
Int. J. High Performance Computing and Networking, Vol. 6, Nos. 3/4, 2010 181

Copyright © 2010 Inderscience Enterprises Ltd.

HR-SDBF: an approach to data-centric routing in
WSNs

Xiuqi Li*
Department of Mathematics and Computer Science,
University of North Carolina at Pembroke,
P.O. Box 1510, Pembroke, NC 28272, USA
E-mail: xiuqi.li@uncp.edu
*Corresponding author

Jun Xu
College of Computing,
Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30332-028, USA
E-mail: jx@cc.gatech.edu

Jie Wu
Department of Computer and Information Sciences,
Temple University, 324 Wachman Hall,
1805 N. Broad Street Philadelphia, PA 19122, USA
E-mail: jiewu@temple.edu

Abstract: In existing query-based routing protocols in wireless sensor networks (WSNs), a node
either keeps precise route information to desired events, such as in event flooding, or does not
keep any route to desired events, such as in query flooding. In this paper, we propose a routing
protocol, called hint-based routing by scope decay bloom filter (HR-SDBF), that employs
probabilistic hints. In the HR-SDBF protocol, each node maintains some probabilistic hints about
the potential desired events and routes queries intelligently based on these probabilistic hints. We
also put forward a data structure, scope decay bloom filter (SDBF) to encode the probabilistic
hints. With SDBF, the amount of information about an event is propagated, without any loss,
within the k-hop neighbourhood of the event source, but decreases outside the k-hop
neighbourhood as the distance from the event source increases. Compared to existing
query-based protocols, HR-SDBF greatly reduces the amortised network traffic without
compromising the query success rate, and achieves a higher energy efficiency. To the best of our
knowledge, this is the first query routing protocol in WSNs that utilises probabilistic hints
encoded in a variant of the bloom filter. Both the analytic and the experimental results support
the performance improvement of our protocol.

Keywords: bloom filters; BF; data-centric; hint-based; query-based; routing; wireless sensor
networks; WSNs; high performance computing.

Reference to this paper should be made as follows: Li, X., Xu, J. and Wu, J. (2010) ‘HR-SDBF:
an approach to data-centric routing in WSNs’, Int. J. High Performance Computing and
Networking, Vol. 6, Nos. 3/4, pp.181–196.

Biographical notes: Xiuqi Li is an Assistant Professor at the Department of Mathematics and
Computer Science in University of North Carolina at Pembroke, Pembroke, North Carolina,
USA. She earned Faculty Summer Research Fellowship in 2010. She served as a Programme
Committee Member and Session Chair in ten conferences. She holds 26 peer-reviewed journal
and conference papers. Her research interests include networking, security, multimedia and web
mining.

Jun Xu is an Associate Professor at College of Computing at Georgia Institute of Technology,
Atlanta, USA. He earned the 2006 IBM Faculty Award, 2006 College of Computing Outstanding
Junior Faculty Research Award, NSF CAREER Award and Ameritech Fellowship for
outstanding research in telecommunications. He has published in several journals and refereed
conference papers. His research interest is networking.

182 X. Li et al.

Jie Wu is a Chair and a Professor in the Department of Computer and Information Sciences,
Temple University. Prior to joining Temple University, he was a Program Director at National
Science Foundation. His research interests include wireless networks and mobile computing,
routing protocols, fault-tolerant computing, and interconnection networks. He has published more
than 500 papers in various journals and conference proceedings. He serves in the editorial board
of the IEEE Transactions on Computers, IEEE Transactions on Mobile Computing, and Journal
of Parallel and Distributed Computing. He is Program Co-Chair for IEEE INFOCOM 2011. He
was also General Co-Chair for IEEE MASS 2006, IEEE IPDPS 2008, and DCOSS 2009. He has
served as an IEEE Computer Society Distinguished Visitor and is the Chairman of the IEEE
Technical Committee on Distributed Processing (TCDP). He is a Fellow of the IEEE.

1 Introduction

Recent advances in wireless communications and
electronics have led to the rapid development of wireless
sensor networks (WSNs). There is a wide range of
applications of WSNs, such as in the health industry,
military, warehouse, and home environment (Akyildiz et al.,
2002a, 2002b). Sensors are typically low-cost, low-power,
and multi-functional. They communicate with each other
through wireless media and form a wireless distributed
network.

In WSNs, routing is data-centric, i.e., finding data with
specific attribute values (Agrawal and Zeng, 2003). In many
WSN applications, routing is query-based. A data
destination node, also called a sink, initiates a query for
some desired data, which is forwarded towards the hosting
sensors (Al-Karaki and Kamal, 2004). Sinks can be static or
dynamic. In this paper, we are interested in the latter case,
where any sensor could issue a query. We refer to the
queried data as events. Because sensors have limited power,
one of the major challenges in designing WSN routing
protocols is energy efficiency. One way to achieve this is to
reduce the total routing traffic (Akyildiz et al., 2002a,
2002b).

Existing query-based routing protocols can be classified
into two types. The first type, called query flooding based,
is blind forwarding and does not proactively maintain
any hints. Queries are flooded over the WSNs. Query
flooding can find desired events quickly but is also costly
because many query messages are generated. This is evident
when many events are frequently queried. The second
type, called event flooding based, employs precise routing
hints to route queries. The second type can reduce query
messages at the expense of heavy routing overhead.
Specifically, keeping precise routing hints for many events
is expensive. This is because each node keeps a precise list
of events that may be found through each neighbour. The
cost to create and update this list is prohibitive when the list
is large.

In this paper, we propose a routing protocol, called
hint-based routing by scope decay bloom filter (HR-SDBF),
that utilises probabilistic hints. In HR-SDBF, each
sensor maintains probabilistic hints about events that
may be found through its neighbours. The hints are encoded
using the proposed variant of the bloom filter (BF)
(Bloom, 1970; Fan et al, 1998; Guo et al, 2006), called
scope decay bloom filter (SDBF).

A BF is a lossy compression of a set for supporting
membership queries. It consists of a bit string and a group of
hash functions. To generate a BF for a set, each set element
is mapped by each hash function to a bit position in the bit
string. All mapped bits are set. To determine the
membership of an item, the item is hashed similarly. If any
of the hashed bits is not set, then the item definitely does not
belong to the set. If all bits are set, then the item is possibly
in the set. If in fact the set does not contain the item, a false
positive occurs. Nevertheless, the space savings usually
offset this shortcoming when the false positive rate is
significantly low. BFs have been used in database
applications, web caching, searching in peer-to-peer
networks, and network measurements. Unlike BFs, an
SDBF can denote different amounts of information about an
element and represent probabilistic membership.

