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Abstract—Insulin pumps have been widely used by patients
with diabetes. Insulin pump systems adopt wireless channel with
few cryptographic mechanisms, which makes them vulnerable to
many attacks. In this paper, we focus on the wireless channel
between Carelink USB and insulin pump on which the attackers
can launch message eavesdropping and/or therapy manipulation
attacks, which may put the patient in a life-threatening situ-
ation. Some prior solutions such as certificate-based or token-
based schemes need either complicated key management or
additional devices. We propose a novel voiceprint-based access
control scheme comprising anti-replay speaker verification and
voiceprint-based key agreement to secure the channel between
the Carelink USB and insulin pump. Our scheme does not need
permanent key sharing or additional devices. The anti-replay
speaker verification adopts cascaded fusion of speaker verifica-
tion and anti-replay countermeasure to ensure the insulin pump
can be accessed by Carelink USB only after the legitimate user
passes the identity verification. The evaluation on ASVspoof 2017
datasets shows that our scheme achieves a 4.02% Equal Error
Rate (EER) with the existence of replay impostors. Besides, our
scheme uses energy-difference-based voiceprint extraction and se-
cure multi-party computing to generate a common cryptography
(temporary) key between the Carelink USB and insulin pump,
which can be used to encrypt the subsequent communication,
and protect the insulin pump from eavesdropping and therapy
manipulation attacks. By appropriately setting the similarity
threshold of voiceprints, our key agreement scheme allows the
insulin pump to establish a secure channel only with the device
in its close proximity.

Index Terms—wireless insulin pump; voiceprint; access con-
trol; voice anti-replay; speaker verification; acoustic channel

I. INTRODUCTION

As of 2015, there were an estimated 30.3 million people of
all ages in the U.S., or 9.4% of the population, suffering from
diabetes [1]. People with type 1 diabetes, about 5% of diabetic
patients, need insulin pumps. Insulin pump systems adopt
wireless channels with few cryptographic mechanisms, making
them vulnerable to many attacks. Patients that use such devices
may be in potential security threats. Using off-the-shelf USB
device, Radcliffe [3] was able to intercept wireless signals
(glucose data) sent between the glucose sensor and the man-
agement device and cause blood glucose management devices
to display inaccurate readings. Jack [2] was able to capture
data transmitted from the computer, control the operations of
the insulin pump such as delivering fatal doses (300 unit of
insulin) to a diabetic patient. Li et al. [7] reverse-engineered

the communication protocol used among continuous glucose
monitoring (CGM) and insulin delivery systems and showed
that both passive attacks such as message eavesdropping and
active attacks such as impersonation can be launched. Marin et
al. [8] extended Li’s attacks by fully reverse-engineering the
wireless communication protocol among all the peripherals
of the insulin pump system. The authors carried out replay
attacks, message injection attacks, and privacy attacks on the
insulin pump system compromising both the safety and privacy
of the patient. It is critical to design security mechanisms to
mitigate the threats in wireless insulin pump systems.

In this paper, we focus on the wireless channel between
the Carelink USB and insulin pump, which is critical in
insulin pump systems. Over this channel, the attackers can
launch message eavesdropping and/or therapy manipulation
(such as remote dosage setting) attacks, which may put the
patient in a life-threatening situation. Some prior solutions
such as certificate-based or token-based schemes need either
complicated key management or additional devices. Marin et
al. [8] proposed an AES-MAC based cryptographic solution.
The sharing of two symmetric keys and their management
make the system complicated. Authors of [9], [10] proposed
authentication schemes using additional external devices. Pa-
tient infusion pattern based access control scheme (PIPAC)
[4] can resist two overdose attacks but assumes the patients
glucose levels can only be modified manually, which does not
hold in a closed-loop control system.

We propose a novel voiceprint-based access control scheme
to mitigate the above attacks over the channel between the
Carelink USB and insulin pump (also called “the two de-
vices”). Our scheme does not need permanent key sharing
or additional devices except needing two audio sensors to be
embedded in the two devices, respectively. When the Carelink
USB wants to request data or modify the dosage setting of
the insulin pump, the pump needs a target user to grant her
or his permission to the Carelink USB by speaking random
passphrases. After successful speaker verification, the two
devices can start to construct a secure communication channel.

The core ideas of our scheme rely on 1) the anti-replay
speaker verification adopting cascaded fusion of speaker ver-
ification and anti-replay countermeasure to ensure the insulin
pump is accessed by the Carelink USB only after the legitimate



user (not a replay impostor) passes the identity verification;
2) energy-difference-based voiceprint extraction and secure
multi-party computing to generate a common cryptography
(temporary) key between the two devices. The scheme does not
need to share common secret or key, and utilizes an acoustic
channel in addition to the wireless channel as a source of
proximity declaration. The two devices transmit voiceprints,
extracted from audio passphrases, to each other using secure
multi-party computing, which leaks no information about the
voiceprints to public. The similarity of the two voiceprints is
then checked by computing such as Hamming Distance in the
two devices, respectively. Then the two devices (if pass check)
generate a common secret/key, which can be used to be (or
to generate) a session key utilized to encrypt and/or append
MAC to the messages exchanged, which can resist attacks
such as message eavesdropping and remote dosage setting.
Besides, our scheme uses Gaussian mixture model (GMM) to
implement anti-replay speaker verification, which only needs
to store the target user’s model and achieves low equal error
rate (EER, a threshold value when false acceptance rate equals
false rejection rate) to secure the patient’s safety (the lower the
EER the higher the accuracy of the verification).

