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Abstract: Human–Machine Cooperations (HMCs) can balance the advantages and disadvantages
of human computation (accurate but costly) and machine computation (cheap but inaccurate).
This paper studies HMCs in agglomerative hierarchical clusterings, where the machine can ask
the human some questions. The human will return the answers to the machine, and the machine will
use these answers to correct errors in its current clustering results. We are interested in the machine’s
strategy on handling the question operations, in terms of three problems: (1) Which question should
the machine ask? (2) When should the machine ask the question (early or late)? (3) How does the
machine adjust the clustering result, if the machine’s mistake is found by the human? Based on the
insights of these problems, an efficient algorithm is proposed with five implementation variations.
Experiments on image clusterings show that the proposed algorithm can improve the clustering
accuracy with few question operations.

Keywords: Human–Machine Cooperation; hierarchical clustering; machine question; human answer

1. Introduction

Researchers in Human–Computer Interaction (HCI) have made substantial breakthroughs in the
field of cognitive science. HCI [1–3] focuses on the concept that the human instructs the machine to
accomplish the computational task. In contrast, the latest research sheds light on a novel method called
Human–Machine Cooperation (HMC) [4–7], where the machine dominates the computation process
with limited help from the human. HMC aims to balance the advantages and disadvantages of human
computation (accurate but costly) and machine computation (cheap but inaccurate).

This paper rethinks the hierarchical clustering with HMC and validates this approach in image
clustering applications, including plant species clusterings and face clusterings [8]: (1) plant species
clusterings aim to group leaf images by species. However, accurate clustering may require human
experience (depending on the application), leading to an overly large amount of human computations.
To reduce the amount of human computations, the machine can preliminarily cluster the leaf images,
using existing approaches that measure the similarity of two leaf images. While automatic clusterings
for leaf images are quite noisy [9], we observe that even a person can compare two leaf images
and provide an accurate assessment of their similarity. Therefore, HMCs are valuable; and (2) in
surveillance videos, real-time face clusterings are critical for determining whether the same person has
visited a number of locations or not. Video images have variations in pose, illumination and resolution,
and thus automatic clusterings are quite error-prone. However, a person can readily look at two face
images to determine their similarity. Therefore, HMCs are also valuable.

We mainly focus on the HMC-based agglomerative hierarchical clusterings, and we assume that
the distances between pairs of data points are known a priori. Traditional approaches without HMCs
start by treating each data point as a singleton cluster, and then repeatedly merge the two closest clusters
until a stop criterion is met. An inefficient HMC strategy could be a sequential approach: (1) the
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machine first computes some complete clustering results, through using different merging criteria;
(2) then, the human picks out the most correct one as the final result. A better HMC strategy that takes
less time and human computation involves real-time cooperations. When the machine encounters an
uncertain pair of data points in the middle of the cluster-building process, it can ask for human help
through question operations. Then, the human would tell the machine whether that pair of data points
are in the same cluster or not. The number of questions a machine can ask is limited by a fixed budget,
due to the cost of human computations. We are interested in the machine’s strategy on handling the
question operations, which is challenging in terms of three problems (“which”, “when”, and “how”).

Which question (i.e., pair of data points) should the machine ask? Suppose the machine is in
the middle of the cluster-building process. Then, Figure 1 shows some interesting cases as follows:
(1) data points 1 and 2 are currently in the same cluster, but the distance between them is large. Hence,
the machine may want human assistance to check their assignment; (2) data points 3 and 4 are currently
in different clusters, but the distance between them is small. These two clusters that contain 3 and 4
may merge into a larger one; (3) the data point 7 is in the middle of two clusters. The machine can
decide whether to add 7 to 5’s cluster or 6’s cluster, by asking the human two questions. Moreover,
this problem is further complicated, due to the transitive relations of questions. As shown in Figure 1,
let us assume that two questions return answers (from the human) in which data points 8 and 10 (the
first question’s answer), as well as 9 and 10 (the second question’s answer), are in the same cluster.
Based on these answers, the machine can derive that 8 and 9 are in the same cluster by transitivity.

7

1 2 3
4

5 6
8 9

10

Figure 1. Which question should the machine ask? Large circles are clusters.

When should the machine ask the question? Asking a question can bring up the correctness of
the clustering result, since the machine may have made some errors. If the machine asks questions
in the early clustering stage, then it benefits from getting a good start (or foundation) as a trade-off
on the risk: it may not reserve enough question operations for very hard decisions that may appear
later. The number of available questions is important: if the machine holds a large number of available
questions, then it can be aggressive (i.e., ask early); otherwise, it may be conservative (i.e., ask later).

