs from stealing 

data after obtaining the hash verification code. Then the data 

center sends the hash verification codes to UAVs; 

• UAVs distribute the code to MDCs. On the way to collect-

ing data from sites, the UAVs send the data verification hash 

code to MDCs in the line of sight; 

• MDCs verify the data obtained from the interacted objects. 

After MDCs obtain the hash verification code, they first analyze 

whether the data has been collected by themselves. If it has been 

collected, they also use the hash function to generate the data 

verification hash code for their own data; 

• MDCs make trust evaluations for interacted MDCs. MDCs 

compare the hash code generated by themselves with the hash 

code issued by UAVs, and if they are consistent, let 𝑁𝑢𝑚𝑠𝑢𝑐 =
1 of the MDC that interacts with, otherwise 𝑁𝑢𝑚𝑓𝑎𝑖𝑙=1. Based 

on the verification result of data hash code, a trust evaluation is 

obtained: 

𝒯𝑙𝑜𝑐𝑎𝑙 =
𝑁𝑢𝑚𝑠𝑢𝑐

𝑁𝑢𝑚𝑠𝑢𝑐 + 𝑁𝑢𝑚𝑓𝑎𝑖𝑙 + 1
+

𝜗

𝑁𝑢𝑚𝑠𝑢𝑐 + 𝑁𝑢𝑚𝑓𝑎𝑖𝑙 + 1
, 

where 𝜗 = 0.5.                                              (18) 
Suppose the MDC that wants to exchange data is ℳ𝑖, and the 

MDC interacted with it is ℳ𝑖𝑡𝑎𝑐, 𝔻𝑖𝑡𝑎𝑐
𝑖  is the data set obtained 

by ℳ𝑖 through exchange, 𝐷𝑖𝑡𝑎𝑐  is the data exchanged. The data 

verification hash code distributed by UAVs is 𝒽𝑣. Then local 

trust evaluation can be expressed by Algorithm 3.  

 



 

 

TABLE III 

Malicious attacks in the trust model 

Attacks Performance Communication Data Reputation 

Man-in-the-middle attack Intercept communication; tamper with or sniff data √ √  

Selective forwarding Discard part or all critical data  √  

Sybil attack Tamper with or falsify data; steal data  √  

Packet tampering Abnormality of data packets  √  

On-off attack Perform bad or good behaviors alternately √ √  

Bad/good mouth attack Provide bad evidence for legitimate participants and 

good evidence for malicious attackers 

  √ 

V. THEORETICAL ANALYSIS 

In this section, we conduct a theoretical analysis on UUTE in 

terms of security, reliability and correctness. 

First, we analyze common malicious attacks. Malicious data 

collectors launch various attacks after entering the network. 

Typical attacks include man-in-the-middle attack, selective for-

warding, sybil attacks, packet tampering, etc. [5], [7]. In the 

man-in-the-middle attack, assume that the communication be-

tween 𝑀𝐷𝐶𝑎  and 𝑀𝐷𝐶𝑏  is forwarded by 𝑀𝐷𝐶𝑐 , then 𝑀𝐷𝐶𝑐 
can intercept normal communication and perform data tamper-

ing and sniffing. However, both parties in the communication 

have no knowledge of this. In the selective forwarding attack, 

the relay node discards part or all critical information when for-

warding data packets. In sybil attacks, active attackers tamper 

and forge messages, and passive attackers intercept or eaves-

drop on related data. In addition, there are some attacks that 

specifically target the trust model, such as on-off attacks and 

bad/good mouth [12]. In on-off attacks, malicious nodes alter-

nately perform positive and negative behaviors. After launching 

a malicious attack for a period of time, the attacker resumes 

normal behavior to avoid detection. In bad/good mouth, mali-

cious attackers provide bad evidence for legitimate participants 

and good evidence for malicious attackers [12]. The perfor-

mance and impact of these attacks are given in Table III. 

As summarized in Table III, the damage to network perfor-

mance caused by malicious attacks is mainly reflected in the 

following aspects: (1) Communication. Malicious attacks inter-

cept or block the communication between normal participants 

through various means, so that normal nodes cannot communi-

cate successfully, and increase the extra cost of the network due 

to message retransmission. (2) Data quality. Malicious attacks 

intercept and steal communication messages, thereby causing 

data leakage, and even worse attackers tamper or forge illegal 

data, thereby reducing data quality. (3) Reputation. Malicious 

attackers provide false trust evaluations, making the network 

unable to accurately distinguish between ordinary participants 

and malicious attackers. 

