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Abstract—Due to its fast deployment and scalability, cloud
computing has become a significant technology trend. Organi-
zations with limited budgets can achieve great flexibility at a low
price by outsourcing their data and query services to the cloud.
Since the cloud is outside the organization’s trusted domain,
existing research suggests encrypting data before outsourcing to
preserve user privacy. Two main problems that the cloud user
faces while searching over encrypted data are how to achieve a
fine-grained search authorization and how to efficiently update the
search permission. The existing attribute-based keyword search
(ABKS) scheme addresses the first problem, which allows a
data owner to control the search of the outsourced encrypted
data according to an access policy. This paper proposes a
dynamic attribute-based keyword search (DABKS) scheme that
incorporates proxy re-encryption (PRE) and a secret sharing
scheme (SSS) into ABKS. The DABKS scheme, which allows the
data owner to delegate policy updating operations to the cloud,
takes full advantage of cloud resources. We conduct experiments
on real data sets to validate the effectiveness and efficiency of
our proposed scheme.

Index Terms—cloud computing, searchable encryption, fine-
grained search authorization, dynamic access policy.

I. INTRODUCTION

Cloud computing, which offers computer resources dynam-
ically via Internet, provides users with many benefits, such
as fast deployment, scalability and elasticity [1], [2]. Small
and medium-sized enterprises in particular can achieve great
flexibility at a low price by outsourcing their data and query
services to the cloud. Since the cloud service provider (CSP)
may leak users’ private data consciously or unconsciously,
existing research [3], [4] suggests encrypting data before
outsourcing to preserve user privacy.

However, data encryption would make searching over ci-
phertexts a very challenging task. A simple solution which
downloads the whole data set from the cloud would incur
extensive communication costs. Therefore, searchable encryp-
tion (SE) [5]–[9] was proposed to enable a user to retrieve
data of interest while maintaining user privacy. Depending on
the selection of index key (pk) and search key (sk), exist-
ing SE solutions can be classified as symmetric-key settings
(sk = pk) or public-key settings (sk ̸= pk). In a typical cloud
computing environment, the data owner encrypts each file with
traditional symmetric/asymmetric cryptography and encrypts

the relevant keywords with SE under pk separately. To retrieve
files described by keyword w, the data user first asks the data
owner for sk, with which a search token for w is generated. On
receiving the search request, the CSP will evaluate the search
token on keyword ciphertexts and return all the matched files
to the user, who will then perform decryption locally to recover
file contents.

Previous SE solutions grant search permission in a coarse-
grained way; by using the search key, the data user has the
ability to generate search tokens for all the keywords. In many
situations, such a search authorization would potentially risk
privacy disclosure. To illustrate, let us consider the following
scenario: Company A outsources its file management system
to Amazon S3 for easy access by its staff. Suppose that the
collaboration agreement, F , described with keywords “Com-
pany B” and “Project X” can be accessed only by the manager
of Company A. If attacker Alice is allowed to first search with
keyword “Project X” and then with keyword “Company B”,
the search results returned allows her to infer that Company
A is cooperating with Company B on Project X, even if she
cannot recover file content.

To alleviate this problem, Bao et al. [10] proposed an
authorized searchable encryption in a multi-users setting,
which allowed the data owner to enforce an access policy by
distributing some secret keys to authorized users. Li et al. [11]
constructed an authorized private keyword search scheme
based on hierarchical predicate encryption [12]. Among others,
Zheng et al. [13] proposed the attribute-based keyword search
(ABKS) scheme, which utilized attribute-based encryption
(ABE) [14] to achieve fine-grained search authorization for
public-key settings. In ABKS, each keyword wi is associated
with an access policy AP , and each search token is associated
with a keyword wj and a set of attributes S. The data user
can search the file only when her attributes satisfy the access
policy, denoted as S ≼ AP , and wj = wi. However, ABKS
never considered the problem of a dynamic access policy for
keywords. If AP is changed to AP ′, the data owner needs
to re-encrypt the relevant keywords with AP ′ so that only the
users whose attributes satisfy AP ′ have search permission. For
frequent updates on a large number of files, the workload on



Fig. 1. System model.