How does the machine adjust the current clustering result after obtaining the question’s answer
from the human? If the human agrees with the machine’s clustering result, then everything is fine.
Otherwise, the machine needs to adjust its clustering result, which is very complex due to the coupled
errors shown in Figure 2. Figure 2a shows the current clustering result of the machine. Then, the
machine asks a question on data points 11 and 12, and the human returns an answer that 11 and 12 are
not in the same cluster. This answer brings a different clustering result, as shown in Figure 2c. Instead
of locally splitting the cluster that contains 11 and 12 into two smaller clusters, the machine may need
a global adjustment on the current clustering result.
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Figure 2. How does the machine adjust the current clustering result? Two strategies are shown.
The large circles indicate clusters.

Moreover, the problems of “which”, “when”, and “how” are not independent of each other.
To solve the “when” problem, the machine needs to estimate the benefit brought by asking a question
(as to balance the risk). Hence, the “when” problem is highly related to the “which” problem, since the
machine should select the most beneficial pair of data points to ask. Meanwhile, the “how” problem is
also related to the “which” problem, since the selected pair of data points may have an influence on
the adjustment strategy (local or global). This paper explores the insights of these problems as our key
contributions. We propose insightful solutions to the problems of “which”, “when”, and “how”.

The paper is organized as follows. We present the framework in Section 2. Related works are
described in Section 3. The problems of “which”, “when”, and “how” are studied in Section 4. Section 5
gives out an overview of the proposed algorithm. Experiments are conducted in Section 6. Finally,
in Section 7, we conclude the paper.

2. Algorithm Framework

2.1. Application Background

The application background of this paper comes from the image clusterings, such as plant species
clusterings and face clusterings [8]:

• Plant species clusterings aim to group leaf images by species. This application requires an overly
large amount of human computations, since accurate labeling needs human experience. To reduce
the amount of human computations, the machine can preliminarily cluster the leaf images, based on
the existing algorithms. While automatic clusterings for leaf images are quite noisy [9], we observe
that even a person can compare two leaf images and provide an accurate assessment of their
similarity. Therefore, HMCs are valuable.

• In surveillance videos (with the purpose of managing or protecting people), real-time face
clusterings are important for determining whether the same person has visited a number of
locations or not. Images from videos have variations in pose, illumination and resolution, and thus
automatic clusterings are quite error-prone. However, a person can easily determine the similarity
of two face images. Therefore, HMCs are also valuable.

2.2. Traditional Algorithm

As shown in Algorithm 1, the traditional agglomerative hierarchical clustering is a bottom-up
approach, where each data point starts in its own cluster. Then, the two closest clusters are
iteratively merged, as one moves up the hierarchy. Here, we use the MAX merging strategy [10],
which defines the distance of two clusters as the distance between the furthest two data points
that are respectively in these two clusters. Other merging strategies are also feasible. We denote
the process of merging the two closest clusters as a clustering step. When one clustering step is
executed, we say that the clustering hierarchy moves up by one. The clustering hierarchy can be
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measured by the number of remaining clusters (a smaller number indicates a higher clustering
hierarchy). Finally, we use N to denote the total number of data points in the clustering algorithm.

Algorithm 1: Agglomerative Hierarchical Clustering.
Data: Distances between pairs of data points.
Result: The clustering result.

1 Treat each data point as a singleton cluster;
2 while the stop criterion is not met do
3 Merge the closest two clusters;
4 end
5 return the remaining clusters.

2.3. Our Approach

We want to improve the accuracy of the agglomerative hierarchical clustering by HMCs, where
the untrained machine acts as the dominant task solver. The machine can get limited help, in terms of
question operations, from the trained human. The question operation has the format of comparing two
data points (i.e., two images), since it serves as a basic unit that takes minimal human computations.
For example, comparisons among three data points can be regarded as three sets of comparisons
between two data points. The number of question operations is limited, since human computations
are costly. We study the machine’s strategy on handling the question operations, in terms of “which”,
“when”, and “how”.

Algorithm 2 shows our framework, in which lines 4, 5, and 6 represent the machine’s strategy
on handling the questions. Line 4 corresponds to the “when” problem (When should the machine
ask the question?); Line 5 shows the “which” problem (Which pair of data points should the machine
ask?); Line 6 is the “how” problem (How does the machine adjust the current clustering result?).
For simplicity, two assumptions are made as follows: (1) the machine is untrained, and thus it may
make the wrong decisions during the clustering process. Meanwhile, the machine can ask the human
to judge whether two data points are in the same cluster or not. We assume that the human is trained,
and thus his/her judgement is always correct; and (2) we assume that the human answers a question
instantaneously, i.e., there is no extra waiting time for answers.

Algorithm 2: Our Framework.
Data: Distances between pairs of data points; The number of available questions.
Result: The clustering result

1 Treat each data point as a singleton cluster;
2 while the stop criterion is not met do
3 Merge the closest two clusters;
4 if the machine decides to ask a question then
5 Select two data points to ask the human;
6 Adjust the clustering based on the answer;
7 Number of available questions reduces by one;
8 end
9 end

10 return the remaining clusters.