The HR-SDBF protocol uses SDBFs to advertise the
routing hints about an event. The advertisement is designed
such that the amount of hints do not decay within the k-hop
neighbourhood of the event source, but decay outside the
k-hop neighbourhood as the distance from the boundary of
the k-hop neighbourhood increases. By trading off precise
routing hints for probabilistic ones, HR-SDBF achieves a
higher query success rate with the same or less amortised
routing overhead.

Sinks may conduct different types of searching based on
SDBFs. They can specify the minimum amount of
information that a neighbour must have in order to receive
queries.

• One-thread best HR-SDBF. A query is always
forwarded to the best neighbour that has the maximum
amount of information among all neighbours. Ties can
be broken by random selection or based on some SDBF
component. This option is intended to find at least one
desired event with the minimum cost.

• N-threads HR-SDBF. A query is forwarded to all
neighbours that have the full amount of information
about the desired event (i.e., all bits for the desired
event are set). This choice is designed to find all events
within the no-decay scope, k-neighbourhood.

Figure 1 illustrates the differences between the proposed
hint-based scheme, query flooding and event flooding.
Query cost refers to the number of query messages incurred
per query. Routing overhead represents the cost for
maintaining hints. Query flooding has the highest query cost

 HR-SDBF: an approach to data-centric routing in WSNs 183

because it does not utilise any hints. Event flooding
generates the minimum query traffic because each node
keeps precise hints about all events. On the other hand,
event flooding incurs the maximum routing over-head while
query flooding does not have any routing over-head. The
proposed hint-based scheme is in-between the two extremes.

Figure 1 Contrast hint-based routing with query flooding and
event flooding (a) query cost (b) routing over-head
(c) overall performance

(a)

(b)

(c)

Note: There are three dimensions: query, event, and
performance.

We make the following contributions in this paper.

• We propose a hint-based routing protocol, HR-SDBF,
which combines the advantages of both blind and
precise-hint schemes. To the best of our knowledge,
HR-SDBF is the first query routing protocol in WSNs
that improves routing efficiency by utilising
probabilistic hints.

• We present a novel data structure, SDBF. SDBFs
improve the conventional BFs by being capable of
representing probabilistic membership and various
amount of information about elements. SDBFs are
flexible and can include different decay models.

• We discuss different design tradeoffs in HR-SDBF.
These include tie breaking by random selection and
some SDBF component, and different decay models
such as the exponential decay and the linear decay.

• We give some extensions of HR-SDBF, including
extensions to clustered (or actor based) WSNs and
applications of other BF variants.

• We conduct an extensive performance analysis and
simulation of HR-SDBF.

This paper is organised as follows. In Section 2, we
review existing query-based routing protocols in WSNs. In

Section 3, we give an overview of the HR-SDBF protocol.
In Section 4, we present the detailed design of HR-SDBF.
We first introduce SDBF and different decay models, then
describe how to create probabilistic hints and hint updates,
and how to route queries using these hints. Some extensions
of HR-SDBF are also discussed. In Section 5, we provide an
analytical study of the HR-SDBF. In Section 6, we present
experimental results about HR-SDBF’s performance. In
Section 7, we summarise the HR-SDBF protocol and point
out the future work.

2 Related work

In this section, we review existing query-based routing
schemes for flat WSNs that are associated with the work in
this paper.

2.1 Query flooding and its variants

The simplest way to route queries is to flood queries from
the sink over the entire WSN and set up the reverse paths
for desired data to be sent back to the sink. Various query
flooding schemes differ in the manner in which they set up
and use reverse paths. Directed diffusion (Estrin et al., 1999;
Intanagonwiwat et al., 2000) tries to find an optimal path
between the sink and the event sources. A sink first initiates
an exploratory query. Each node sets gradients between
neighbouring nodes, and reinforces the best route for real
databased on local rules while transferring the exploratory
events. Note that the gradients are only used for sending the
real data from the discovered event source to the sink that
initiates the exploratory query. Directed diffusion also
employs data caching and data aggregation to reduce
network traffic.

Gradient-based routing (Schurgers and Srivastava, 2001)
is another scheme based on query flooding. It associates
each node with a height, which is the minimum distance in
terms of the number of hops from the sink. The scheme also
assigns a gradient to the link between a node and its
neighbour. A gradient is defined as the height difference
between a node and its neighbour. A node always forwards
desired data through the link with the highest gradient
among all links to its neighbours. Energy aware routing
(Shah and Rabaey, 2002) is also based on query flooding.
This scheme tries to maintain multiple paths between a data
source and the sink. Desired data is propagated through a
route that is probabilistically selected. The probability of a
route is set based on its energy consumption.

To reduce the cost of query flooding, gossiping (Li et
al., 2002) can be used for query-based routing in WSNs. It
is essentially a random walk where each node forwards a
received query to a randomly chosen neighbour.

2.2 Event flooding and its variants

Another option to correct the deficiency of query flooding is
event flooding when the number of events in the WSN is
small. We can use the minimum cost forwarding algorithm

184 X. Li et al.

in Ye et al. (2001) to set up the minimum cost path from
every node to the event source. The event source broadcasts
an event with cost 0. Each node updates its cost estimate
and forwards a received message if the message leads to a
lower cost path. To reduce the number of updates at some
nodes, a backoff algorithm is applied at those nodes during
the route setup.

Rumour routing (Braginsky and Estrin, 2001) combines
query flooding and event flooding. It deploys an agent at a
fixed probability for each event. An agent is a long-lived
packet used to spread a list of events. An agent randomly
walks in the WSN and synchronises its current event list
with any node on its path. Synchronisation allows both
agents and nodes to add new events and update routes to
their existing events. There is only one route between an
event source and a sink. After the route setup, when a sink
queries for an event, if a neighbour has a route to that event,
the query is forwarded to that neighbour along the known
route. If no neighbour has a clue, the query is forwarded to a
neighbour chosen uniformly at random. The neighbour
repeats the same process. The query terminates when the
TTL expires or when the desired event is reached.

Another related work is SQR searching (Kumar et al.,
2005) in peer-to-peer networks that uses an exponential
decay bloom filter (EDBF) to advertise hints. The major
differences between SQR-EDBF and HR-SDBF are as
follows. First, SDBF is more general and can incorporate
different decay models. An EDBF can be considered as a
one-hop SDBF with an exponential decay pattern. Second,
SDBF can be utilised to perform more types of routing:
one-thread and N-thread. The TTL counters embedded in
SDBF can be employed for breaking ties. We can also
specify the amount of hints for controlling the routing
scope. SQR searching is a special case of HR-SDBF. It can
be considered as the 1-thread HR-SDBF with random tie
breaking.