the data owner is heavy.
In this paper, we propose a dynamic attribute-based keyword

search (DABKS) scheme by incorporating proxy re-encryption
(PRE) [15] and a secret sharing scheme (SSS) into ABKS. In
DABKS, the CSP can update the access policy for keywords
without compromising user privacy. Specifically, DABKS ex-
presses the access policy AP as an access tree and transforms
the problem of updating an AND/OR gate in AP to that
of updating a threshold gate. For example, the AND gate is
transformed to (t, t) gate, and the OR gate is transformed to
(1, t) gate. Therefore, the updating of the AND gate can be
treated as updating (t, t) gate to (t′, t′) gate, and the updating
of the OR gate can be treated as updating (1, t) gate to (1, t′)
gate, where t′ = t+1 for adding an attribute to the AND/OR
gate and t′ = t − 1 for removing an attributes from the
AND/OR gate. Our key contributions are as follows:

1) To the best of our knowledge, this is the first attempt
made to devise a dynamic access policy for fine-grained
search authorization in a cloud environment.

2) The proposed DABKS scheme can largely reduce the
workload on the data owner by delegating the policy
updating operations to the cloud.

3) We conduct experiments on real data sets to validate the
effectiveness and efficiency of our proposed scheme.

II. PRELIMINARY

A. System Model
As shown in Fig. 1, the system is composed of the fol-

lowing parties: the cloud users, the cloud service provider
(CSP), and a trusted third party (TTP). The cloud users, who
pay the services residing on the cloud or deploy their own
applications/systems in the cloud, can be further classified
into data owner and data user. The data owner outsources
the encrypted data and keywords to the cloud and authorizes
multiple data users to access them. The data user will retrieve
data of interest according to a keyword-based search. The
CSP operates the cloud platforms, which provide not only the
storage and search services, but also perform policy updating
operations on behalf of the data owner. The TTP is responsible
for issuing credentials to all cloud users.

B. Attack Model
The cloud users and the TTP are assumed to be fully trusted.

The CSP is assumed to be honest but curious; this means it
will always correctly execute a given protocol, but may try to
learn some additional information about the stored data and the
received message. Furthermore, the communication channels

are assumed to be secured under existing security protocols
such as SSL and SSH.

While file content privacy can be achieved by approaches
proposed in [3], [16], the DABKS scheme aims to preserve
keyword privacy and query privacy for the cloud users. How-
ever, in the public-key setting, the attacker can handpick
a keyword to encrypt and can check whether the resulting
ciphertext and the target search token correspond to the same
keyword. Thus, it is impossible to protect search tokens from
the keyword-guessing attack. Let a probabilistic polynomial-
time adversary A model the CSP. Following the work in [13],
our scheme is considered secure if the following holds:

1) Selective security against chosen-keyword attacks.
Given a keyword ciphertext that mismatches all search tokens,
adversary A cannot infer any information about the keyword
plaintext in the selective security model [17] and cannot
deduce any information about the file content. 2) Keyword
secrecy. The probability that adversary A learns the keyword
from the keyword ciphertext and search tokens is negligibly
more than the probability of a correct random-keyword guess.
C. Access Tree

As the work in [14] suggests, the access policy AP can
be depicted as an access tree T where each interior node
denotes a gate and each leave node is depicted as an attribute.
In T , each node x is associated with a threshold value kx.
For the interior node x with Nx children, kx = 1 when x
is an OR gate, and kx = Nx when x is an AND gate. For
all leave nodes, the threshold value is 1. Let lev(T ) denote
leave nodes in T . If x ∈ lev(T ), att(x) is used to denote the
attribute associated with node x. Furthermore, T defines an
ordering between the children of each node, and parent(x)
and index(x) return the parent and the order number of
children node x, respectively.

Let T with root R correspond to the access tree of access
policy AP . To check whether a set of attributes Su satisfies
AP , denoted as Su ≼ AP , we compute TR(Su) recursively
as follows: Suppose that Tx denotes the subtree of T rooted
at the node x. If x is a non-leaf node, we evaluate Tb(Su) for
each child b of node x. Tx(Su) returns 1 if and only if at least
kx children return 1. If x is a leaf node, then Tx(Su) returns
1 if and only if att(x) ∈ Su. To share the secret σ in T , the
SSS generates ∆ = {qx(0)}x∈T as follows:
SSS(σ, T ) → ∆. A random polynomial qR of degree

kR − 1 is chosen for qR(0) = σ. The rest of the points in
qR are randomly chosen. For each node x ∈ T , a random
polynomial qx of degree kx − 1 is chosen for qx(0) =
qparent(x)(index(x)). The rest of points in qx are chosen
randomly. To recover the secret σ, the users with sufficient
secret shares can perform Lagrange interpolation recursively.
Please refer to [14] for more details.