Our approach is tolerant of data noise, compared to traditional agglomerative hierarchical
clustering [11]. This is because HMC is likely to fix partial problems caused by the data noise. Even if
data points are incorrectly clustered, the human could help the machine to fix its error. However, the
objective of our approach is not the clustering robustness under noise, meaning that the data noise
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problem still remains in some extreme cases. One of our future directions could be using humans to
mitigate the data noise problem for clusterings.

3. Related Work

Recently, combining human and machine intelligence in crowdsourcing [12] has become a hot
research area. When the machine cannot solve its task, it can ask for human help. The machine
takes the part of the job that it can understand, while passing the incomprehensible part to the
human. Crowdsourcing acts as the bridge that connects the machine and the human. The question
response time is reported to be low enough, which provides the possibility for real-time HMCs [13].
While researchers [8,12] studied different kinds of HMC problems, we mainly focus on real-time HMCs
in hierarchical clusterings [14,15].

Our work is related to the active learning techniques [16–19]. The key idea behind active learning
is that a machine learning algorithm can achieve a better accuracy with fewer training labels if it is
allowed to choose the data from which it learns [19]. An active learner may pose queries, usually
in the form of asking the human to label unlabeled data instances. Active learning is a special case
of semi-supervised learning [20,21], while our clustering problem is unsupervised. Our problem is
a dynamic one that involves time; this differs from active learning, which is static. Our approach is
a special time-sensitive density-weighted uncertainty-sampling-based active learning method.

Our approach can be classified as a hybrid approach of the constraint-based clustering and the
budgeted learning. The constraint-based clustering [22–26] is initialized with pre-given constraints
before executing the clustering algorithm, while our approach dynamically introduces the constraints
(i.e., question answers) within the algorithm execution. We also study the time to introduce the
constraint, which is represented by the “when” problem. On the other hand, although the budgeted
learning [27–30] focuses on the time for the machine to learn the samples, it does not consider the
clustering constraints. Our problem is a special budgeted and constrained clustering.

Our work is also related to the cognitive science field. For example, Roads et al. [5] improved
image classifications with HMC via cognitive theories of similarity. Given a query image and a set of
reference images, individuals are asked to select the best matching reference. Based on the similarity
choice, a predictive model was developed to optimize the selection of reference images, using the
existing psychological literature. Chang et al. [6] developed Alloy, which is a hybrid HMC approach to
efficiently search for global contexts in crowdsourcing. Alloy supports greater global context through
a new “sample and search” crowd pattern, which changes the crowd’s task from classifying a fixed
subset of items to actively sampling and querying the entire dataset. Böck et al. [31] summarized
user behaviors to improve the efficiency of HMC. Multimodal user behaviors (such as characteristics,
emotions and feelings) are analyzed for the machine’s algorithm design.

4. “Which”, “When”, and “How”

This section explores the solutions for the “which”, “when”, and “how” problems, respectively.

4.1. The “Which” Problem

For the “which” problem, a previous work [8] proposed that the machine should ask the pair of
nodes leading to a quick convergence, which does not improve the clustering accuracy. However, the
goal of HMCs is to balance the advantages and disadvantages of human computation and machine
computation. The former method is accurate but costly, while the latter one is cheap but inaccurate.
Therefore, using human resources to save the machine’s computations is meaningless in HMCs.
Our objective is to improve the machine’s clustering accuracy with limited real-time help from humans.
To better explain our idea, several definitions [32] are introduced as follows.

Definition 1. The purity of a cluster is the fraction of the dominant data point type in it. The minimum purity
is the minimum purity among all clusters. The cluster with the minimum purity is called the dirtiest cluster.
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Note that the definition of the minimum purity does not involve the cluster size. Therefore,
a smaller cluster is more likely to have a lower purity, since an incorrectly clustered data point takes a
larger fraction in the cluster. We intend to make small clusters pure, in order to limit error propagations.
An example of the minimum purity is shown in Figure 3. The minimum purity is min{ 6

7 , 4
6} = 4

6 .
A high minimum purity means that each cluster is pure. If the minimum purity of the machine’s
current clustering result is very low, then the machine should ask questions. However, the machine
does not know the true minimum purity during its cluster-building process. The only thing it can do
is to estimate the minimum purity. Therefore, we have the following definition:

Purity=4/6Purity=6/7

Figure 3. An example of the purity calculation. Small circles and squares are data points of different
types. Data points of the same type should be clustered.

Definition 2. The machine’s certainty estimates the minimum purity of the current clustering result.