To the best of our knowledge, only one existing query-
based WSN routing protocol, called resilient data-centric
storage (Ghose et al., 2003), uses BFs for routing. This
protocol divides the sensor field into regions, each of which
has a monitor node and at most one replica node for each
event type. Unlike most WSN routing protocols where
events are stored locally at the detecting sensors, this
protocol stores information about all sources of an event
type in some replica nodes. Each monitor node has a global
view of all other monitor nodes and all replica nodes. A BF
is used to represent the collection of attribute value pairs for
all event types at each replica node. This protocol differs
from our approach because the BF is not used for offering
probabilistic hints.

3 HR-SDBF protocol – overview

This section outlines the overall design of the HR-SDBF
routing protocol. The design details will be discussed in the
next section. The basic idea in the HR-SDBF protocol is to
route the query based on probabilistic hints about the
desired events. To obtain these probabilistic hints, we

spread the knowledge about an event from the event source
such that the amount of information about the event does
not decay within the k-hop neighbourhood, but decreases
outside the k-hop neighbourhood as the distance increases.

HR-SDBF protocol includes two types of searching,
one-thread best HR-SDBF and N-thread HR-SDBF. The
first approach is pictured in Figure 2(a). A query is always
forwarded to the best neighbour that has the maximum
amount of information among all neighbours. If multiple
neighbours tie, we can select one randomly or break the tie
based on some SDBF component. To control scope decay,
each SDBF bit segment is equipped with a TTL counter. A
counter for a segment is set to k at an event source if an
event hashes to a bit in that segment. A TTL counter
decreases by 1 at an advertisement. Ties can be broken by
choosing the neighbour with the maximum TTL counter
value associated with the desired event (i.e., selecting the
one closest to an event source). A sink can control which
neighbours are qualified for receiving queries by stipulating
the minimum amount of information that a neighbour must
have. This design choice is for finding at least one desired
event efficiently.

The second approach is demonstrated in Figure 2(b). A
query is redirected to all neighbours whose SDBF sets all
bits of an event. A neighbour does not receive the query if it
does not have the full amount of information. This scheme
is targeted at efficiently locating all events within a
no-decay k-neighbourhood.

Figure 2 HR-SDBF routing overview

(b) N−thread HR−SDBF search

B sink
{e2}

C
{e2}

sink

data source

regular sensor

sinkA{e1}

(a) 1−thread best search

Notes: e1, e2: detected events. A, B, C, D: event sources.

The hint update is accomplished as follows. A sensor first
creates a local SDBF, encoding the set of events detected by
itself. This SDBF is broadcast to all its neighbours. A
neighbour combines this SDBF with the SDBFs from its
own neighbours and propagates the aggregated SDBF. To

 HR-SDBF: an approach to data-centric routing in WSNs 185

reduce the routing traffic further, incremental updates to
SDBFs are actually disseminated.

We consider two options for decreasing the information
about an event, exponential decay and linear decay. In the
exponential decay model, each bit that is currently 1 in an
SDBF remains 1 at a constant probability p. The amount of
information about an event at a node outside the k-hop
neighbourhood is an exponential function of the distance
from the boundary of the k-hop neighbourhood of the event
source. In the linear decay model, the information about an
event is approximately a linear function of the distance from
the boundary of the k-hop neighbourhood. Neither decay
model couples the amount of decay with a particular event
source and a particular distance. Therefore, they do not need
to memorise states.

4 HR-SDBF protocol – detailed design

This section presents the design details of the HR-SDBF
routing protocol. We first introduce our SDBF BF. Then we
discuss how to use the SDBF to build up and maintain the
probabilistic routing hints. At the end, we describe how to
route queries intelligently with the help of these
probabilistic routing hints. We make the following
assumptions about the WSN we are concerned about. The
event source model is the random source model where event
sources are selected uniformly at random from all sensors.
Each sensor may potentially initiate event queries. An event
query is considered successful if at least one desired event is
found.

4.1 Scope decay bloom filter

An SDBF is designed as a lossy channel coding scheme to
reduce the amount of network traffic. An SDBF
can represent the set membership information and the
different amount of information about an element in the
set. Similar to a BF, an SDBF also has a bit string of
width m and d hash functions, h1, h2, ..., and hd. An SDBF
encodes the information about an element similarly to the
way a BF inserts an element. Given an element e, the
SDBF sets all bits h1(e), h2(e), ..., and hd(e) in the bit string.
An SDBF differs from a BF in the decoding procedure. A
BF obtains the membership information by checking
whether all mapped d bits are set or not. An SDBF decodes
the information about an element e by computing
the number of 1s among the d mapped bits, denoted by
I(e). This number ranges from 0 to d. The more bits set
to 1, the larger I(e), and the more information about e will
exist.

Figure 3 shows an example of an SDBF where m = 16
and d = 3. The SDBF is composed of a 16-bit string bstr and
three hash functions, h1, h2 and h3. When the SDBF initially
encodes the information about element e1, h1, h2 and h3 hash
e1 to bits 3, 8, and 12 respectively and set these bits to 1s.
When we decode e1 from this initial SDBF, we apply these

three hash functions to e1, and compute the number of 1s,
I(e1), in bit positions 3, 8, and 12. Clearly I(e1) has the
maximum value 3 that corresponds to the maximum
information about e1.

During the decay process, some bits in the initial SDBF
are probabilistically reset to 0s. In the decayed SDBF in
Figure 3, bit 8 is reset to 0, bits 3 and 12 remain 1s. When
we decode e1 from this decayed SDBF, I(e1) = 2, which
means that this decayed SDBF has less information about e1
than the initial SDBF.

Figure 3 The structure of SDBF

Decoding: I(e1) = 2

0 1 1 0 0 0 0 0 0 1 0 0 10 00

0 1 1 0 0 0 0 1 0 0 0 1 0 0 10

h1(e1) h2(e1) h3(e1)

Decaying

0 3 7 8 151242 9

Initial

SDBF

Decayed
SDBF

0 3 7 8 151242 9

Encoding

non−decayed

Decoding: I(e1) = 3

There are many design choices for decreasing the
information about an element in an SDBF. To simplify the
decay process, we choose two stateless decay schemes that
do not need to remember the specific event contributing to a
particular bit. These two models are the exponential decay
and the linear decay.