III. THE DABKS SCHEME

Let A = {A1, . . . , AM} denote the universal attributes in
the system. The data user u is described by a set of attributes
Su ⊆ A. The data owner v holds a collection of files Ω =
{F1, . . . , Fn}, where each file Fi can be described by a set of



TABLE I
SUMMARY OF NOTATIONS

Notation Description
PK,MK System public/master key
Su Attribute set associated with data user u
sku Search key for data user u
Tw, T ′

w Original/new access policy for keyword w
cphw, cph′

w Original/new ciphertext for keyword w
Tokw Search token for keyword w
∆ A set of secret shares for nodes in Tw
UK Update key for updating Tw to T ′

w
Φ Auxiliary information for Att2AND/Att2OR gate

distinct keywords Wi. Before uploading file Fi to the cloud, v
will first encrypt Fi with ABE under access policy APF and
will then encrypt each keyword in Wi with DABKS under
access policy APK . The ciphertext for keyword w and for file
Fi is denoted as cphw and CFi , respectively. It is worth noting
that APF stipulating which entities can decrypt Fi and APK

stipulating which entities can search over Wi may be different.
For ease of illustration, we assume that the access policies for
Wi and Fi are the same, i.e., APF = APK . To retrieve files
containing keyword w, the data user will issue a search token
Tokw to the CSP, which will return {{cphw}w∈Wi , CFi} only
when Su ≼ APK and w ∈ Wi. To update APK to AP ′

K ,
the data owner will send an update instruction Γ to the CSP,
which will update related keyword ciphertexts to preserve the
correctness of the access policy for keywords Wi. For quick
reference, the most used notations are shown in Table I.
A. Construction

Fig. 2 shows the working process of the DABKS scheme,
where algorithms GenKey, EncFile, and Decrypt related to
ABE [14] are used to preserve file privacy. Since our work
focuses on preserving keyword privacy and query privacy, we
omit the construction of these algorithms in this paper.

(Initialization phase)
•Init(λ) → (PK,MK): Let e : G0 × G0 → G1

be the bilinear group, where G0 and G1 are cyclic
groups of prime order p, the TTP takes security
parameter λ as input, and it sets the system public
key PK and the system master key MK as follows:
PK = {H1, H2, e, g, p, ga, gb, gc}, MK = (a, b, c),

where H1 : {0, 1}∗ → G0 is a hash function modeled as
a random oracle, H2 : {0, 1}∗ → Zp is a one-way hash
function, g ∈ G0 is the random generator of G0, and a, b, c
are randomly chosen from Zp.

•KeyGen(PK,MK,Su) → sku: For data user u asso-
ciated with attribute set Su, the TTP generates search key
sku for u as follows: it first randomly selects r ∈ Zp, and
computes D = g(ac−r)/b. Then, it selects a random rj ∈ Zp

for each attribute Aj ∈ Su and computes Bj = grH1(Aj)rj

and B̄j = grj . The search key is set as follows:
sku = (Su, D, {(Bj , B̄j)}Aj∈Su)

(Store phase)
•EncKW (PK,w, Tw) → (cphw,∆): To encrypt keyword

w under access tree Tw, the data owner first randomly
selects r1,σ ∈ Zp and computes K1 = gcr1 , K2 =

Fig. 2. Working process of the DABKS scheme.

ga(r1+σ)gbH2(w)r1 , and K3 = gbσ . Then, it computes Cxi =
gqxi (0) and C̄xi = H1(att(xi))

qxi(0) , where qxi(0) is the share
of secret σ for leave node xi in Tw generated by SSS. The
ciphertext for keyword w is set as the following:

cphw = (Tw,K1,K2,K3, {Ci = (Cxi , C̄xi)}xi∈lev(Tw))

For updating access tree Tw to T ′
w, the data owner needs to

preserve ∆ = {qxi(0)}xi∈Tw generated by SSS.
(Search phase)
•TokenGen(sku, w) → Tokw: To retrieve files containing

keyword w, data user u associated with attribute set Su

chooses a random s ∈ Zp, and computes tk1 = (gagbH2(w))s,
tk2 = gcs, and tk3 = Ds = g(ac−r)s/b. In addition, for each
Aj ∈ Su, it computes B′

j = Bs
j and B̄′

j = B̄s
j . The search

token for keyword w is set as:

Tokw = (Su, tk1, tk2, tk3, {(B′
j , B̄

′
j)}Aj∈Su).