Based on the above manifestations of malicious attacks, we 

analyze the security, reliability and correctness of UUTE below. 

Security. Malicious attacks mainly affect communication se-

curity and data security. Therefore, security can be ensured by 

detecting abnormal communication and data behaviors [7], [12]. 

First, for communication security, the local trust evaluation 

model proposed in UUTE can be realized by analyzing the data 

interaction behavior of the evaluated object within a valid time. 

In the local trust evaluation model, any two directly interacting 

nodes conduct mutual trust evaluation, and the number of suc-

cessful and failed interactions of nodes accumulate with the fre-

quency of interactions. Therefore, by analyzing the success and 

failure of the evaluated object in the continuous massive data 

interaction, it can be accurately judged whether the evaluated 

object has made a malicious attack in communication. In addi-

tion, the global trust evaluation model proposed in UUTE can 

ensure data security. In the global trust evaluation model, by 

comparing the data submitted by the evaluated object with the 

baseline data obtained by UAVs, the difference between the 

submitted data and the real value can be accurately analyzed, 

thus determining whether the evaluated object has tampered 

with or forged the data. Moreover, in UUTE’s local trust eval-

uation model, the authenticity of the data is verified through the 

data verification hash code distributed by UAVs, and this veri-

fication code is based on the original data through hash function 

processing, so it has one-way and irreversible characteristics. 

This means that even if a malicious node gets a data validation 

hash code, it cannot roll back the data against the verification 

code, thus preventing the data from being stolen. 

Reliability. In UUTE, the global trust evaluation model is 

used to evaluate the credibility of the evaluated object in terms 

of data, and the local trust evaluation model evaluate the per-

formance of the evaluated object both in data and communica-

tion. Therefore, assuming that unexpected situations such as 

drone hijacking occur during the implementation of global trust 

evaluation, trust evaluation can also be conducted through the 

local trust evaluation model. Although this has a certain impact 

on the accuracy of the evaluation, it can still ensure the imple-

ment of the trust evaluation. And the local trust evaluation is 

implemented by observing the interactive relationship between 

the evaluated objects. This evaluation method is feasible in gen-

eral scenarios, even in scenarios with sparse interactions, 

through the combination of global and local models, trust eval-

uation is also feasible. 

Correctness. The correctness of trust evaluation is consid-

ered from data and reputation. Judging from the data accuracy, 

the accuracy of UUTE is relatively high. In UUTE's global trust 

evaluation, the data submitted by evaluated objects are com-

pared with the baseline data obtained by UAVs. This is an ob-

jective and confirmatory evaluation method, which is not af-

fected by the subjective attitude of the evaluator as the previous 

passive evaluation, so it has a high accuracy. From the reputa-

tion perspective, UUTE can also resist the false reputation pro-

vided by attacks such as bad/good mouth. In this article, each 

evaluated object exchanges data with a large number of other 

entities during data collection, so even if a small number of ma-

licious nodes provide false reputation information, the large 



 

percentage of ordinary nodes provide real reputation. Suppose 

that 𝑀𝐷𝐶𝑎 interacts with m nodes, and n nodes are malicious 

and provide false reputation. When m is large and n is small 

enough, the reputation trust provided by n malicious attackers 

has little impact on the entire trust evaluation. Especially in the 

context of 5G and beyond networks, the number of IoT devices 

in the network is very large, that is, m is a large number. 

VI. EXPERIMENTAL ANALYSIS 

A. Experiment Setup 

We use urban data collection as a typical scenario for the ex-

periment in this article. In the experimental scenario, the data 

center is deployed in the city center, and many taxis act as mo-

bile data collectors to move around the city for data collection. 

To make the experiment more realistic, the urban taxis use a 

real vehicle trajectory dataset [29], [30]. The dataset contains 

the GPS trajectories of 10,357 taxis during the period of Feb. 2 

to Feb. 8, 2008 within Beijing. The total number of points in 

this dataset is about 15 million and the total distance of the tra-

jectories reaches 9 million kilometers. Each track record in the 

dataset contains the following fields: taxi id, date time, longi-

tude, latitude. The longitude and latitude information of the ve-

hicle trajectory in the original dataset is converted into plane 

coordinates. Fig. 4 is a map of the trajectory of these taxis in a 

day. In the trajectory shown in Fig. 4, some records are invalid, 

and some records have nothing to do with the experiment. 