• The exponential decay model. The information about an
element (e.g., an event) decreases exponentially as the
distance from the boundary of the k-hop neighbourhood
of an element source (e.g., the sensor detecting an
event) increases, assuming that there is no hash
collision. Specifically, if any bit in an SDBF is
currently 1, it remains 1 at a constant probability p
during each decay. The number of 1s corresponding to
an element (an event e) at an i-hop distance from the
element source is

() ()* .i kI e d p −=

• The linear decay model. The information about an
element decreases in a linear fashion as the distance
from the k-hop boundary of the element source
increases. Let sumI denote the current total number of
1s in an SDBF and r be a random number in the range
[c1, c2], where c1 and c2 are system parameters.
Randomly select r bits among the sumI bits and reset
these bits to 0. The total number of 1s in the SDBF after
the decay, denoted by sumI’, is

.sumI sumI r′ = −

186 X. Li et al.

Assuming no hash collision, a bit currently at value 1 is
reset to 0 with the probability pl.

.lp r sumI=

Obviously, a bit is more likely to be reset to 0 (i.e., decay
faster) when the SDBF has a smaller number of 1s.

The SDBF can also be used to represent probabilistic
sets. The number of 1s corresponding to an element can be
considered as the probability of the element being in the set.
The more 1s in the corresponding d bits, the more likely the
element is in the set.

4.2 Probabilistic routing hint creation and
maintenance

Probabilistic routing hints are represented by SDBFs.
Each sensor maintains an SDBF for each neighbour. An
SDBF encodes hints about events that may be found
through a neighbour. To create these hints, each sensor first
creates a local SDBF that encodes all local events detected
by itself. Then these local SDBFs are propagated according
to the decay model. At each sensor, the SDBF hints from
different neighbours are first decayed if they contain
information outside the k-hop neighbourhood of event
sources, then aggregated (including the non-decayed local
SDBF), and propagated further to other neighbours. Figure
4 shows how a node A propagates updates to its neighbour
E. A ORs its own SDBF and the SDBFs it receives from
neighbour B, C and D, and sends the combined SDBF as
hints to neighbour E. If a sensor notices some change to its
local SDBF, the changes are incrementally spread out to
nearby nodes.

Figure 4 Event hint update from A to its neighbour E
C

A

B
D

IMP_C

IMP_B

LOCAL

IMP_D

EXP_E

E

OR

Notes: B, C, D and E are A’s neighbours. LOCAL: A’s

local SDBF. IMPi: the SDBF hint imported
(received) from neighbour i.

The control of no-decay within k-hops is illustrated in
Figure 5. An SDBF is partitioned into n segments and one
TTL counter is equipped for each SDBF segment. The
counter for a segment has the same value as the decay range
k at an advertising source that contributes to the segment. In

the example, the SDBF is 16-bit and the segment size is 4
bits. Only 4 TTL counters are required.

Figure 5 Control no decay within k-hop neighbourhood of an
event source

(segment size = 4 bits)

0 1 1 0 0 0 0 1 0 0 0 1 0 0 10
0 3 7 8 151242 9

TTL
counters c0 c1 c3c2

SDBF

1 TTL counter per SDBF segment

Figure 6 and Figure 7 show how to create a local SDBF
and hint update at a sensor s. To create a local SDBF LRs
for the local event set LEs, s first checks whether LEs is
empty. If not, s hashes each event e using d hash functions
and sets the corresponding d bits in LRs to 1s. s also
initialises the TTL counter for each segment to the
maximum value k. If LEs is empty, LRs has all 0s in its
bit array and counter array. To create a hint update

inUR to

a neighbour ni, s first assigns LRs to
inUR if LEs is not

empty. Then for each segment in the SDBF of each
neighbour nj other than ni, s calls the procedure Decay() to
process the SDBF segment according to the pre-defined
decay model.

Figure 6 Algorithms for creating local hints and hint updates

 HR-SDBF: an approach to data-centric routing in WSNs 187

Figure 7 Algorithm for decay an SDBF segment

4.3 Query routing based on SDBF hints

Figure 8 illustrates the one-thread best search in HR-SDBF.
The sink finds all neighbours whose SDBFs have at least
minBits set among the bits for event e. These qualified
neighbours are ranked according to the number of bits set
for e. The query is routed to the top-ranked neighbour. On
receiving Qe, a neighbour checks if the query is a duplicate.
If so, Qe is dispatched to a random neighbour. If e is a local
event at this neighbour, the query forwarding terminates. If
not, Qe is redirected similarly if the query TTL does not
expire.

During query forwarding, there may be top-one ties. If
tie breaking is random, a neighbour among all ties is
randomly selected as the best neighbour. If the tie breaking
is TTL counter, a max-min strategy is used to select the best
neighbour. First, for each neighbour, the minimum TTL
counter value among those of all segments in association
with e is chosen as the TTL counter value for that
neighbour. Then the neighbour with the maximum TTL
counter value with respect to e is considered the best.

Figure 8 One-thread best HR-SDBF search

Figure 9 Locate the best neighbour for one-thread HR-SDBF

The rationale for the max-min TTL counter strategy is
explained as follows. When an SDBF segment is only used
by one event, the TTL counter for that segment is set to k at
the event source and decreased by one (until 0) during each
advertisement. When two events share a segment, if the
TTL counter for the segment is set according to one event,
the other event can only cause the shared TTL counter to
stay the same or increase but not decrease. Therefore, in
each neighbour’s SDBF, among all segments of an event, if
at least one segment’s TTL counter value is not changed by
other events, the minimum TTL value is the correct value
for that event. If TTL counters of all segments that are
related to an event are false, the minimum TTL counter
value has the smallest error.

If all neighbours’ TTL counter values are correct with
respect to an event, the neighbour with the maximum TTL
counter value is closest to the event source. Otherwise, there
is no way to distinguish between true and false TTL counter
values. Choosing the neighbour with the maximum TTL
counter value is like a random selection.

In the N-thread search, the minBits must be the same as
d and the maximum query TTL must equal to k. The sink
forwards a query Qe to all neighbours with all d bits set for
event e. When a neighbour receives a non-duplicate query
Qe for a local event e, the detailed information about e is
returned to the sink. The neighbour continues to send Qe
similarly to the sink until the query TTL expires. Duplicate
queries are discarded at the receiving neighbour.

4.4 Extensions

The HR-SDBF routing can be extended in the following
ways. First, we can run HR-SDBF on a hierarchical
topology to increase scalability. The WSN can be divided
into non-overlapping clusters with one clusterhead (CH) per
cluster. Clusters can be formed by data correlation. Each
CH computes a local SDBF for events detected within its
cluster. Each CH also aggregates and propagates SDBF
hints from other neighbour CHs. When a CH receives a
query, it first checks its own cluster. If the query is not
resolved, the CH forwards the query to the best neighbour
CH that has the most hints about the desired event.
HR-SDBF can also be extended to actor-based WSNs
(Akyildiz and Kasimoglu, 2004; Melodia et al., 2005) in a
similar way. Second, we can combine compressed BFs

188 X. Li et al.

(Mitzenmacher, 2002) and SDBFs. CHs or actors compress
an SDBF using arithmetic coding before it is propagated.