•Search(Tokw, cphw) → {0, 1}: On receiving the search
token Tokw from data user u, the CSP first constructs a
set S ∈ Su that satisfies the access tree Tw specified in
cphw, and then it computes Exi = e(B′

i, Cxi)/e(B̄
′
i, C̄xi) =

e(g, g)rsqxi (0) for each attribute Ai ∈ S, where Ai = att(xi)
for xi ∈ lev(T ). Next, it executes the Lagrange interpolation
to recover ER = e(g, g)rsσ . Finally, it tests whether Eq. 1
holds. If so, it outputs 1. Otherwise, 0 is the output.

e(K2, tk2) = e(K1, tk1)e(tk3,K3)ER (1)
(Update phase)
•GenUpd(∆, T ′

w) → (UK,Φ): Given the new access tree
T ′
w for keyword w, the data owner first locates the gate

node that will be modified. Let node y denote the AND/OR
gate being updated, where A1, . . . , Am and A1, . . . , Am′ are
original and new attributes under node y, respectively. Given
qy(0) , the share associated with node y, it first takes qx(0)
and T ′

w as inputs of the SSS algorithm and next obtains the
new secret shares for nodes x1, . . . , xm′ in T ′

w, denoted as
{q′xi

(0)}i∈[1,m′]. Then, it generates an update key for attributes
A1, . . . , Am as follows:

UK = {(UK1,i, UK2,i)}i∈[1,m] (2)



Fig. 3. Policy updating operations.

where UK1,i = gσ, UK2,i = H1(att(xi))σ, and σ =
q′xi

(0) − qxi(0). Furthermore, for adding an attribute Am+1

under gate node y, the data owner generates the new ciphertext
C ′

m+1 for Am+1 as follows: it computes C ′
xm+1

= g
q′xm+1

(0)

and C̄ ′
xm+1

= H1(att(xm+1))
q′xm+1

(0)). The new ciphertext
is set as C ′

m+1 = (C ′
xm+1

, C̄ ′
xm+1

) which will be used as the
auxiliary information Φ.

•ExeUpd(UK,Φ, cphw) → cph′
w: After receiving the

policy updating request from the data owner, the CSP utilizes
the update key UK to update the original keyword ciphertext
cphw as follows: for each leave node xi under the changing
gate node y, it computes C ′

xi
= Cxi · UK1,i = gq

′
xi

(0) and
C̄ ′

xi
= C̄xi · UK2,i = H1(att(xi))

q′xi
(0). Then, the new

ciphertext for keyword w is set as:

cph′
w = (T ′

w,K1,K2,K3, {C ′
i = (C ′

xi
, C̄ ′

xi
)}xi∈lev(T ′

w))
B. Policy Updating

The DABKS scheme achieves an efficient update of access
policy by delegating policy updating operations to the cloud
as follows: if file Fi’s access policy is changed to AP ′,
the data owner first builds a new access tree T ′

w for AP ′

and then generates the update key UK and some auxiliary
information Φ. The update instruction sent to the CSP is set
to Γ = {Fid, UO,UK,Φ}, where Fid is the ID of file Fi

and UO is the specific update operation. On receiving the
policy update request, the CSP locates Fi and generates new
ciphertexts {cph′

w}w∈Wi for Wi based on Γ.
Inspired by the work in [18], we consider four basic oper-

ations involved in policy updating (Fig. 3): Att2OR denotes
adding an attribute to an OR gate, Att2AND denotes adding
an attribute to an AND gate, AttRmOR denotes removing
an attribute from an OR gate, and AttRmAND denotes
removing an attribute from an AND gate. Let node y be the
AND/OR gate that will be updated where A1, . . . , Am are the
original attributes under y. Let qy(0) and {qx1(0), . . . , qxm(0)}
denote the secret shares for node y and y’s children nodes
x1, . . . , xm, where att(xi) = Ai for i ∈ [1,m]. Given an
access tree Tw, our scheme will produce a ciphertext for each
leave node x based on share qx(0). The original and new
ciphertexts for node xi are denoted as Ci and C ′

i, respectively.
•Att2OR : This operation can be transformed to updating

a (1,m) gate to a (1,m + 1) gate. Given qy(0) and the new
access policy T ′, the data owner runs SSS to generate new
shares {q′x1

(0), . . . , q′xm+1
(0)} for attributes A1, . . . , Am+1.