Our contributions are as follows:

• We propose a novel voiceprint-based access control
scheme comprising anti-replay speaker verification and
voiceprint-based key agreement to secure the channel
between the Carelink USB and insulin pump.

• We implement an anti-replay speaker verification scheme
using cascaded fusion of speaker verification and anti-
replay countermeasure.

• We design a voiceprint-based key agreement between the
two devices, and demonstrate its feasibility by experi-
ments. The key agreement ensures the insulin pump will
establish a secure channel only with a device in close
proximity by setting the similarity threshold of voiceprint
to some appropriate value such as 80%.

• We conduct an experimental evaluation on ASVspoof
2017 datasets, the results of which show that the speaker
verification scheme achieves a 4.02% EER with the
existence of replay impostors.

The remainder of this paper is organized as follows: In
Section II, we discuss the related work. Section III describes
the system and attacker model. We present our voiceprint
(acoustic channel) based access control scheme for wireless
insulin pumps in Section IV, and make security analysis
in Section V. In Section VI, we describe the experimental
results. We make overhead analysis and emergency handling
in Section VII, and conclude the paper in Section VIII.

II. RELATED WORK

A. Medical Device Authentication

Some proposals have been provided to add authentication
schemes to medical devices. Li et al. [7] showed different
types of attacks on an insulin pump using reverse-engineering
technology, and proposed a cryptographic solution (rolling

code) and body-coupled communication to protect the wire-
less links. Marin et al. [8] extended their attacks by fully
reverse-engineering the wireless communication protocol in
the insulin pump system, and proposed an AES-MAC based
cryptographic solution which needs sharing of two symmetric
keys. Authors of [9], [10] proposed authentication schemes
using additional external devices, which may be forgotten,
lost or stolen, and could potentially disclose a patient’s sta-
tus. Authors of [5], [6], [13], [14] proposed various access
control schemes for wireless medical devices. These works
based on general well-studied radio signal channels can be
attacked by remote attackers who have sound knowledge of
the radio propagation patterns. Our scheme utilizes an acoustic
channel as a source of proximity declaration to establish secure
communication between unacquainted devices in proximity.

B. Anti-replay Voice Authentication

Biometric identification systems such as face and voice
recognition are widely used by healthcare providers. Biometric
systems are susceptible to spoofing attacks which use methods
such as artifact, mutilations, and replay to achieve imperson-
ation or concealment. For speaker or voice authentication, the
spoofing attacks comprise impersonation, voice conversion,
speech synthesis, and replay [19]. In this paper, we focus on
anti-replay voice authentication. Some countermeasures (CMs)
have been proposed to mitigate replay attacks. Commercial
voice authentication systems such as Nuance usually use
challenge-response based methods and require users’ explicit
cooperation (repeating a closed set of sentences). Acoustic
feature based methods come from the observation that design
of spoofing countermeasures should focus on the search for
discriminative features rather than the design of complex
classifiers [20], [21], [32]. This principle is also adopted
in our work. There also exist methods which leverage the
response of the human speech production system to external
stimuli to implement liveness detection. Zhang et al. propose
VoiceGesture which is smartphone based and achieves high
accuracy in detecting live users while not requiring additional
cumbersome operations from users [15].

C. Secure Channel Establishment

There exist solutions that establish secure communication
between (two) devices without any prior trust [11], [16], [18].
Roeschlin et al. [18] proposed a device pairing protocol based
on the idea that two devices are permitted to bootstrap a
secure channel if both of them are held by the same person.
Schürmann et al. [16] proposed a scheme to establish a secure
channel between unacquainted devices conditioned on similar
ambient audio patterns. The protocol uses ambient audio
fingerprints to generate a common cryptographic key between
two devices in proximity, and explores error correcting codes
to account for noise in the fingerprints. Our scheme utilizes
a method similar to [16] to extract voiceprint from the target
speaker’s voice (not only the ambient audio) but uses secure
multi-party computing to bootstrap a secure channel. Based on
ultrasonic distance bounding, Rasmussen et al. [11] proposed a
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Fig. 1: A real time insulin pump system

proximity-based access control scheme enabling an implanted
medical device to be accessed only by devices in its close
proximity. The devices supporting this scheme need effective
RF shielding; otherwise, a strong attacker can send data over
the sound channel at a speed faster than that of sound, which
breaks the assumption of the scheme.

III. SYSTEM AND ATTACKER MODEL

A. System Model

1) Background and the problem: The components of a
Medtronic Paradigm real-time insulin pump system are shown
in Fig. 1, which demonstrates a closed-loop control system.
A typical insulin pump system consists of the insulin pump
and its accessories (blood glucose meter, remote control,
transmitter connecting to glucose sensor, and Carelink USB
as an upload device). The blood glucose meter obtains blood
glucose readings from the patients’ finger-stick tests. The
insulin pump can be programmed to automatically receive
blood glucose readings from the blood glucose meter via
wireless link 2 (each wireless link is numbered in Fig. 1). The
glucose sensor tests the glucose level in the fatty layer under
the skin. The transmitter connected with the glucose sensor
then sends the readings to the pump via wireless link 4. The
insulin pump delivers insulin to the patient. The remote control
is operated by the patient to send instructions (such as suspend
and resume basal dosage) to the insulin pump via wireless link
1 from a distant location. Via wireless link 3, the Carelink
USB requests reports on blood glucose readings and patterns,
then uploads data to a web-based diabetes management system
using a USB port on a Laptop or PC.