The minimum purity can be used by the machine to verify the estimated-dirtiest cluster through
question operations. A high certainty means that the machine considers its current clustering result to
be correct, while a low certainty means that the machine doubts the accuracy of its current clustering
result. Intuitively, the distance between the two clusters that are going to be merged in the next step
may reveal the purity. One may think that merging two far-distance clusters leads to a low purity.
However, this is incorrect in the sense that all currently existing clusters are far away from each other.
Another method is to use the ratio of (1) the smallest distance between two different clusters to (2) the
largest distance between two data points within the same cluster. A larger ratio seems to represent a
higher purity, since clusters are far away from each other, and each cluster’s size is small. However,
this method is also incorrect. As shown in Figure 4, the ratio can be small, but the purity is high.

Figure 4. Counter-example.

Our solution to the “which” problem is a special density-weighted uncertainty-sampling-based
approach [33]. It focuses on the neighborhood consistency of pairs of data points. The neighbors of
a data point are its k-nearest neighbors. If all neighbors of a data point have consistent behaviours
(in terms of their clusters), then the machine’s certainty is high. We use local structures of pairs of data
points to estimate the purity. Suppose data points i and j are in the same cluster C. We then have:

Certainty(C) = min
i,j∈C

Pi(C)+Pj(C)
2

, (1)

where Pi(C) is the percentage of data point i’s neighbors that are currently in C. The corresponding
i and j that lead to the minimum certainty of C are called the most questionable pair of data points in C.
The certainty is defined through pairwise data points, since the question operation has the format of
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comparing two data points. Certainty(C) is an estimation of the cluster C’s purity, which falls into the
range of [0, 1]. It reaches 1 if and only if all neighbors of data points in C also fall into the same cluster.
It reaches 0 when all neighbors of a pair of data points are not in C. Therefore, the machine should
greedily pick the most questionable pair of data points corresponding to the dirtiest cluster, which
is our solution to the “which” problem. If we go back to the toy example in Figure 1, then the data
points 1 and 2 bring a low certainty, which fits our demands. This solution also considers the cases of
data points 3, 4, 5, 6, and 7. When increasingly more clusters merge, these cases will be reduced to
the former case. Therefore, the machine only needs to ask questions after making errors (rather than
before making errors). Upon obtaining an answer to a question, the machine derives the transitive
relationships of questions (mentioned in Figure 1), as to detect more errors. The original question’s
answer and the derived answers are recorded, and the corresponding pairs of data points are removed
for the future questions. In addition, for the initialization, we start to calculate the purity of a cluster,
only if the number of data points within the cluster is larger than a threshold.

4.2. The “When” Problem

In this subsection, we focus on the “when” problem. If the machine asks questions in the early
clustering stage, then it benefits from getting a good start (or foundation) as a trade-off on the risk:
it may not reserve enough question operations for very hard decisions that may appear in the later
clustering stage. The benefit of asking a question can be estimated through the current machine’s
certainty. The risk means that the machine has used up its questions, and then encounters a low
certainty case in the later clustering stage.

We want to maximize the minimum purity during the cluster-building process. The total number
of questions (denoted by Q) is limited, since human computations are relatively costly. One may
think that the minimum purity monotonously decreases when the hierarchy of the clustering moves
up, and thus the machine should ask questions when it encounters a significant certainty reduction.
However, the machine is likely to encounter numerous certainty reductions during the cluster-building
process, while the available question operations may not be enough. Moreover, how could the machine
determine whether a certainty reduction is significant or not? This is very challenging, and can be
data-sensitive. The key observation is that the minimum purity may increase, as shown in Figure 5a.
In the left part of Figure 5a, the purity of these two clusters are 6

7 (black circle dominates) and 1
2 (a tie),

respectively. Hence, the minimum purity is min( 6
7 , 1

2 ) =
1
2 . In the right part of Figure 5a, the purity

(and the minimum purity) is 9
13 (black circle dominates). When the machine merges a cluster with

a high purity and a cluster with the lowest purity, the minimum purity may increase. Therefore,
during the cluster-building process, the minimum purity may decrease with some oscillations, i.e.,
local minimums exist. These local minimums indicate the time for the machine to ask questions. This is
because increased minimum purity means error propagation, where a cluster with a high purity is
contaminated by a dirty one. Error propagations should be controlled.

Minimum Purity=3/6 Minimum Purity=9/13

(a) The minimum purity increases in a merge.

The hierarchy of the clustering

C
er

ta
in

ty

Asking questions

No more questions 

are available

(b) The solution to the “when” problem

Figure 5. The minimum purity and the “when” problem.

Now, let us go back to the trade-off between a good start and the risk. The existence of error
propagations make us consider a higher priority of the risk. Errors made by the machine are inevitable,
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so the machine should save the limited questions on preventing error propagations, which appear
rarely, but are disastrous. Therefore, our solution for the “when” problem is that the machine asks a
question whenever (1) it encounters a certainty gain and (2) it has available questions to ask, as shown
in Figure 5b. Instead of receiving an incorrect certainty gain that may result in error propagations, the
machine actively asks questions to verify the correctness. This strategy will maximally restrict the
error propagations. If the machine goes to the end of the clustering-building process with unspent
questions, it will ask those questions at the end.