Since qxi(0) = q′xi
(0) = qy(0) for i ∈ [1,m + 1], the

ciphertexts for the original attributes will not be changed,
i.e., C ′

i = Ci for i ∈ [1,m]. For the newly added attribute
Am+1, the data owner needs to generate a new ciphertext
C ′

m+1 based on q′xm+1
(0). Finally, it sets the update instruction

Γ = {Fid,Att2OR,NULL,C ′
m+1} to the CSP, which will

add C ′
m+1 to cphw and update the access tree to T ′

w by adding
Am+1 under node y.
•AttRmOR : This operation can be transformed to up-

dating a (1,m) gate to a (1,m − 1) gate. As in the
Att2OR operation, we have qxi(0) = q′xi

(0) = qy(0)
for i ∈ [1,m − 1]. Therefore, the data owner will send
Γ = {Fid,AttRmOR,NULL,NULL} to the CSP, which
will remove Cm from cphw and update the access tree to T ′

w

by removing Am under node y.
•Att2AND : This operation can be transformed to updating

a (m,m) gate to a (m + 1,m + 1) gate. Given qy(0)
and the new access policy T ′, the data owner runs SSS
to generate new shares {q′x1

(0), . . . , q′xm+1
(0)} for attributes

A1, . . . , Am+1. Next, it executes the GenUpd algorithm to
generate the update key UK for attributes A1, . . . , Am. More-
over, it generates a ciphertext C ′

m+1 for the newly added
attribute Am+1 based on q′xm+1

(0). Finally, it sends Γ =
{Fid,Att2AND,UK,C ′

m+1} to the CSP, which will execute
the ExeUpd algorithm to update the ciphertext Ci to C ′

i for
i ∈ [1,m], add the new ciphertext C ′

m+1 to the cphw, and
update the access tree to T ′

w by adding Am+1 under node y.
•AttRmAND : This operation can be transformed to

updating a (m,m) gate to a (m − 1,m − 1) gate. Given
qy(0) and the new access policy T ′, the data owner runs SSS
to generate new shares {q′x1

(0), . . . , q′xm−1
(0)} for attributes

A1, . . . , Am−1. Next, it executes the GenUpd algorithm to
generate the update key UK for C1 . . . , Cm−1. Finally, it
sends Γ = {Fid,AttRmAND,UK,NULL} to the CSP,
which executes the ExeUpd algorithm update of the cipher-
text Ci to C ′

i for i ∈ [1,m− 1], removes Cm from cphw, and
updates the access tree to T ′

w by removing Am under node y.
C. Correctness and Security Sketch

Correctness sketch. In the Search algorithm, for each
attribute Aj ∈ S, we have the following:

Exi =
e(B′

j ,Cxi )

e(B̄′
j ,C̄xi )

= e(grsH1(Aj)
rjs,gqxi (0))

e(grjs,H1(att(xi))
qxi(0) )

= e(g, g)rsqxi (0)
(3)

If Su ≼ Tw, we can recover ER = e(g, g)rsqR(0) =
e(g, g)rsσ by executing the Lagrange interpolation. Therefore,
the right side of Eq. 1 will evolve as follows:

e(K1, tk1)e(tk3,K3)ER

= e(gcr1 , gasgbsH2(w))e(g(acs−rs)/b, gbσ)e(g, g)rsσ

= e(g, g)acs(r1+σ)e(g, g)bcsH2(w)r1

(4)

The left side of Eq. 1 will evolve as follows:

e(K2, tk2) = e(ga(r1+σ)gbH2(w)r1 , gcs)
= e(g, g)acs(r1+σ)e(g, g)bcsH2(w)r1

(5)