Compromising wireless links 1, 3, 4 was demonstrated in
[3] and [2]. The authors of [7] [8] have proposed security
mechanisms for wireless links 1 and 4. In this paper, we will
investigate an innovative approach to defend against passive
and active attacks through link 3, which can be easily launched
by remote adversaries. Besides passively eavesdropping the
data from an insulin pump, the attackers can remotely change
settings (such as dosage level) on the pump. These attacks
bring potential threats to patient’s privacy and safety, which
need to be mitigated.

2) System model: We propose a human-aware, acoustic
channel based access control scheme to mitigate above-
mentioned attacks. In our considered scenarios, access control
means the CareLink USB (or an attacker) wants to acquire
access to an insulin pump to request data or remotely modify
the therapy settings. When the Carelink USB wants to access
the pump, first it sends request to the pump to activate the
access privilege. The pump then starts the speaker verification
to ensure that the access can be granted to the Carelink
USB only when the legitimate user (e.g., the patient) passes
the speaker verification. This verification needs the pump to
embed speaker verification protocol and an audio sensor. After
successful verification, the pump then bootstraps a key agree-
ment with the Carelink USB, which also needs to embed an
audio sensor or directly uses the microphone of the connected
PC or laptop . This process takes as inputs two voiceprints
and generates a shared temporary secret/key used to establish
a secure channel between the two devices. The authentication
process can be achieved in the case that the speaker passes the
speaker verification and the Carelink USB is in close proximity
to the pump, e.g., in the same diabetes consulting room.

B. Attacker Model

We consider two attack scenarios: the attacker wants to steal
data (such as dosage history and patient personal information)
transmitted from the pump or manipulate the therapy settings
of the pump. The first attack can incur leakage of patient’s
privacy and the second may launch a maximum dosage in-
jection, which would put the patient in critical danger. As
in [17], we suppose the pump can work in two modes. In
the normal mode, the pump needs the legitimate user to pass
speaker verification while in the emergency mode the pump
deactivates speaker verification and only needs the Carelink
USB to be in close proximity. In the second mode, the pump
and the Carelink USB can share a common key using the
voiceprint extracted from ambient audio [16].

During the access control process, the proposal is supposed
to defend against three different adversaries as follows:
• Remote impersonation. The attacker tries to pass speaker

verification and perform key agreement with the pump.
The attacker is not in close proximity (same context,
e.g., clinic room) to the pump, but can participate in the
authentication process by remotely receiving the user’s
voice or just using the voice previously recorded. This
kind of attack can be launched when the pump is acci-
dentally activated and the patient is speaking.

• Passive eavesdropping. The attacker eavesdrops on the
messages transmitted over the wireless channel and
records the voice of the legitimate user. The spied mes-
sages can be used to extract information about the shared
secret/key. The recorded voice can be used to launch voice
replay attacks to impersonate the legitimate speaker.

• Man-in-the-middle. The attacker tries to actively partic-
ipate in the authentication process, making the pump
and Carelink USB believe that they have successfully
computed a shared secret/key but they haven’t. They have



actually established a secure connection with the attacker,
respectively, not each other.

IV. VOICEPRINT-BASED ACCESS CONTROL SCHEME

The proposed scheme comprises a speaker-dependent (only
legitimate user can pass the verification) and text-independent
(the user can use any passphrases) speaker verification system
using the acoustic channel to ensure user permission, and a key
agreement protocol using energy-difference-based voiceprint
extraction and secure multi-party computing (SMC) to add
authentication between the pump and USB.

A. Acoustic Channel Verification

As shown above, we focus on adding acoustic channel
verification for the wireless link 3 to make it safer. In
embedded systems, we face several issues and challenges in
implementing the above verification: First, the insulin pump
system has limited computing power and memory; Second,
we need to store speaker models in the insulin pump, which
has limited storage capacity; Third, the accuracy of speaker
verification must be high enough to guarantee the safety.

To solve the first problem, we choose the feature (i.e., a
type of voiceprint) whose extraction has lower computation
complexity. For lower memory occupation, we reduce the
number of filter bands (feature dimension) while keeping
appropriately high verification performance (e.g., low EER
and high verification accuracy). For the second problem, we
train the classifier based on our particular requirements. We
need not to build a large-scale system used to verify many
speakers. The model is lightweight because there is only
one patient/speaker in each system. For the same reason, the
accuracy of our system is higher than large-scale systems
since we concentrate on only one speaker and optimize the
verification for this particular scenario.