5 Analysis

In this section, we analyse the query traffic of the
HR-SDBF routing protocol. The analysis focuses on
one-thread forwarding with the exponential decay model.
We prove the best query performance within no-decay
scope and the average query traffic outside the no-decay
scope. The simulation study of the HR-SDBF protocol will
be presented in the next section.

We assume that sensors are randomly deployed. The
network topology is a random graph where each neighbour
has the same average degree nc = Nsn *π*R2/TDs, where Nsn
refers to the number of sensors in the WSN; R is the
wireless transmission radius of a sensor; TDs is the total area
of the sensing field.

Theorem 1 (Best query performance within k-hops): In the
best scenario, the one-thread query forwarding within
k-hops of an event source follows the shortest path if the
max-min TTL counter strategy is used to break ties.

Proof: Within k-hops of an event source, a query may be
forwarded to a neighbour that is not actually the best due to
two factors, sharing one TTL counter (g > 1) and hash
collision. When g > 1, as shown in Figure 10(a), A is the
query source, S has the desired event e1. At node C, a local
event e2 hashes to a different bit in each segment of event e1.
This causes the TTL counter value for C with respect to e1
to be 3. The max-min TTL counter strategy incorrectly
chooses C as the best neighbour. When g = 1, hash collision
may still cause a false selection of the best neighbour. For
example in Figure 10(b), a local event e2 at node C hashes
to the same set of bits as the desired event e1, which causes
I(e1) at C to be d and the TTL counter value for C with
respect to e1 to be 3. C is incorrectly selected by the max-
min TTL counter strategy to be the best neighbour.

There are four scenarios in which the two factors together
cause a false selection of the best neighbour.

• g = 1 and no hash collision

• g = 1 and hash collision

• g > 1 and no hash collision

• g > 1 and hash collision.

The best scenario is the first one, where there is one TTL
counter per bit and no two events ever hash to the same bit.
As illustrated in Figure 10(c), the TTL counter values for all
neighbours are true values for the desired event. And they
represent the shortest distance between neighbours and the
event source. Therefore, the best one-thread query
forwarding within k-hops follows the shortest path. ⁫

Figure 10 (a) Error due to shared TTL counters (g > 1) alone
(b) error due to hash collision (g = 1) alone (c) best
scenario in one-thread forwarding

(c)

data source
sink

regular sensor

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�����
����
����
����

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

(a) (b)

C
I(e1) = d

TTLCnt = 1A

I(e1)= dS{e1}

B

TTLCnt = 3

TTLCnt = 2
I(e1) = d

B
TTLCnt=2
I(e1)= d

S{e1}

A

C{e2}
I(e1) = d
TTLCnt = 3

S{e1}

A

C{e2}

I(e1) = d
TTLCnt = 2 B

I(e1) = d
TTLCnt = 3

�
�
�

�
�
�

Proposition 1 (Impact of false positives): The number of
bits set due to false positives in an SDBF-ED follows a
binomial distribution B(d, λp), where

()

()

/(*)

1 1

1

1 ,

* * *

 + * * .

cU n m
p

k j i k
i ii i k

ji j
sn tt

e

U w d w d p

d p N w

−

−
= = +

−
=

= −

≤ +

−

∑ ∑
∑

λ

wi (wt) denotes the number of nodes i (t) hops away from
a sensor; k is the no-decay neighbourhood radius; d is
the number of hash functions in an SDBF-ED; p is
the decay rate; U represents the total number of bits that
are caused by an event and propagated throughout the
network.

Proof: See Appendix. ⁫

The average energy consumed by a query is proportional to
the average number of messages forwarded per query, Nqs,
which is computed by modelling the query forwarding
process as a Markov chain, as shown in Figure 11. There is
one Markov chain for each query for events that actually
exist in the WSN. Each sensor stays in exactly one state in
each Markov chain. A sensor stays in state i, except k and
k + 5, if its shortest distance from an event source is i. State
k refers to nodes that are within a no-decay k-hop
neighbourhood. State k + 5 refers to nodes that receive a
negligible amount of information about a desired event. It is
assumed that the hint about an event decays to a negligible
amount outside the k + 5 neighbourhood. This assumption
holds as long as 5* 1.d p Therefore all nodes outside the
(k + 5) – hop neighbourhood stay in state k + 5. The
number of nodes in state i, denoted by wsi, is the
same as wi mentioned above if i ≠ k; i ≠ k + 5.

4
51 1

and .
k k

k t k sn tt t
ws w ws N w

+
+= =

= = −∑ ∑

 HR-SDBF: an approach to data-centric routing in WSNs 189

Figure 11 A Markov chain model of HR-SDBF-ED

a

1

k
k+1a

b

k+2 k+3 k+4 k+5

k+1

k+2
k+3 k+4 k+5b

b b b

k+1 k+2 k+3 k+4 k+5
a a a

Proposition 2 (state transition matrix C): The state
transition probability matrix for the Markov chain of an
event is the matrix C in Figure 12. ai refers to the
probability of transition from state i to state i – 1 when
i ∈ [k + 1, k + 5]. bij denotes the transition probability from
state i to state j ≥ i when i ∈ [k + 1, k + 5].

()

() ()

1

1 1
1

.

c

c c

n
i

n u n u
u

a P Z F

P Z F Z F

−

− − −

=

⎡ ⎤= > +⎣ ⎦

⎡ ⎤= >⎣ ⎦∑

Z is the number of bits set to 1 among the d bits of an
SDBF-ED that is received from the upstream neighbour on
the shortest path of a sensor in state i to an event source. Z is
a random variable that follows the binomial distribution

B(k, pi–k + λp – λp * pi–k). ()()5

1
1 .

k
ij i t it k

b ws ws a
+

= +
= −∑

Figure 12 The state transition matrix C

Proof: See Appendix. ⁫

Proposition 3 (average query traffic outside k-hops): In the
HR-SDBF-ED protocol, the average number of query
messages forwarded by sensors outside k-hop, denoted by
Nqs, is as follows.

() ()1 1* *qsN G I G I G− −= − −

where G is the resulting matrix by changing the top-left
element in C from 1 to 0.