Therefore, Eq. 1 holds only when Su ≼ Tw.
Then, we prove that the output of the Search algorithm is

still correct after the GenUpd and ExeUpd algorithms. Due
to limited space, we only provide the correct proof for the
Att2AND operation in this paper. Let q′x1

, . . . , q′xm
, q′xm+1

be
the secret shares of σ for the leave nodes in T ′

w. The original



TABLE II
PERFORMANCE ANALYSIS OF DABKS

Computation Communication
KeyGen (2S + 2)E0 + SH1 (2S + 1)|G0|
EncKW (2N + 4)E0 +NH1 (2N + 3)|G0|

TokenGen (2S + 4)E0 (2S + 3)|G0|
Search (2N + 3)e+NE1

GenUpd(Att2AND) (2E0 +H1)(m+ 1) 2(m+ 1)|G0|
GenUpd(AttRmAND) (2E0 +H1)(m− 1) 2(m− 1)|G0|

attribute Ai where i ∈ [1,m], C ′
i = (C ′

xi
, C̄ ′

xi
) will be

constructed as follows:
C ′

xi
= Cxi · UK1,i

= gqxi (0)gq
′
xi

(0)−qxi (0) = gq
′
xi

(0)

C̄ ′
xi

= C̄xi · UK2,i

= H1(att(xi))qxi (0)H1(att(xi))
q′xi

(0)−qxi (0)

= H1(att(xi))
q′xi

(0)

(6)

The new ciphertext C ′
m+1 corresponding to Am+1 is con-

structed as follows:
C ′

m+1 = (C ′
xm+1

, C̄ ′
xm+1

)

= (g
q′xm+1

(0)
, H1(att(xm+1))

q′xm+1
(0)

)
(7)

Given the updated ciphertexts C ′
i for i ∈ [1,m+ 1], ER =

e(g, g)rsqR(0) = e(g, g)rsσ can be recovered only when Su ≼
Tw. Therefore, the DABKS scheme is correct. !

Security sketch. The work in [13] has proven that given the
one-way hash function H2, the ABKS scheme is selectively
secure against chosen-keyword attacks in the generic bilinear
group model and achieves keyword secrecy in the random
oracle model. The correctness proof has proven that the
DABKS scheme carries out a correct search control after the
update of access policy AP . Therefore, the security of our
scheme can be derived from that of the ABKS scheme. !

IV. EVALUATION

A. Performance Analysis
We will analyze the performance of the DABKS scheme in

terms of computational and communication complexity. For
ease of understanding, we provide the following notations to
denote the running time for various operations in our scheme:
H1 is used to denote the operation of mapping a bit-string to
an element of G0, e is used to denote the pairing operation,
E0 and E1 are used to denote the exponentiation operation in
G0 and G1, respectively. We neglect the multiplication in G0,
G1 and hash operations since they are much less expensive
than the above operations.

Table II shows the complexity of the DABKS scheme,
where S denotes the number of attributes associated with a
data user, N denotes the number of attributes in a data owner’s
access policy, m denotes the number of attributes under an
AND/OR gate node which will be updated, and |G0| denotes
the length of elements in G0. The Init algorithm will be run
in the system initialization phase. Therefore, the TTP spends
most of its time generating a search key for the data users. The
complexity of generating such a search key relates to S. For
the data owner, the cost of the EncKW algorithm will grow
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Fig. 4. Execution time (in seconds) of our scheme.

linearly with N , and the cost of the GenUpd algorithm related
to the AND gate will grow linearly with m. For the OR gate,
the cost of the GenUpd algorithm is almost 0. For the data
user, the cost of the TokenGen algorithm will grow linearly
with S. For the CSP, the ExeUpd algorithm involves only the
multiplication operations, the cost of which can be neglected.
B. Parameter Setting

Experiments are conducted on a local machine running
the Microsoft Windows 7 Ultimate operating system with an
Inter Core i5 CPU running at 3.2GHz and 8GB memory. The
programs are implemented in Java and compiled using Eclipse
4.6.0. The cryptographic algorithms in the verification phase
are implemented with JPBC library [19]. We use a 160-bit
elliptic curve y2 = x3+x over a 512-bit finite field, in which
p is a 160-bit length prime, and the length of element in G0

is 512-bit. To validate the effectiveness and efficiency of the
DABKS scheme, we conduct a performance evaluation on a
real data set, the Internet Request For Comments(RFC) [20].
This dataset has 6,870 plaintext files with a total size about
349MB.We use Hermetic Word Frequency Counter [21] to
extract keywords from each RFC file, and choose [5, 10]
keywords for each file after ranking them by frequency of
occurrence. In the experiments, we select 1,000 files from the
data set, where the number of distinct keywords is 1,307.