Therefore, we preprocess the dataset to filter out the illegal rec-

ords, while retaining the trajectory information of 1600 vehicles. 

These taxis are richer in activity trajectories. 

 
Fig. 4. Trajectory of vehicles in dataset in one day 

Other experimental settings are as follows: (a) Based on the 

vehicle trajectories and city maps in the dataset, we selected 500 

data collection sites. Among them, the urban center area with 

huge traffic is densely deployed, and the edge area is sparsely 

deployed. Each data collection site is deployed with a sensing 

device, and each sensing device generates five packets in one 

round. (b) When the vehicle is within 30 meters from the sens-

ing device, data can be obtained from the sensing device. And 

when the vehicle is moving, it can exchange data with other ve-

hicles within communication range. The expected trust of data 

exchange is 𝑇𝑒𝑥𝑝=0.5. Only when the trust of opponent is higher 

than 𝑇𝑒𝑥𝑝, the current vehicle agrees to exchange data with it. 

(c) The payment for each packet of vehicles is 0.3-0.9. Before 

the first interaction, the global and local initial trust of vehicles 

is 1, and the initial number of successful and failed interactions 

is 0. (d) In each round, the collection frequency of data collec-

tion sites is counted, and 10% of the sites with the highest fre-

quency are selected as the sites for UAVs to obtain baseline data. 

We evaluate the effectiveness of UUTE based on the follow-

ing metrics: a) Data coverage. Data coverage refers to the max-

imum sites’ coverage achieved by the data provided by vehicles. 

b) Cost. Cost refers to the total expenditure of the system for 

collecting data. c) Trust. Trust is the reliability of vehicles based 

on their data quality and interaction performance. 

For comparison, we chose two reference schemes. The first 

is the Cost Minimization scheme based on Passive Trust evalu-

ation (CMPT), which is based on the Trust-based Minimum 

Cost and Quality Aware Data Collection Scheme proposed in 

[26], by introducing a passive trust evaluation mechanism. In 

CMPT, the data center selects vehicles with low data collection 

prices as winning data providers each time. To save costs, 

UAVs are not introduced in trust evaluation, and the trust is 

computed by observing the interactive behaviors of MDCs. At 

the same time, in order to obtain more interactive behaviors to 

judge trust accurately, we set 𝑇𝑒𝑥𝑝=0.3. The second is the Qual-

ity Optimization scheme based on Active Trust evaluation 

(QOAT), which is an improvement on the scheme proposed by 

Jiang et al. in [22]. In QOAT, the data center selects the data 

submitted by the most trusted MDC each time. In order to better 

verify the authenticity of data, in addition to making local eval-

uations based on interactive behaviors, UAVs are dispatched to 

collect baseline data from 30% of sites with the highest fre-

quency for global trust evaluation. 

B. Data Coverage 

The data center selects part vehicles from all the vehicles that 

provide the data list, purchases the data submitted by them, and 

gives them data collection payment. Those vehicles that are se-

lected to submit data and get payments are called winning ve-

hicles. Fig. 5–Fig. 7 show the data coverage of winning vehicles. 

Usually, the greater the data coverage, the more data about the 

sites provided by winning vehicles. Hence, the larger the data 

space, the better the data quality. 

We select winning vehicles on the condition that the maxi-

mum coverage is reached, i.e., for each data collection site that 

generates data packets, it is guaranteed that it has at least one 

vehicle providing data. Therefore, in Fig. 5-Fig. 7, the number 

of sites is the same, and 500 data collection sites are all covered, 

but the data coverage of each site is different. In the UUTE, the 

maximum data coverage is about 335, the data coverage of sites 

in the central area is mostly at 134.6-335, and the data coverage 

of sites in the peripheral area is mostly at 1-67.8. In the CMPT, 

the data coverage is up to about 289, the data coverage of sites 

in the center area is mostly at 116.2-289, and the data coverage 

of sites in the edge area is mostly at 1-58.6. In the QOAT, the 

maximum data coverage is about 353, most of the data coverage 

of sites in the central area is at 141.8.2-353, and that of the sites 

in the edge area is at 1-71.4. It can be seen that the largest data 

coverage is QOAT, while the data coverage of CMPT is signif-

icantly smaller than the other two solutions. This is because 

CMPT adopts a low-price priority vehicle selection mechanism, 

so there may be some vehicles with very low data payments that  



 

 