4.3. The “How” Problem

This subsection focuses on the “how” problem. Once the human’s answer disagrees with the
machine’s result, the machine should adjust its clustering result, which is complex due to the coupled
errors. Suppose i and j are the most questionable pair of data points in the estimated-dirtiest cluster C,
where the human’s answer disagrees with this result. Local adjustment refers to the case where the
machine splits C into two clusters that, respectively, include i and j. Global adjustment refers to the
case where the machine gives up the current result and re-starts the clustering from the beginning.
Local adjustments have a low time complexity and a low accuracy, while global adjustments have
a high time complexity and a high accuracy.

Our solution to the “how” problem is (1) first tracing back to a previous clustering state; (2) then
doing local adjustment; and (3) finally resuming the building of the clustering hierarchy. It is shown
in Figure 6 (assume that the human’s answer disagrees with the machine’s clustering results for the
two questions). The depth of the back-tracing represents the trade-off between the time complexity
and the accuracy. To limit the depth of the back-tracing, the machine only traces back to the hierarchy
of the latest adjustment, as shown in Figure 6 (for the first question, the machine traces back to the
initial state). After doing local adjustment, the machine resumes building the clustering hierarchy
without question operations. The question operations are disabled until the machine goes back up the
hierarchy that was present when it asked the question. Once the adjustment of the current question is
finished, the state of the clustering is saved as the point to trace back to for the next question. Since
each hierarchical state is calculated at most twice, this scheme at most doubles the time complexity.

T
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in

g
  

h
ie
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rc

h
y

The physical running time

Trace back and then 

local adjustment

The first 

question asked

The second 

question asked

Saved state for the 

back-tracing of the 

next question

Figure 6. The solution to the “how” problem.

Let us go over the machine’s process of dealing with the human’s answers. Suppose i and j are the
most questionable pair of data points in the dirtiest cluster C: (1) if the human returns an answer that i
and j are in the same cluster (agree with the machine), then everything is fine. i and j are removed for
further questioning, and their distance is set to be 0; (2) if the human returns an answer that i and j are
not in the same cluster (disagree with the machine), the machine traces back and then uses the local
adjustment, which is referred to as a local splitting of C. In other words, C is divided into two clusters.
The remaining data points in C choose to join i’s cluster or j’s cluster, according to the distance (join
the nearest one). i and j are removed for the further questions, and their distance is set to be infinity.
After this local adjustment, the machine resumes building the clustering hierarchy. The questions
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are disabled until the machine goes back to the point in the hierarchy at which it asked the question.
In addition, note that the transitive relations of questions may bring the machine a derived answer in
which two data points in different clusters should be in the same cluster. For this case, we refer to the
local adjustment as a merge of the two clusters corresponding to those two data points. The distance
between those two data points is set to be zero.

5. Algorithm Overview

5.1. Algorithm Design

The whole algorithm is presented in Algorithm 3, which is the detailed implementation of
Algorithm 2. In Algorithm 3, line 5 corresponds to the “when” problem: the key insight is that
questions are asked to limit the error propagations. Line 6 corresponds to the “which” problem:
the key insight is that local structures of pairs of data points can be used to determine the most
questionable pair of data points. Then, line 7 shows the transitive relations that can be used to
derive more answers. If one of these answers disagrees with the current clustering result (i.e., the
machine has made some errors), then adjustments are applied (lines 8 to 13), which correspond to
the “how” problem. The key insight is that the back-tracing scheme can balance the time complexity
and the adjustment accuracy. Line 14 shows that one question operation is used up. In the next
subsection, further analysis shows that the time complexity of Algorithm 3 stays asymptotically the
same with Algorithm 1, which is O(N2 log N). We do not further discuss the stop criterion (line 3
in Algorithm 3). A simple stop criterion is used: the iteration stops, when the number of existing
clusters reduces to a threshold. A better stop criterion is to be addressed in our future work.

Algorithm 3: The Proposed Algorithm.
Data: Distances between pairs of data points; The number of available questions (i.e., Q).
Result: The clustering result.

1 Treat each data point as a singleton cluster;
2 Save the current state as the trace back state;
3 while the stop criterion is not met do
4 Merge the closest two clusters;
5 if encounter a certainty gain and Q > 0 then
6 Select the most questionable pair of data points in the dirtiest cluster, and then, use the

question operation to ask for the human help;
7 Derive the transitive relations of questions;
8 if one answer disagrees with the machine then
9 Record the current clustering hierarchy;

10 Trace back to the saved state and apply local adjustments;
11 Iteratively merge the closest two clusters, until returning to the recorded hierarchy;
12 end
13 Save the current state as the trace back state;
14 Q = Q− 1;
15 end
16 end
17 return the remaining clusters.