The parameter settings in the experiments are as follows:
the number of attributes that are involved in an access
policy N ranges from 1 to 50, the number of data users’
attributes S ranges from 1 to 50, and the number of attributes
under a updating gate node m ranges from 1 to 50. In
our implementation, we set the example access policy as
AP = (A1 ∧ A2 ∧ . . . ∧ AN ), encrypt each keyword with
the same access policy, and set S = N .

C. Experiment Results
Fig. 4-(a) shows the execution time of the initialization

phase. We observe that when S ranges from 1 to 50 the Init
algorithm costs about 0.32s and that the KeyGen algorithm
costs from 0.12s to 4.43s. The Init algorithm will be executed
when the system is initialized, and the KeyGen algorithm will
be run while a new cloud user joins the system. Therefore, the
workload on the TTP is relatively low.

In the store phase, the EncKW algorithm needs to encrypt
1,307 distinct keywords extracted from 1,000 data files, and
in the search phase, the Search algorithm needs to to perform
search operations over a collection of keyword ciphertexts to
find the matching results. In Fig. 4-(b), we observe that the
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Fig. 5. Execution time (in seconds) for GenUpd.

EncKW algorithm run by the data owner incurs the maximal
execution time and the TokenGen algorithm run by the data
user incurs the minimum execution time. For example, while
N ranges from 1 to 50, the execution time grows from 46.25s
to 2,567.23s for EncKW, from 0.05s to 0.93s for TokenGen,
and from 10.92s to 384.47s for Search. However, the EncKW
algorithm is executed just once to encrypt all the keywords,
while the Search and TokenGen algorithms are executed as
many times as needed to conduct searches.

The execution time of the GenUpd algorithm is shown in
Fig. 5. In ABKS [13], once the access policy is changed, the
data owner needs to re-encrypt the relevant keywords with the
new access policy and to send the new ciphertexts to the cloud.
The baseline denotes the re-encryption cost on the data owner
in [13]. For the Att2AND and AttRmAND operations, the access
policy is set as AP = (A1 ∧ A2 ∧ . . . ∧ Am). The execution
time of Att2AND in our scheme increases from 0.028s to 2.36s,
and the execution time of Att2AND in baseline increases from
0.048s to 2.52s as m increases from 1 to 50. The comparison
results of AttRmAND are consistent with those of Att2AND.
For the Att2OR and AttRmOR operations, the access policy is
set as AP = (A1 ∨ A2 ∨ . . . ∨ Am). Since the secret share
of the remaining attributes is not changed in our scheme, the
incurred time on the data owner gets close to 0. However, as m
increases from 1 to 50, the execution time of baseline increases
from 0.058s to 2.02s for Att2OR and from 0.038s to 1.89s for
AttRmOR. Therefore, our scheme incurs fewer computation
costs on the data owner compared with the baseline. During
the update phase, the CSP needs to execute the ExeUpd
algorithm to update the keyword ciphertexts. For updating
the AND gate, the execution time of the ExeUpd algorithm
increases from 0.18ms to 8.6ms while m increases from 1
to 50; for updating the OR gate, the ExeUpd algorithm has
almost zero execution time. The experiment results prove that
the cloud user should outsource the keyword search and policy
update operations to the CSP in order to take full advantage
of the CSP’s vast computation capabilities. Therefore, the
workload of the data user will be largely reduced.

V. CONCLUSION

In this paper, we propose a DABKS scheme to simultane-
ously achieve fine-grained search authorization and efficient
update of access policy. Our scheme takes full advantage of
cloud resources by delegating policy update operations to the
CSP. Experiment results verify its feasibility and effective-
ness. However, the DABKS scheme supports only the single-

keyword search. As part of our future work, we will try to
extend our scheme to a multi-keyword search scenario, which
supports conjunctive, subset, and range queries on encrypted
outsourced data.
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