Proof: Let Ti,0, i = k + 1, k + 2, …, k + 5, denote the number
of steps it takes for a query that starts at a node in state i to
first encounter a node at distance k from the target (i.e., state
k). Let T denote the number of steps for a query that starts at
a node chosen uniformly at random to first encounter a node
at distance k from the event source. Since the probability of
a query originating in state i is wsi/Nsn, therefore

[]
5

,0
1

.
k

i
i

sni k

ws
E T E T

N

+

= +

⎡ ⎤= ⎣ ⎦∑ (1)

Let G be the matrix resulting from just changing the top-left
element in C from 1 to 0. It is not difficult to verify, from
the meaning of the stochastic matrix G, that the element in
the ith row 0th column of Gl is the probability that
when a node starts in state i, it first reaches a node at
distance k from the event source after l steps. Therefore, the
element in the ith-row 0th-column of the matrix

1
* j

j
j G

∞

=∑ equals to ,0 .iE T⎡ ⎤⎣ ⎦ Based on the theory

of polynomial series, () 2
1

* * 1j
j

j Y Y Y
∞ −

=
= −∑ for any

complex variable Y within the convergence radius 1.Y <

Similarly () ()1 1
1

* * *j
j

j G G I G I G
∞ − −

=
= − −∑ after

some convergence arguments for matrices. ⁫

6 Evaluations

In this section, we will discuss the experimental setup,
evaluate the tradeoffs in the HR-SDBF design, and compare
HR-SDBF to SQR routing and query flooding.

6.1 Experimental setup

The sensor network is generated by randomly deploying 500
sensors in the field of size 200 m × 200 m. It is assumed that
each node can reliably send packets to any node within R
meters. R is set to 15 or 20. The event model is the random
source. 250/1000/2500 events are randomly distributed
among all sensors to simulate small/medium/large event
scenarios. Each unique event has five replicas. Queries are
generated by randomly selecting a sensor as a sink and an
existing event as the desired one. In each simulation run for
HR-SDBF, hints about events are first propagated according
to the scope decay model, then queries are processed. The
performance metrics are routing energy efficiency and
routing quality. We assume that it costs more to set up a
connection than to transmit a single message. The routing
energy efficiency is computed in terms of the average
number of query messages and the average number of
amortised messages. The latter is defined as the sum of the
total number of query messages and the routing update
messages divided by the number of queries. The routing
quality is evaluated based on the query success rate. A
query is considered successful if at least one desired event is
found. Table 1 lists the major system parameters.

Table 1 Major system parameters

Notation Definition Value
m The width of SDBF filter 12 kbits
d The number of hash functions 16
g The SDBF segment size 8
k The no-decay scope 3
p The exponential decay rate 1/8
(c1, c2) The linear decay control range (3, 6)

190 X. Li et al.

6.2 One-thread HR-SDBF: random vs. TTL
tie-breaking

In the one-thread HR-SDBF protocol, a query is always
forwarded to the best neighbour. Ties can be broken
randomly or based on the max-min TTL counter
strategy. Figure 13 contrasts the performance of these two
design choices when the same scope decay model is used
and different number of queries are executed. The number
of events is 2500. The labels one-thread best
MaxMinTTLCnt and one-thread best random refer to
breaking ties using TTL counters and random tie-breaking
respectively. Clearly, tie-breaking using TTL counter
value surpasses random tie-breaking. It achieves a higher
query success rate with less query messages and less
amortised messages. This suggests that in HR-SDBF we can
use both the BF and the TTL counter as hints about event
locations. The TTL counter tie-breaking is a better design
choice.

Figure 13 One thread HR-SDBF: random tie breaking vs. TTL
tie-breaking (a) average number of query messages
(b) average number of amortised messages (c) query
success rate (see online version for colours)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

3000 6000 9000
0

5

10

15

20

25

30

35

40
1−thread best MaxMinTTL
1−thread best Random

(a)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 a

m
or

tiz
ed

 m
es

sa
ge

s

3000 6000 9000
0

20

40

60

80

100
1−thread best MaxMinTTL
1−thread best Random

(b)

Figure 13 One thread HR-SDBF: random tie breaking vs. TTL
tie-breaking (a) average number of query messages
(b) average number of amortised messages (c) query
success rate (continued) (see online version for
colours)

Number of queries

Q
ue

ry
 s

uc
ce

ss
 r

at
e

3000 6000 9000
0

0.2

0.4

0.6

0.8

1

1.2

1−thread best MaxMinTTL
1−thread best Random

(c)

Figure 14 One-thread HR-SDBF: exponential decay vs. linear
decay (a) average number of query messages
(b) average number of amortised messages (c) query
success rate

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

2000 4000 6000 8000
0

2

4

6

8

10

12

Exponential
Linear

(a)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 a

m
or

tiz
ed

 m
es

sa
ge

s

2000 4000 6000 8000
0

20

40

60

80

100

120
Exponential
Linear

(b)

 HR-SDBF: an approach to data-centric routing in WSNs 191

Figure 14 One-thread HR-SDBF: exponential decay vs. linear
decay (a) average number of query messages
(b) average number of amortised messages (c) query
success rate (continued)

Number of queries

Q
ue

ry
 s

uc
ce

ss
 r

at
e

2000 4000 6000 8000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Exponential
Linear

(c)

Figure 15 One-thread HR-SDBF compared to SQR, varying
number of queries (R = 15) (a) average number of
query messages (b) average number of amortised
messages (c) query success rate

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

2000 4000 6000 8000
0

5

10

15

20

25

30

35
1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(a)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 a

m
or

tiz
ed

 m
es

sa
ge

s

2000 4000 6000 8000
0

20

40

60

80

100

120
1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(b)

Figure 15 One-thread HR-SDBF compared to SQR, varying
number of queries (R = 15) (a) average number of
query messages (b) average number of amortised
messages (c) query success rate (continued)

Number of queries

Q
ue

ry
 s

uc
ce

ss
 r

at
e

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(c)

6.3 Decay models: exponential vs. linear

Another tradeoff in the HR-SDBF design is exponential
decay or linear decay. Figure 14 shows the performance
contrast between these two choices. The number of events is
2,500. The search type is one-thread HR-SDBF with tie
breaking by max-min TTL counter policy. Figure 14(a)
indicates that the two decay models generate approximately
the same amount of query traffic. Exponential decay incurs
less routing overhead than linear decay, as shown in
Figure 14(b). In addition, slightly more queries are
successfully resolved with exponential decay than with
linear decay, as illustrated in Figure 14(c). Therefore,
exponential decay is slightly better than linear decay.

6.4 One-thread HR-SDBF vs. SQR

The one-thread HR-SDBF with tie-breaking using max-min
TTL counter values is compared to SQR routing. We first
compare their performance by varying the number of
queries (i.e., varying the frequency of an event being
queried) and the number of events. This is shown in
Figure 15.