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Y
 a

x
is

X axis

1.000

67.80

134.6

201.4

268.2

335.0

Y
 a

x
is

X axis

1.000

58.60

116.2

173.8

231.4

289.0

Y
 a

x
is

X axis

1.000

71.40

141.8

212.2

282.6

353.0

 
Fig. 5. Data coverage reached by winning 

vehicles in UUTE 

Fig. 6. Data coverage reached by winning 

vehicles in CMPT 

Fig. 7. Data coverage reached by winning 

vehicles in QOAT 
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Fig. 8. Payment for purchasing data 

from winning vehicles in each round 

Fig. 9. Cost of UAVs for collecting baseline 

data in each round 
Fig. 10. Total data collection cost in 

each round 

are actually malicious mobile data collectors with low trust, so 

the data they provide is invalid, which reduces actual data cov-

erage. QOAT uses a high-trust-first vehicles selection mecha-

nism, which most of the data provided are trustworthy, so the 

actual data coverage is high. The UUTE proposed in this article 

considers both payment and trust. The results show that its data 

coverage is slightly smaller than QOAT, and it can also achieve 

a good data coverage. 

C. Cost 

Cost includes the payment for purchasing data from winning 

vehicles and the overhead of dispatching UAVs to collect base-

line data. In this paper, the process of all vehicles traversing 

once according to the trajectory in the dataset and submitting 

the data packets to the data center is called a round of data col-

lection. Assuming that the payment for each data packet sub-

mitted by the vehicle is between 0.3 and 0.9, and Algorithm 1 

is used to select the winning vehicles that provide the data, then 

the payment for purchasing data from winning vehicles in each 

round is shown in Fig. 8. As shown in Fig. 8, CMPT purchases 

the cheapest packets each time so its payment is the lowest. 

UUTE considers price as a key factor when selecting winning 

vehicles, so its payment is slightly higher than CMPT, while 

QOAT only focuses on trust of vehicles, so its data collection 

cost is much higher. The data collection payment of UUTE is 

0.94%-16.58% higher than CMPT, and 0.76%-32.9% lower 

than QOAT. 

Assuming that the conversion factor α in UUTE and QOAT 

is a fixed constant, UUTE selects 10% of baseline sites, and 

QOAT selects 30% of baseline sites, then the cost of dispatch-

ing UAVs to collect baseline data is illustrated in Fig. 9. The 

cost is directly proportional to the flight distance, and the flight 

distance is directly proportional to the number of sites. As 

shown in Fig. 9, the cost of UAVs of UUTE is significantly 

lower than QOAT, which is about 51.69%-72.49% of QOAT. 

Fig. 10 is the total cost of the three schemes. Compared with 

CMPT, the total cost of UUTE is increased by 4.49%-21.18%; 

compared with QOAT, the cost is reduced by 2.17%-34.96%. 

D. Trust 

The trust of vehicles includes global and local trust. Global 

trust refers to the trust evaluated by the data center based on 

baseline data. Local trust refers to the trust evaluation given by 

other vehicles based on data exchange. Assuming that the initial 

trust of all vehicles is 1, the data exchange trust threshold is 0.5 

(the threshold of CMPT is 0.3), one-time trust is the value ob-

tained from a trust evaluation, comprehensive trust is the 

weighted result of multiple trust evaluations considering time 

decay. And the maximum historical trust record Z=10, then the 

local and global trust of vehicles can be obtained, as shown in 

Fig. 11-Fig. 14. 

Fig. 11 shows the local trust of credible vehicles. The local 

trust is given by other vehicles. The more vehicles that provide 

evaluation, the more accurate the local trust of the vehicle, be-

cause even a small number of vehicles conspire to give high 

evaluations to increase mutual trust. Most vehicles provide true 

evaluations. In Fig. 11 and Fig. 12, the one-time trust of credible 

vehicles fluctuates greatly, and most vehicles are above 0.5. 

However, due to data interaction, credible vehicles obtain false 

data from malicious vehicles, which affects their data quality, 

resulting in a very low one-time trust of some credible vehicles. 

The comprehensive trust is based on multiple data submissions 

or interactions. Even though credible vehicles may be affected 

by one-time malicious interaction, due to its credible nature, it  
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Fig. 11. Local trust of credible vehicles in UUTE Fig. 12. Global trust of credible vehicles in UUTE 
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Fig. 13. Local trust of malicious vehicles in UUTE Fig. 14. Global trust of malicious vehicles in UUTE 

 

provides credible data in most cases. Therefore, the comprehen-

sive trust of almost all vehicles is above 0.6, which shows that 

the trust evaluation of UUTE for credible vehicles is accurate. 