Speaker Verification Process. The speaker verification
process typically has two phases: enrollment and prediction.
In the enrollment phase, we collect the utterances of a user and
then train them based on the algorithms stated below. While in
the prediction phase, based on the trained model, the system
makes prediction and computes a score for each test utterance.
A typical automatic speaker verification (ASV) system shown
in Fig. 2 comprises two subsystems: front-end and back-end.
The front-end subsystem acquires voice from the speaker,
implements feature extraction, and generates a feature matrix
from the voice. Each column (feature vector) of the feature
matrix corresponds to one frame of the voice. The back-
end classifies the feature vectors using the trained classifiers
based on speaker models, then outputs a verification result
(accept or reject) using decision logic. Further processing of
the utterances contains the following steps:

Step 1: Feature Extraction. We focused on short-term
power spectrum features (except CQCC) and evaluated 9
different features [20], [21]: Mel Frequency Cepstral Coeffi-
cients (MFCC), Inverted MFCC (IMFCC), Linear Frequency
Cepstral Coefficients (LFCC), Linear Prediction Cepstral Co-
efficients (LPCC), Constant-Q Cepstral Coefficients (CQCC),
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Fig. 2: Automatic speaker verification (ASV) system
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measure (CM)

Subband Spectral Centroid Frequency Coefficients (SCFC),
Subband Spectral Centroid Magnitude Coefficients (SCMC),
Subband Spectral Flux Coefficients (SSFC), and Rectangular
Filter Cepstral Coefficients (RFCC). Based on the evaluation
results, We selected MFCC [22], CQCC [24], and LPCC [25])
to train the ASV model for high accuracy and IMFCC [26] to
train the countermeasure model for resisting replay attacks.

Step 2: Classifier Training. Gaussian mixture model using
maximum likelihood estimation (GMM-ML) [27] is used as a
two-class classifier (genuine or replay) in our work. GMM is a
weighted combination of multivariate Gaussian distributions.
We use GMM-ML to train the classifier for detecting replay
attacks. Gaussian mixture model with universal background
model (GMM-UBM) [28] adopts GMM for likelihood func-
tions, a universal background model (UBM) to represent
alternative speakers, a kind of Bayesian adaptation such as
maximum a posteriori (MAP) to generate speaker-specific
models from the UBM. We use GMM-UBM to train the ASV.

B. Fusion of ASV and Anti-replay Countermeasure
Our speaker verification scheme can be considered as a kind

of ASV system known to be vulnerable to replay attacks (a
kind of spoofing). Some dedicated countermeasures (CMs)
aiming to detect replay attacks have been proposed. Since
genuine utterances should be accepted by both ASV and CM
and either ASV or anti-replay CM should reject the utterances
from impostors, a cascaded combination of ASV and CM
forms a straightforward solution [29]. To our best knowledge,
we are the first group to propose a cascaded fusion of ASV
and CM using evaluation on the ASVSpoof 2017 datasets. The
fusion framework is shown in Fig. 3. If an utterance passes
the verification of ASV (score ≥ θAS V ), it would continue to
be verified by CM. If passing CM verification(score ≥ θCM),
a live target (legitimate) speaker is declared.

C. Voiceprint-based Key Agreement

After the target speaker passes verification, the attackers still
have an opportunity to modify the dosage before delivery. To
avoid this threat, we propose a voiceprint-based key agreement
protocol, which ensures that access to the insulin pump can be
granted to the Carelink USB only when the latter is in close
proximity to both the insulin pump and the target speaker.



1) Energy-difference-based Voiceprint Extraction: After
speaker verification, if the speaker is the claimed one, the
pump and Carelink USB would begin the key agreement
process. Firstly, each device needs to extract a binary charac-
teristic sequence (called voiceprint) from the sampled audio.
We adopt an energy-difference-based voiceprint extraction
scheme, the principle of which comes from [16], [30]. Our
scheme aims to extract voiceprint from a speaker’s voice while
[30] and [16] achieve that through music and ambient audio,
respectively. The extraction algorithm proceeds as follows:
• Partition audio sample X of length L into N non-

overlapping frames X1, ..., XN of identical length L/N .
• Transform each frame using Fast Fourier Transformation

(FFT) weighted by a hanning window (HW):

Fn = FFT (HW(Xn)), n ∈ {1, . . . ,N} (1)

• Partition the frequency into M non-overlapping frequency
bands (filters) FBm at linear space, compute the energy
En,m of each frequency band FBm per frame Fn:

En,m = |Fn|
2 ∗ FBm, n ∈ {1, . . . ,N}, m ∈ {1, . . . ,M} (2)

• Compute (N − 1) ∗ (M − 1) bits of the voiceprint by

f (n,m) =


1,

(En,m − En,m+1)−
(En−1,m − En−1,m+1) > 0,
n ∈ {2, . . . ,N}, m ∈ {1, . . . ,M − 1}

0, otherwise.

(3)

2) Key Agreement using Voiceprint: Because the pump and
CareLink USB may potentially adopt different types of audio
sensors, and even the same type of sensors have different
hardware characteristics, the voiceprints computed in these
two devices are similar but there is a high probability they
are not identical; they cannot be directly used as a key. We
propose a key agreement protocol based on secure multi-party
computing and energy-difference-based voiceprint extraction,
which is shown in Fig. 4.