Each line in Figure 15(a) plots the average number of
query messages per query when the number of queries
increases and the maximum TTL for a query is fixed at 50.
Different lines correspond to the performances of different
algorithms under three different event scenarios: 2,500
events, 1,000 events, and 250 events. Each unique event has
five replicas. The figure indicates that in the same event
scenario, the average query traffic in neither scheme
increases as events are queried more frequently. One-thread
HR-SDBF incurs about 33% less query traffic than SQR in
all three event scenarios. This is because HR-SDBF does
not decay event hints within k-hop neighbourhoods of event
sources and therefore can propagate hints further.

192 X. Li et al.

The amortised messages including the update overhead
is illustrated in Figure 15(b). In the 250-event scenario,
one-thread HR-SDBF always has lower amortised traffic
than SQR. This is because HR-SDBF generates about the
same amount of hint propagation traffic as SQR but
significantly less query traffic than SQR. In the other event
scenarios, both schemes generate decreasing amortised
traffic with increasing queries. One-thread HR-SDBF has
higher amortised traffic than SQR when the number of
queries is small. However, the difference decreases
dramatically as the number of queries increases. In the
1,000-event/2,500-event scenario, HR-SDBF generates less
amortised traffic than SQR when the number of queries is
greater than 3,000/6,000. This means that the extra hint
propagation traffic caused by no-decay within k-hops in
HR-SDBF is effectively amortised by the increase in query
frequency.

Figure 15(c) shows the query success rates of both
schemes when the number of queries increases. It is
observed that in the same event scenario, the number of
queries does not impact the query success rate in either
scheme. One-thread HR-SDBF achieves a dramatically
higher query success rate than SQR in all three event
scenarios. The query success rate of HR-SDBF is about
twice as much as that of SQR in the same event scenario.
This significant increase is due to the fact that HR-SDBF
can push event hints further than SQR.

To compare the performance of 1-thread HR-SDBF and
SQR when they incur the same per-query traffic,
we gathered data with varying maximum query TTLs and
plot the query success rate in terms of the amortised
per-query traffic, as shown in Figure 16. The number of
queries is 8000. Clearly, 1-thread HR-SDBF is superior to
SQR. It can achieve a higher query success rate than SQR
with the same amount of amortised traffic in all three event
scenarios.

Figure 16 One-thread HR-SDBF vs. SQR, query success rate in
terms of amortised per-query traffic (a) R = 15
(b) R = 20

Amortized per−query traffic

Q
ue

ry
 s

uc
ce

ss
 r

at
e

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(a)

Figure 16 One-thread HR-SDBF vs. SQR, query success rate in
terms of amortised per-query traffic (a) R = 15
(b) R = 20 (continued)

Amortized per−query traffic

Q
ue

ry
 s

uc
ce

ss
 r

at
e

20 25 30 35
0

0.2

0.4

0.6

0.8

1

1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(b)

We also simulate one-thread HR-SDBF and SQR in denser
networks where the wireless communication radius is
increased from 15 meters to 20 meters. All other system
parameters remain the same. Their performance with
respect to varying number of queries and different event
scenarios are pictured in Figure 17. Similar trends are
observed in denser networks, but the absolute values are
different. In denser networks, the average query traffic is
lower, the amortised per-query traffic is slightly heavier,
and the query success rate is higher. This is because in
denser networks, nodes have more neighbours and the
network diameter is smaller. Compared to SQR, HR-SDBF
generates 40% less query traffic, and increases the query
success rate around 28%. The amortised traffic is only 8%
more than SQR when the number of queries is more than
6,000. Figure 16(b) shows the changes of the query success
rate with respect to the amortised traffic in the denser
network when the number of queries is fixed at 8,000 and
the query TTL changes. The one-thread HR-SDBF still
outperforms SQR though SQR performs much better in
densor networks.

In summary, HR-SDBF generates less query traffic and
achieves a significantly higher query success rate than SQR.
This is because HR-SDBF does not decay event hints within
k-hop neighbourhoods of event sources. Therefore, hints can
propagate further. When there are many events, this
no-decay within k-hops also causes more traffic in spreading
hints. But the decrease in the query traffic out-weighs the
increase in the hint maintenance traffic at high query
frequencies.

 HR-SDBF: an approach to data-centric routing in WSNs 193

Figure 17 One-thread HR-SDBF compared to SQR, varying
number of queries (R = 20) (a) average number of
query messages (b) average number of amortised
messages (c) query success rate

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

2000 4000 6000 8000
0

5

10

15

20

25

30
1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(a)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 a

m
or

tiz
ed

 m
es

sa
ge

s

2000 4000 6000 8000
0

20

40

60

80

100

120

140

160
1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(b)

Number of queries

Q
ue

ry
 s

uc
ce

ss
 r

at
e

2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

1−thread HR−SDBF (2500 events)
1−thread HR−SDBF (1000 events)
1−thread HR−SDBF (250 events)
SQR (2500 events)
SQR (1000 events)
SQR (250 events)

(c)

6.5 N-thread HR-SDBF vs. query flooding
The N-thread HR-SDBF is evaluated against query flooding.
Both schemes have the same query TTL, which is k, the
no-loss scope in HR-SDBF. Each query is flooded within
k-hops in query flooding. In N-thread HR-SDBF, the
minimum hint percentage for forwarding a query is 100. A
sensor forwards a query to a neighbour only if all bits of the
desired event are set in that neighbour’s SDBF. Queries are
not forwarded outside k-hop neighbourhoods of sinks. We
are interested in the number of events that both approaches
find, and the query traffic and the routing traffic that both
approaches generate as the number of queries changes (i.e.,
the event query frequency changes).

The simulation results show that both N-thread
HR-SDBF and query flooding locate all events within the
same k-hop neighbourhood in three event scenarios.
Therefore we only plot the query traffic and the amortised
traffic incurred by both schemes in Figure 18. The average
number of query messages forwarded by N-thread HR-
SDBF is always much smaller than query flooding, as
shown in Figure 18(a) because N-thread HR-SDBF utilises
hints.