5.2. Time Complexity Analysis

This section discusses the time complexity of Algorithm 3. First, we clarify the time complexity
of Algorithm 1. In Algorithm 1, finding the closest two clusters at each clustering step takes O(N2),
since there are at most O(N2) pairs of clusters. Meanwhile, we have at most O(N) clustering steps
(i.e., the number of iterations). Thus, the time complexity of Algorithm 1 is O(N3). However, this time
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complexity can be reduced, if each cluster keeps a sorted list (or heap) on its distances to all the other
clusters: then, finding the closest two clusters at each clustering step is reduced to O(N). Considering
that maintaining the sorted list (or heap) needs an additional time complexity of O(log N), the time
complexity of Algorithm 1 should be O(N2 log N).

Then, let us focus on the time complexity of Algorithm 3. First, note that the additional time
complexity is brought by lines 5 to 14. Then, to calculate the certainty, lines 5 and 6 take O(kN) for
each clustering step, since each cluster can maintain and update the certainties brought by pairs of
data points. Exhaustive derivation of transitive relations in line 7 takes in total O(Q2). As previously
mentioned, the tracing-back scheme (lines 10 and 11) at most doubles the time complexity. The local
adjustments take O(N2) for each time, up to O(Q2N2) in total. Saving the current clustering state
(line 13) takes O(N2) for each time, also up to O(Q2N2) in total. Therefore, the overall time complexity
is O(N2 log N + kN2 + Q2 + Q2N2). Both k and Q are relatively small numbers, when compared to N.
Note that k is used to define the neighborhood of one data point. Q is also limited, due to relatively
costly human computations. Therefore, the time complexity of Algorithm 3 is O(N2 log N), which
is asymptotically the same as that of Algorithm 1. We assume that the human answers a question
instantaneously. In other words, we consider that the computational time for the machine’s task is
much longer than the question response time.

6. Experiments

This section conducts real data-driven experiments to evaluate the algorithm performance.

6.1. Data Set Descriptions

Our experiments are based on the Iris Flower Data Set [34–36] and the Labeled Faces in the Wild
(LFW) Data Set [37]. The Iris Flower Data Set consists of 150 flowers from three species of Iris (Iris
setosa, Iris virginica, and Iris versicolor). Flowers of the same species are supposed to be clustered
together. It is easy for a trained human to judge whether two Iris flowers belong to the same species
or not. For each flower (i.e., a data point), four features are collected: sepal length, sepal width, petal
length, and petal width. For each feature, we re-scale its range into [0, 1]. Euclidean distances are
calculated as the distances between pairs of Iris flowers. In this data set, four questions are available for
the machine to ask. Then, the LFW Data Set is a database of face photographs designed for studying
the problem of face clusterings. This data set contains face images collected from the web. Each face
has been labeled with the name of the person pictured (detected by the Viola–Jones face detector). Our
experiments use the first 100 images of two persons that have the largest and second-largest number
of face images (200 images in total). Face images of the same person should be clustered together.
It is easy for a trained human to judge whether two face images belong to the same person or not.
For each image, 65 features are collected as [37]. For each feature, we also re-scale its range into [0, 1].
Euclidean distances are also used as the distances between pairs of face images. In the LFW Data
Set, six questions are available for the machine to ask. In addition, k = 2 is used to determine the
neighborhood of a data point. Other datasets [38] are not used, since the hierarchical clustering may
not perform well (HMC may be better applied to other clustering methodologies).

In practical usages, the value of k should be large enough to reveal the local structures of data
points. k can also be determined by statistics on the distribution of neighborhood distances among
data points. In the ideal scenario, an arbitrary data point and its k nearest neighbors are very likely to
be in the same cluster. On the other hand, the value of Q can be arbitrary: a larger Q is expected to
bring a more accurate clustering result but needs more human work. Q should scale up with respect
to the squared number of data points, which shows the number of possible questions.
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6.2. Algorithms for Comparison

Here, we denote the traditional agglomerative hierarchical clustering algorithm as TAHC, while
the proposed algorithm is denoted as HMCAHC. Then, five different variations of the HMC strategies
are used for comparison:

• Instead of picking the most questionable pair of data points, the machine asks questions based on
a committee-based sampling strategy [39]. This algorithm is HMCAHC-which.

• Rather than asking questions upon certainty increases, the machine asks questions upon a certainty
reduction (judged by a threshold of 0.1). This is because a large certainty reduction means that a
newly merged cluster is not as pure as previous ones. The threshold is empirically determined.
This algorithm is HMCAHC-when1.

• Instead of asking questions upon certainty gain, the machine asks questions upon a maximum
entropy reduction [40] (judged by a threshold of 0.1). This algorithm is HMCAHC-when2.

• Rather than the back-tracing scheme, the machine uses local adjustments for the “how” problem.
This algorithm is HMCAHC-how1.