In the key agreement, we use Secure Three-party Sum
Protocol (Sec3Sum) [31] as a voiceprint transmission method.
Different from the standard protocol in [31], we consider one
device (e.g., pump) as two participants, P1 and P2, and the
other (e.g., USB) as the third participant P3, and vice versa.
The message exchange between P1 and P2 does not happen
in practice. Suppose P1 (Alice) computes voiceprint f1, P2
(Alice) generates a random number c1, P3 (Bob) computes
voiceprint f2, we want to securely compute the three sum
s = f1+c1+ f2, but no one leaks private information ( f1, c1, f2)
to others or public. Sec3Sum executes as follows:
• Pi (i = 1, 2, 3) generates random shares vi, j ( j = 1, 2, 3),

such that f1 =
∑3

j=1 v1, j, c1 =
∑3

j=1 v2, j, f2 =
∑3

j=1 v3, j.
• Pi (i = 1, 2, 3) transmits vi, j to P j ( j = 1, 2, 3 and j , i).
• Pi (i = 1, 2, 3) gets all v j,i ( j = 1, 2, 3) and computes

v
′

i =
∑3

j=1 v j,i, then broadcasts v
′

i .
• Pi (i = 1, 2, 3) computes the sum s =

∑3
i=1 v

′

i = f1+c1+ f2.
After executing Sec3Sum, Alice (P1, P2) gets s = f1 +

c1 + f2 and computes the voiceprint f2 of Bob by subtracting
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Fig. 4: Voiceprint-based key agreement

f1 + c1 from s. We also call this process Secure Voiceprint
Transmitting (SVT) by which Bob securely sends voiceprint
to Alice, and vice versa. Using Sec3Sum as a basic unit, the
key agreement shown in Fig. 4 processes as follows:
• Alice and Bob extract voiceprints from the voice of the

speaker, f1 and f2 (same length), respectively.
• Alice sends Hash( f1) to Bob as a commitment for f1.
• Bob sends f2 to Alice using SVT (Sec3Sum).
• Alice computes the voiceprint similarity:

HanmingDistance( f1, f2)/Length( f1), aborts if the similarity is
less than the preset threshold (e.g., 80%).

• Alice sends f1 to Bob using SVT (Sec3Sum).
Bob compares the hash of f1 with Hash( f1) re-
ceived previously from Alice, checks voiceprint simi-
larity: HanmingDistance( f1, f2)/Length( f2). If any check (hash or
voiceprint) fails, Bob aborts the process.

• Alice then picks a random number c3, transmits s3 =

f2 + c3 to Bob.
• Upon receiving s3, Bob gets c3 by subtracting f2 from s3.
• Alice and Bob compute a key: K = f1 + f2 + c3,

respectively. The key agreement finishes.
• Key confirmation begins immediately after the key agree-

ment. Bob generates a message authentication code
(MAC) M1 of c3 using K and sends M1 to Alice. Alice
verifies M1, generates a MAC M2 of M1 using K and
sends M2 to Bob. If all MACs pass the verification, Alice
and Bob share a common key; otherwise, the scheme will
terminate and report an error.

V. SECURITY ANALYSIS

A. Remote Impersonation

An attacker who is not in close proximity (e.g., same
clinic room) to the pump or the speaker tries to perform



the key agreement with the pump or with the USB. The
attacker must get a voiceprint which can pass the similarity
validation. There are three possible methods to achieve this:
generating a random bit sequence; extracting from previously
or currently recorded voice; impersonating the pump to get
the voiceprint of the USB, then making an agreement with
the pump. For the first, the voiceprints have high entropy
[16]; the probability of guessing a voiceprint with similarity
greater than or equal to the preset threshold (e.g., 80%)
is negligible if the voiceprint length is long enough (e.g.,
≥ 512 bits). For the second, according to the results of
[16], the gap between voiceprints is significant even if the
adversary can listen to same audio source in a different room,
and the differences between voiceprints extracted at different
times are of high significance. The attacker cannot get a
voiceprint having high similarity to the one in the pump in
another context by remotely receiving the user’s voice or using
a previously recorded one. For the third, our protocol first
requests the pump (or an impersonation attacker) sends the
hash of voiceprint(Hash( f1)) to make commitment of having
a voiceprint. Even if getting the voiceprint of the USB, the
attacker cannot pass the hash check given that Hash function
is preimage resistant.

B. Passive Eavesdropping

By channel eavesdropping, the attacker can collect all the
messages exchanged during the key agreement and record
the voice of the legitimate speaker. Our speaker verification
scheme uses the fusion of speaker verification and anti-replay
countermeasure, which can mitigate the replay attacks with
high accuracy as shown in Section VI. The security of the
key agreement relies on whether or not the attacker can learn
partial or all information about the exchanged voiceprints,
which can be achieved by two methods: brute-force and mes-
sage eavesdropping. For brute-force attack, according to the
results of [16], the voiceprints have high entropy and no bias
in bit distribution. We recommend the usage of long length of
voiceprint (e.g., 512bits) and random passphrases (a sequence
of words spoken by the user) to strengthen the security. For
message eavesdropping, our protocol adopts a secure three-
party sum protocol (Sec3Sum) to exchange voiceprints; no
information about voiceprints is leaked given that the random
numbers used in the protocol are uniformly distributed. Our
scheme uses hash (Hash( f1)) for voiceprint commitment and
uses two MACs (M1,M2) for key confirmation. The protocol
leaks no information about the voiceprint and key if the Hash
function can resist preimage attacks and the MAC can resist
second-preimage attacks.
C. Man-in-the-middle

Suppose an eavesdropper Eve to be located in the middle
of Alice and Bob, she must modify or replace at least one
message during the key agreement; otherwise, this would be
passive eavesdropping. As shown in remote impersonation
analysis, Eve cannot successfully finish the protocol with Alice
and Bob, respectively. If Eve modifies any message in the
protocol (Hash( f1), random numbers exchanged in Sec3Sum,

c3, M1, M2), Alice and Bob would compute different sum
and/or different key, which finally makes the key confirmation
fail.