Fig. 13 and Fig. 14 are the local trust and global trust of ma-

licious vehicles. Since the data provided by malicious vehicles 

is false, it can be found to be unreliable through one data veri-

fication, so the one-time trust is very low. It can be seen from 

Fig. 13 that the five rounds of comprehensive local trust have 

little difference. This is because in the data interaction under the 

UUTE, when the trust of objects to exchange data is lower than 

0.5, it refuses to interact with it. As a result, after the trust of 

malicious vehicles is below 0.5, data interaction does not occur 

again, so its local trust has not changed in the following rounds. 

Unlike the local trust, in the global trust shown in Fig. 14, the 

comprehensive global trust of malicious vehicles is gradually 

reduced in each round, and the trust of most vehicles has been 

reduced to about 0.1 in the fifth round. Because when using 

UAVs to obtain baseline data to evaluate the data of malicious 

vehicles globally, as long as the data sites collected by the ve-

hicle are consistent with the UAVs, they can be compared and 

verified, and the sites collected by UAVs are sites with highest 

frequency. Therefore, with each comparison with baseline data, 

the bad attributes of malicious vehicles become more and more 

obvious. Comparing Fig. 13 and Fig. 14, it can be found that 

compared to the local trust based on interactive behavior, the 

global trust assisted by UAVs can be more dynamic and accu-

rate in evaluating the trust of malicious vehicles. 

Similar to the trend in Fig. 11-Fig. 14, Fig. 15-Fig. 16 shows 

the average trust of credible and malicious vehicles under the 

UUTE, CMPT and QOAT schemes. Overall, whether it is av-

erage local trust or average global trust, the trust of credible ve-

hicles gradually increases with the number of rounds, and the 

trust of malicious vehicles gradually decreases with the number 

of rounds, which are gradually getting closer to their true trust. 

Comparing the trust evaluation of the three schemes, the evalu-

ation results of QOAT are more accurate for credible vehicles, 

and the results of UUTE are closer to QOAT. For malicious ve-

hicles, the evaluation results of CMPT are more accurate. 

The trust of winning vehicles directly determines the data 

quality. The higher the trust of the vehicles, the higher the cred-

ibility of the data it provides, and the better the data quality. Fig. 

17 depicts the trust of winning vehicles. Whether it is global 

trust or local trust, the trust of winning vehicles under QOAT is 

the highest, followed by UUTE. Compared with CMPT, trust 

of winning vehicles under UUTE is about 0.11 higher. Some of 

the selected winning vehicles may be malicious vehicles in dis-

guise, so the data they provide is not only useless to the system, 

but also affects network coverage and data quality. Fig. 18 

shows the proportion of malicious vehicles under the three 

schemes. Although the proportion of malicious vehicles in each 

round changes somewhat, overall, the ratio of malicious vehi-

cles in QOAT is very small. Only about 0.03-0.08 vehicles are 

malicious vehicles. While the ratio of malicious vehicles in 

CMPT is much higher, the maximum is about 0.F. The propor-

tion of malicious vehicles in UUTE proposed in this article is 

relatively stable, basically between 0.06-0.09 in each round. 
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Fig. 15. Average local trust of vehicles in 

each round 

Fig. 16. Average global trust of vehicles 
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Fig. 18. Percentage of malicious winning vehicles in each round 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we propose a UAV-assisted ubiquitous trust 

communication system, which can achieve low-cost and high-

quality data collection in 5G and beyond networks. We select 

urban data collection as a typical scenario and use incentive 

mechanisms to stimulate more MDCs to participate in tasks. 

Specifically, for the data collection platform, when selecting 

data providers, we propose a UAV-assisted global trust evalua-

tion model to help the data center identify malicious partici-

pants from a large number of MDCs. Regarding the data inter-

action between MDCs, to avoid malicious MDCs from harming 

trusted participants, we propose a local trust evaluation model 

that allows MDCs to conduct trust evaluations of data collectors 

who have interacted with them. Experimental results demon-

strate that, compared with the previous evaluation methods, the 

UUTE can make more accurate trust evaluations for credible 

and malicious data collectors, at the same time reduce the data 

collection cost. For the further works, we consider using trusted 

MDCs as sub-benchmarks to accelerate the evolution and scope 

of trust, while conducting in-depth analysis of possible security 

threats to drones to improve system robustness. 
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