• Instead of the back-tracing scheme, the machine uses global adjustments, in which the machine goes
back to the initial state and redoes everything. This algorithm is as HMCAHC-how2. In general,
HMCAHC-how2 should have a better result than HMCAHC, at the cost of a higher time complexity.
While HMCAHC takes O(N2 log N), HMCAHC-how2 takes O(QN2 log N).

K-Means is also used for comparison as a baseline algorithm. In addition, two constraint-based
clustering algorithms are also used, i.e., PCMK-Means [22] and Active PCK-Means [23]. For these
two algorithms, questions on random pairs of data points are asked before the algorithm execution,
while the human’s answers serve as pre-given constraints. Our approach differs from these three
classic algorithms for the “when” problem and the “how” problem. Moreover, the algorithm proposed
by Roads et al. [5] is also compared (its set size is 10 for human comparisons).

In our real data-driven experiments, ground-truth clustering results are available. Therefore,
the mutual information [41] is introduced to measure the similarity between the current clustering
result and the ground-truth result. The mutual information falls into the interval of [0, 1], where a
higher value indicates a higher similarity (i.e., a better clustering quality). We are interested in the
mutual information variance, when clusters are iteratively merged. Considering that our strategy
favors asking questions in later steps, we focus on the mutual information variance among the last
few clustering steps. The estimation accuracy of the machine’s certainty is also investigated. We will
observe the difference between the machine’s certainty and the true minimum purity.

6.3. Evaluation Results (Iris Flower Data Set)

The evaluation results are shown in Tables 1 and 2. All the algorithms stop iterations when there
are three clusters remaining (the true number of clusters). In HMCAHC, the human agrees with the
machine on the 1st and 2nd questions, but disagrees with the machine on the 3rd and 4th. For the
“which” problem, it can be seen that asking the most questionable pair of data points in the dirtiest
cluster (HMCAHC) is better than a committee-based sampling strategy (HMCAHC-which). This is
because HMCAHC uses the uncertainty sampling with density weights. While the gap between the
mutual information of the HMCAHC and the TAHC is about 0.1, the HMCAHC-which has almost no
performance improvement. For the “when” problem, although asking questions upon a significant
certainty reduction (HMCAHC-when1) and upon a maximum entropy reduction (HMCAHC-when2)
provides a good foundation for the early clustering stage, they fail to reserve enough questions for
the hard decisions. The error propagation is disastrous, and thus shuts down the performance of the
HMCAHC-when1 and the HMCAHC-when2 in the later clustering stage. For the “how” problem,
although the global adjustment (HMCAHC-how2) brings a slightly better result, this performance
improvement is at the cost of a much higher time consumption. On the other hand, although the local
adjustment (HMCAHC-how1) has less time consumption, it has a much worse result. Our back-tracing
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scheme obtains a result that is close to the global adjustment, at the cost of an acceptable time
consumption. Meanwhile, both PCMK-Means and Active PCK-Means perform more poorly than
HMCAMC. This is because they use the questions in the beginning as the clustering constraints.
They fail to reserve the question operations for difficult decisions. For further analysis, Figure 7a
shows that the machine’s certainty provides a good estimation of the true minimum purity during
the clustering-building process. Figure 7b shows the relationship between the available number of
question operations and the resulting mutual information of HMCAHC. It can be seen that a few
questions can significantly improve the clustering results; however, too many question operations
are unnecessary due to the marginal improvement. Compared to Roads’ approach, the proposed
algorithm also has a performance improvement of 0.02 in terms of mutual information. Moreover, our
approach requires less human operations than Roads’ approach. While our approach only asks the
human to compare a few pairs of data points, Roads’ approach requires the human to compare a data
point with a set of data points (our experiments set the set size to be 10).

Table 1. Mutual information for the Iris Flower Data Set.

Evaluation The Mutual Information for Algorithms at Given Clustering Steps

Results 1st 50th 100th 120th 130th 140th 142th 144th 145th 146th 147th

HMCAHC 0.36 0.39 0.43 0.49 0.53 0.63 0.64 0.67 0.70 0.76 0.83

HMCAHC-which 0.36 0.39 0.43 0.50 0.53 0.63 0.60 0.64 0.66 0.69 0.76

HMCAHC-when1 0.36 0.40 0.46 0.52 0.56 0.66 0.63 0.65 0.68 0.71 0.77

HMCAHC-when2 0.36 0.41 0.45 0.50 0.55 0.65 0.61 0.63 0.66 0.68 0.75

HMCAHC-how1 0.36 0.39 0.43 0.49 0.53 0.63 0.62 0.64 0.66 0.70 0.75

HMCAHC-how2 0.36 0.39 0.43 0.49 0.53 0.63 0.66 0.69 0.73 0.80 0.84

TAHC 0.36 0.39 0.43 0.49 0.53 0.63 0.60 0.61 0.64 0.67 0.73

K-Means The mutual information of the final result is 0.75

PCMK-Means The mutual information of the final result is 0.76

Active PCK-Means The mutual information of the final result is 0.78

Roads The mutual information of the final result is 0.81

Table 2. Questions asked in the Iris Flower Data Set.