VI. EXPERIMENTS EVALUATION

In this section, we present experiments to show how our
cascaded fusion of speaker verification and anti-replay coun-
termeasure is achieved and demonstrate the feasibility of
the energy-difference-based voiceprint extraction scheme. We
break down the experiments into the following: 1) describe the
datasets used for evaluating our scheme; 2) evaluate different
features and select candidates for speaker verification; 3) train
and test the stand-alone ASV using selected features in case of
zero-effort and replay imposters, respectively; 4) train and test
the standalone CM in case of replay imposters; 5) evaluate the
performance of our cascaded fusion scheme; 6) demonstrate
the feasibility of energy-difference-based voiceprint extraction.

A. Dataset

We used the datasets of ASVspoof 2017 challenge, the
primary technical goal of which is to evaluate spoofing (replay)
attack detection accuracy of the countermeasures [32]. The
datasets consisting of genuine and replay/spoof recordings are
separated into three subsets comprising Training, Development
and Evaluation set, details of which are listed in Table I.
In ASVspoof 2017 challenge, the Training and Development
subsets are provided for the design of replay countermeasures
and the Evaluation subset is used to test the accuracy and
generalization capacity of submitted replay detectors.

B. Model Feature Selection

To select the appropriate features used to implement au-
tomatic speaker verification (ASV), we evaluated 9 different
features (shown in Section IV) using the ASVspoof 2017
Training subset. We used GMM-UBM model with 256 GMM
mixtures and 20 iterations to train ASV. The GMM-UBM im-
plementation is based on the MSR Identity Toolbox V1.0 [23].
For each feature except CQCC, we adopted 20ms frame length
and 40 filter banks. For CQCC (not using short-time Fourier
analysis as other features), the number of cepstral coefficients
is 29 with the appended 0th coefficient. We used 70% of all
the genuine utterances to train UBM model, and used 70%
genuine utterances per speaker to train speaker-specific model
and keep the remaining 30% utterances for test. Verification
trials consist of all possible model-test combinations (30%
of one target speaker vs. 30% of all the other impostors’
utterances). The performance is shown in Table II. We find that
voice activity detector (VAD) is critical. Without VAD, there
is no successfully trained classifier except CQCC, which is not
sensitive to VAD. Finally, we chose MFCC, LPCC, and CQCC

TABLE I: Statistics of the ASVspoof 2017 corpus.

Subset # Speakers # Utterances
Genuine Spoof

Training 10 1507 1507
Development 8 760 950

Evaluation 24 1294 11988
Total 42 3561 14445



TABLE II: Standalone ASV feature performance (%EER) based on
ASVspoof 2017 Traing subset

Features Training set Training set
(VAD) (No VAD)

CQCC 0.66 0.44
MFCC 0.54 50.89
IMFCC 0.88 50.89
LPCC 0.44 55.56
LFCC 0.66 50.89
RFCC 0.57 50.89
SCFC 1.62 50.89
SCMC 0.88 50.89
SSFC 1.20 55.56

as candidates to train ASV because MFCC and LPCC achieve
better performance than other features and CQCC achieves the
best performance without VAD and outperforms all features
in evaluation of the ASVspoof 2015 datasets [24].

C. Standalone ASV Performance of Zero-effort Impostors
Based on the trials above, we selected MFCC, CQCC, and

LPCC as candidates and evaluated the performance of these
three features in case zero-effort impostors try to impersonate
the genuine target speaker just using their own sounds. We
used the Training subset containing utterances of the 10 speak-
ers to train a two-class GMM-UBM classifier. One of the 10
speakers was chosen as the enrollment (target) speaker whose
utterances were used to train the speaker-specific model, and
the 9 other speakers as zero-effort impostors whose utterances
were used to train the impostor model. 70% of genuine
utterances of the target speaker combined with the other 9
impostors’ genuine utterances were used to train the two-
class GMM-UBM model. 30% genuine utterances of the target
speaker combined with all genuine utterances of the Develop-
ment subset were used to predict and evaluate the performance,
which is shown in Table III (columns 2-4). We can see that for
most speakers MFCC achieves better performance, and LPCC
achieves significantly better performance for speaker M0003
and M0008.

TABLE III: Standalone ASV performance of zero-effort and replay
impostors (%EER) based on ASVspoof 2017 Datasets (Training and
Development subsets)

Speakers Zero-effort Impostors Replay Impostors
MFCC CQCC LPCC MFCC CQCC LPCC

M0001 0.00 1.45 4.20 0.05 1.19 2.56
M0002 0.00 0.13 1.30 0.20 0.25 2.03
M0003 3.55 2.37 0.66 14.54 11.11 10.40
M0004 1.32 0.00 3.70 4.78 2.94 3.70
M0005 0.39 2.63 0.13 0.56 1.56 0.44
M0006 1.97 4.21 3.68 16.16 8.89 12.58
M0007 0.00 0.26 0.26 0.22 0.22 0.11
M0008 10.39 11.67 1.67 8.69 6.67 2.46
M0009 1.75 0.26 1.18 1.75 0.42 1.75
M0010 0.39 0.53 0.92 0.22 0.22 1.88

D. Standalone ASV Performance of Replay Impostors

We evaluated the performance of the above 3 features
in case replay impostors try to impersonate target speaker
using recordings of target speaker (or someone else). We still
used the Training subset to train a two-class GMM-UBM
classifier. For each iteration, we chose 1 of the 10 speakers
as the target speaker whose utterances were used to train

speaker-specific model, and others as replay impostors whose
utterances were used to train the impostor model. 70% of
the target speaker’s genuine utterances and all of the other
9 impostors’ genuine utterances were chosen to train the two-
class GMM-UBM model. We used 30% genuine along with
all the spoof utterances of the target speaker and all genuine
and spoof utterances of the Development subset to predict and
evaluate the performance. The comparisons among MFCC,
CQCC, and LPCC are shown in Table III (columns 5-7).
We can see that the performance of the replay impostors is
significantly lower than that of the zero-effort impostors, and
that CQCC has comparable performance with LPCC while
CQCC has significantly better performance for speaker M0006
and LPCC still achieves significantly better performance for
speaker M0003 and M0008.