Evaluation Clustering Steps Where
Results Questions Are Asked

HMCAHC 117, 134, 142, 147

HMCAHC-which 117, 134, 142, 147

HMCAHC-when1 23, 39, 45, 147

HMCAHC-when2 30, 60, 90, 120

HMCAHC-how1 117, 134, 142, 147

HMCAHC-how2 117, 134, 142, 147
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Figure 7. Evaluation results for the Iris Flower Data Set.
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6.4. Evaluation Results (LFW Data Set)

The evaluation results are shown in Tables 3 and 4. All the algorithms stop iterations when
there are two clusters remaining (the true number of clusters). It can be seen that all algorithms
have relatively low resulting mutual information, since the face images have complex variations
in pose and illumination. For TAHC, it even makes a seriously incorrect decision at the last
step, leading to a performance degradation. For the “which” problem, HMCAHC is still better
than HMCAHC-which, since a random question does not bring too much useful information for
the machine. For the “when” problem, HMCAHC-when1 and HMCAHC-when2 fail to reserve
enough questions for the hard decisions. The error propagation is disastrous, and thus shuts down
the performance of the HMCAHC-when1 and the HMCAHC-when2 in the later clustering stage
(especially for HMCAHC-when2 that makes an incorrect decision at the last step). For the “how”
problem, the trade-off between the clustering accuracy and the time consumption is still observed by
HMCAHC-how1 and HMCAHC-how2. Our back-tracing scheme balances this trade-off. Meanwhile,
both PCMK-Means and Active PCK-Means perform more poorly than HMCAMC. This is because they
fail to reserve the question operations (i.e., constraints) for really hard decisions. For further analysis,
Figure 8a shows that the machine’s certainty has a good estimation of the true minimum purity during
the clustering-building process. Figure 8b shows the relationship between the available number of
question operations and the resulting mutual information of HMCAHC. Although a few questions can
significantly improve the clustering results, too many question operations are unnecessary due to the
marginal improvement.

Table 3. Evaluation results for the LFW Data Set.

Evaluation The Resulting Mutual Information for Algorithms at Given Clustering Steps

Results 1st 50th 100th 150th 170th 180th 190th 192th 194th 196th 198th

HMCAHC 0.23 0.25 0.27 0.30 0.32 0.34 0.37 0.40 0.39 0.41 0.43

HMCAHC-which 0.23 0.25 0.26 0.30 0.31 0.34 0.43 0.37 0.34 0.34 0.37

HMCAHC-when1 0.23 0.25 0.27 0.30 0.32 0.34 0.34 0.31 0.32 0.33 0.32

HMCAHC-when2 0.23 0.25 0.27 0.30 0.31 0.34 0.34 0.31 0.34 0.33 0.16

HMCAHC-how1 0.23 0.25 0.27 0.30 0.32 0.34 0.43 0.37 0.35 0.34 0.36

HMCAHC-how2 0.23 0.25 0.27 0.30 0.32 0.34 0.37 0.40 0.41 0.42 0.45

TAHC 0.23 0.25 0.27 0.30 0.32 0.34 0.34 0.31 0.32 0.33 0.16

K-Means The mutual information of the final result is 0.30

PCMK-Means The mutual information of the final result is 0.32

Active PCK-Means The mutual information of the final result is 0.37

Roads The mutual information of the final result is 0.41

Table 4. Questions asked in the LFW Data Set.

Evaluation Clustering Steps Where
Results Questions Are Asked

HMCAHC 177, 185, 186, 187, 188, 198

HMCAHC-which 177, 185, 186, 187, 188, 198

HMCAHC-when1 12, 47, 64, 79, 86, 198

HMCAHC-when2 28, 57, 85, 114, 142, 171

HMCAHC-how1 177, 185, 186, 187, 188, 198

HMCAHC-how2 177, 185, 186, 187, 188, 198
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Figure 8. Evaluation results for the LFW Data Set.

7. Conclusions

Human–Machine Cooperations (HMCs) can balance the advantages and disadvantages of human
computation (accurate but costly) and machine computation (cheap but inaccurate). We study HMCs
in agglomerative hierarchical clustering problems with respect to image clustering applications.
The machine can ask the human questions. We explore the machine’s strategy on handling the
question operations, in terms of the “which” problem, the “when” problem, and the “how” problem.
The “which” problem is solved by using the machine’s certainty with respect to data points. The “when”
problem is solved by observing the oscillations of the minimum purity. The “how” problem is solved by
balancing the local and global adjustments. As a result, an efficient HMC-based algorithm is proposed
with five implementation variations. Experiments show the efficiency of the proposed algorithm.
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