E. Standalone CM Performance of Replay Impostors

We trained a two-class GMM-ML model using the Devel-
opment (Dev) and Evaluation (Eval) subsets of ASVspoof
2017. Specifically, we used all genuine utterances of Eval
or Dev to train the genuine model while using its spoof
utterances to train the spoof model, and then made Dev-Eval
cross-validation. Table IV shows the performance. The second
column shows the result with Dev as enrollment set and Eval
as prediction set. The third column shows the result with Eval
as enrollment set and Dev as prediction set. We chose the latter
(showing IMFCC feature achieves the best performance) as the
reference for subsequent fusion evaluation.
F. ASV & CM Fusion Performance of Replay Impostors

In this section, we demonstrate the performance of the
fusion of ASV and CM. We used the Training subset to
train and test the ASV GMM-UBM model and computed a
threshold (θAS V ). Each utterance getting a score below θAS V

would be considered as zero-effort or replay impostor resulting
in a rejection. The utterance getting a score ≥ θAS V would
continue to be double-checked in CM. Dev and Eval subsets
were used to train GMM-ML model for CM. All the genuine
and spoof utterances per speaker in Eval set were used to train
a two-class GMM-ML model. All utterances, both the genuine
and spoof of Dev, were used to test the model and compute
a CM threshold (θCM). Each utterance getting a score below
θCM would be considered as a spoof. The CM double-check is
used to detect the utterance which is false positive. The fusion

TABLE IV: Standalone countermeasures (CMs) replay detection
performance (%EER) based on ASVspoof 2017 Development (Dev)
and Evaluation (Eval) subsets

Features Enrollment/Prediction dataset
Dev/Eval set Eval/Dev set

CQCC 27.58 8.94
MFCC 38.78 8.00
IMFCC 34.67 6.57
LPCC 30.90 8.42
LFCC 37.06 7.23
RFCC 36.14 8.04
SCFC 25.11 29.05
SCMC 34.97 8.14
SSFC 33.94 8.03



policy potentially increases the false negative rate (a genuine
utterance is considered as a spoof one). When this happens,
the user can try again. For the safety of the user, we think
this inconvenience is acceptable. We evaluated MFCC, CQCC,
and LPCC in ASV and IMFCC in CM, which results in 3
different fusions, the performance of which is shown in Table
V. We find that in most cases the fusion of MFCC/LPCC ASV
and IMFCC CM gets a lower EER than a standalone ASV or
CM. The fusion of LPCC ASV and IMFCC CM achieves the
best performance: the maximal EER value for all evaluated
speakers is 4.02%.

G. Feasibility of Energy-difference-based Voiceprint Extrac-
tion

After the speaker has passed the speaker verification, the in-
sulin pump and Carelink USB would start the voiceprint-based
key agreement to bootstrap a secure communication channel.
We made trials to demonstrate the feasibility of the voiceprint-
based key agreement. Using the microphones in iPhone 5S
and Honor 10, we recorded 270 passphrases, i.e., 135 for
each device. In each test case, a person spoke the passphrase
as a voice source, and these two devices were positioned in
the way of one of total 27 different distance settings relative
to the voice source (speaker). In each distance setting, the
speaker spoke 5 sentences, each of which contains either 4 or 5
English words or 5 numbers between 0 and 9. The duration of
each sentence is about between 1 and 3 seconds. The distance
setting among the speaker and the mobile phones simulates
the relative positions among the insulin pump, Carelink USB,
and the patient (or the attacker). All the distance settings and
results of similarities of voiceprints generated by these two
devices are shown in Table VI. For voiceprint extraction, we
used 16 kHz sampling frequency, 63 ms frame length, and 17
frequency filter banks. From all the experimental results, we
get: (1) the average voiceprint similarity (AVS) is larger than
80% when the two devices are positioned within distance less
than 30cm to the voice source; (2) the AVS drops down to
75.21% when one device is 300cm away from the speaker,
and 61.71% when one device is at outside of the closed door
of room (320 cm, mean ambient loudness in room: 38 dB,
outside: 47 dB), which shows that the attacker cannot get a
voiceprint having high similarity to the one in the pump or
USB in another context by remotely receiving the user’s voice.

VII. DISCUSSION

A. Overhead Analysis

Storage overhead. We only need to store classifier models
for one patient in the pump, which reduces the storage com-
paring with other speaker recognition systems. In the fusion
system, the feature dimension adopted is 40. For ASV, we
need to store one GMM UMB model (162 KB with 256 GMM
components), one GMM user model (162 KB), and one GMM
background users model (162 KB). For countermeasure, we
need to store one GMM Genuine model (324 KB with 512
GMM components) and one GMM Spoof model (324 KB).
The total permanent storage needed is only about 1 MB.

Computation complexity. We evaluated the executing time
of the key modules in the environment of Raspberry Pi 1
Model B+ with 700 MHz Broadcom BCM2835 CPU. We
suppose the duration of each recorded voice is around 2 s.
For the speaker verification system, the ASV part needs one
audio read (0.02 s), one feature extraction (0.15 s), and one
log likelihood computation (0.23 s); the CM part needs one
feature extraction (0.15 s), and one log likelihood computation
(0.23 s). In the voiceprint extraction process, the scheme
generates 16 bits voiceprint for each voice frame. All the tested
passphrases have the length between 19 and 42 frames, so the
length of voiceprints is between 304 and 672 bits. For high
security, we adopt the voiceprint with the length ≥ 512 bits.
During the key agreement, the voiceprint extraction spends
0.04 s; the running time of each of other operations (1 Hash,
8 Random number generations, 2 MACs, and 18 additions) is
≤ 0.001 s, totally ≤ 0.03 s. So the total computation time of
the whole access control is around 1 s.

Communication complexity. Only the voiceprint-based key
agreement needs message exchanges between the insulin pump
and Carelink USB. The pump needs to transmit 1 Hash
(256 bits using Sha256), 2 MACs (2x160 bits using EVP
Sha1), 7 random numbers (7x512 bits) during two Sec3Sum
protocols, and one random number s3 (512 bits), and receive
7 random numbers during two Sec3Sum protocols. The total
received and transmitted data of the pump (almost equivalent
to Carelink USB) is ≤ 10 Kbits, which can be exchanged
within 1 s using the RF channel (Pump to Carelink USB
Frequency: 961.5 MHz, Bandwidth: 185 kHz). Combined with
the computation analysis, the whole access control can be
finished within around 2 s after the voice recording is finished.

B. Emergency Situation Handling

Allowing easy access to medical devices under emergencies
is an orthogonal problem. Many proposals (e.g., in [9], [10],
and [11]) suggested to grant open access to clinical staff during
emergencies. Some literatures (e.g., in [6] and [12]) proposed
schemes for emergency cases. To handle the emergency case,
we can deactivate the speaker verification and execute the
key agreement using the voiceprints extracted from ambient
audio, the same case handled in [16]. In this situation, although
without the participation and permission of the patient (unable
to participate under emergency situation such as coma), the
insulin pump and Carelink USB can still establish a secure
channel so long as they are in close proximity to each other.

VIII. CONCLUSION

In this paper, we propose a novel voiceprint-based access
control scheme comprising anti-replay speaker verification and
voiceprint-based key agreement to secure the channel between
the insulin pump and Carelink USB. We present a scheme that
makes sure the insulin pump can be accessed by Carelink USB
only after the legitimate user passes the identity verification,
and the pump establishes a secure channel only with the device
in its close proximity. Our scheme uses energy-difference-
based voiceprint extraction and secure multi-party computing



TABLE V: ASV and CM fusion replay detection performance (%EER) based on ASVspoof 2017 Datasets

System Speakers
M0001 M0002 M0003 M0004 M0005 M0006 M0007 M0008 M0009 M0010

ASV1 (MFCC) 0.20 0.00 11.11 3.70 0.78 4.78 0.16 6.67 1.75 0.17
CM1 (IMFCC) 7.11 6.06 6.96 6.71 6.67 6.31 7.59 6.61 6.11 6.81

Fusion1 (MFCC+IMFCC) 1.19 0.00 4.60 0.83 0.72 2.22 0.16 8.33 1.75 0.06
ASV2 (LPCC) 3.17 1.30 0.80 1.44 0.50 2.22 0.22 1.67 1.63 0.50
CM2 (IMFCC) 7.11 6.06 6.96 6.71 6.67 6.31 7.59 6.61 6.11 6.81

Fusion2 (LPCC+IMFCC) 4.02 2.60 0.52 0.50 0.22 1.77 0.11 3.33 1.63 0.33
ASV3 (CQCC) 2.31 0.20 4.94 0.56 0.89 4.44 0.05 6.67 0.00 0.22
CM3 (IMFCC) 7.11 6.06 6.96 6.71 6.67 6.31 7.59 6.61 6.11 6.81

Fusion3 (CQCC+IMFCC) 7.14 11.69 1.38 0.00 3.70 6.67 0.05 9.84 1.75 0.17

TABLE VI: Average similarity of voiceprints generated by two
devices at different distances to the same voice source

Distance (cm) Average voiceprints similarity (%)
S5 20 S5 30 S5 50 S5 150 S5 300 S5 outside

H10 20 81.55 80.22 80.78 78.66 74.97 64.36
H10 30 81.35 80.37 77.69 78.34 75.89 62.27
H10 50 80.73 80.50 78.45 78.32 77.00 61.11
H10 150 75.29 76.17 74.17 - - -
H10 300 75.06 75.79 72.55 - - -

H10 outside 60.39 60.90 61.22 - - -

to generate a common cryptography (temporary) key between
the Carelink USB and insulin pump, which can be used to
encrypt the subsequent communication while protecting the
insulin pump from message eavesdropping and parameters
manipulation attacks, such as remote dosage setting. Our
proposal does not need certificates, permanent shared key or
additional devices, which we believe will be an attractive
solution to access control problem for insulin pump systems.
Finally, our scheme may be generalized to other infusion
systems as well, which can be our future work.
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