Figure 18 N-thread HR-SDBF vs. query flooding, varying
number of queries (R = 15) (a) average number of
query messages (b) average number of amortised
messages

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

2000 4000 6000 8000
0

50

100

150

200

250

300

350
N−thread HR−SDBF (2500 events)
N−thread HR−SDBF (1000 events)
N−thread HR−SDBF (250 events)
Query flooding (2500 events)
Query flooding (1000 events)
Query flooding (250 events)

(a)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 a

m
or

tiz
ed

 m
es

sa
ge

s

2000 4000 6000 8000
0

100

200

300

400

500

600

700
N−thread HR−SDBF (2500 events)
N−thread HR−SDBF (1000 events)
N−thread HR−SDBF (250 events)
Query flooding (2500 events)
Query flooding (1000 events)
Query flooding (250 events)

(b)

194 X. Li et al.

Figure 18(b) shows that query flooding has almost the same
amortised traffic when the number of queries changes. N-
thread HR-SDBF generates a larger amortised traffic than
query flooding when the number of queries is small
(<1000). However, the amortised traffic in N-thread
HR-SDBF drops dramatically as the number of queries
increases. When the number of queries is greater than 1,000,
N-thread HR-SDBF incurs less amortised traffic than query
flooding. The number of amortised messages delivered by
N-thread HR-SDBF decreases slowly when the number of
queries is more than 2,000. At 9,000 queries, HR-SDBF
finds the same number of events with almost three times
less traffic. Figure 18 also shows that the number of events
does not make an impact on the performances of N-thread
HR-SDBF and query flooding.

Figure 19 N-thread HR-SDBF vs. query flooding, varying
number of queries (R = 20) (a) average number of
query messages (b) average number of amortised
messages

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 q

ue
ry

 m
es

sa
ge

s

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

N−thread HR−SDBF (2500 events)
N−thread HR−SDBF (1000 events)
N−thread HR−SDBF (250 events)
Query flooding (2500 events)
Query flooding (1000 events)
Query flooding (250 events)

(a)

Number of queries

A
ve

ra
ge

 n
um

be
r

of
 a

m
or

tiz
ed

 m
es

sa
ge

s

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000 N−thread HR−SDBF (2500 events)
N−thread HR−SDBF (1000 events)
N−thread HR−SDBF (250 events)
Query flooding (2500 events)
Query flooding (1000 events)
Query flooding (250 events)

(b)

Figure 19 demonstrates the query traffic and the amortised
traffic of N-thread HR-SDBF and query flooding in a denser
network with the same configuration except that the
wireless communication radius is set to 20 metres. We
observe similar performance patterns. N-thread HR-SDBF
outperforms query flooding when events are queried
frequently. The average number of query messages and the

average number of amortised messages of both approaches
increase in the denser network because the average degree is
higher. Both schemes also locate more events in the
denser network because more nodes can be searched within
k-hops.

In summary, when designing HR-SDBF, breaking ties
according to the Max-Min TTL counter strategy is
significantly better than random selection. The exponential
decay model is slightly better than the linear decay
model. One-thread HR-SDBF accomplishes a higher
query success rate with the same amortised traffic than
SQR. The N-thread HR-SDBF locates all desired events
within k-hop neighbourhoods but incurs much less
amortised traffic than query flooding when events are
queried frequently.

7 Conclusions

In this paper, we proposed a routing protocol, called
HR-SDBF. It routes queries based on probabilistic hints that
are advertised by the proposed data structure, SDBF.
An SDBF is a variant of the BF. Like a BF, an SDBF
can represent a set of elements. In addition, an SDBF
can describe different amounts of information about an
element, denote probabilistic membership, and can be
used as a channel coding scheme. The HR-SDBF protocol
uses SDBFs to propagate routing hints about a set of
events such that the information about an event does not
attenuate within a k-hop neighbourhood of the event source
but decreases outside the k-hop neighbourhood as the
distance from the boundary of the k-hop neighbourhood
increases.

In HR-SDBF, sinks can conduct two types of searches:
one-thread best search or N-thread search. In the one-thread
best search, a node always forwards a query to the best
neighbour that has the most hints about a desired event. Ties
can be resolved by random selection or based on the TTL
counter values. In the N-thread search, a node directs a
query to all neighbours with the full amount of information.
Compared to existing query-based routing protocols in
WSNs, HR-SDBF improves the query success rate with low
amortised routing overhead and reduces energy
consumption by keeping probabilistic hints instead of
precise hints.

In the future, we plan to explore other decay models in
HR-SDBF, such as decaying based on node degrees. We
also intend to do analytical and simulation study in
extending HR-SDBF to clustered WSNs or actor-sensor
model WSNs.

Acknowledgements

This work was supported in part by NSF grants ANI
0073736, CCR 0329741, CNS 0422762, CNS 0434533 and
EIA 0130806.

 HR-SDBF: an approach to data-centric routing in WSNs 195

References
Agrawal, D.P. and Zeng, Q. (2003) Wireless and Mobile Systems,

Thomson Brooks/Cole, Inc.
Akyildiz, I.F. and Kasimoglu, I.H. (2004) ‘Wireless sensor and

actor networks: research challenges’, Ad Hoc Networks
Journal (Elsevier), October, Vol. 2, pp.351–367.

Akyildiz, I.F., Su W., Sankarasubramaniam Y. and Cayirci, E.
(2002a) ‘A survey on sensor networks’, IEEE
Communications Magazine, August, pp.102–114.

Akyildiz, I.F., Su, W., Sankarasubramania, Y. and Cayirci E.
(2002b) ‘Wireless sensor networks: a survey’, Computer
Networks (Elsevier) Journal, Vol. 38, No. 4, pp.393–422.

Al-Karaki, J.N. and Kamal, A.E. (2004) ‘Routing techniques in
wireless sensor networks: a survey’, IEEE Wireless
Communications, December, Vol. 11, No. 6, pp.6–28.

Bloom, B.H. (1970) ‘Space/time tradeoffs in hash coding with
allowable errors’, Communications of ACM, July, Vol. 13,
No. 7, pp.422–426.

Braginsky, D. and Estrin, D. (2001) ‘Rumor routing algorithm for
sensor networks’, Proc. of the 2001 International Conference
in Distributed Computing Systems, November.

Estrin, D., Govindan R., Heidemann J. and Kumar, S. (1999) ‘Next
century challenges: scalable coordination in sensor networks’,
Proc. of ACM Mobi-Com’99.

Fan, L., Cao, P., Almeida, J. and Broder, A. (1998) ‘Summary
cache: a scalable wide-area web cache sharing protocol’,
Proc. of ACM SIGCOMM'98, September, pp.254–265.

Ghose, A., Groklags, J. and Chuang, J. (2003) ‘Resilient
data-centric storage in wireless ad-hoc sensor networks’,
Proc. of the 4th International Conference on Mobile Data
Management (MDM 2003).

Guo, D., Chen, H., Luo, X. and Wu, J. (2006) ‘Theory and
Network Application of Dynamic Bloom Filters’, Proc. of
IEEE INFOCOM'06.

Intanagonwiwat, C., Govindan, R. and Estrin, D. (2000) ‘Directed
diffusion: a scalable and robust communication paradigm for
sensor networks’, Proc. of ACM Mobi-Com’00.

Kumar, A., Xu, J. and Zegura, E.W. (2005) ‘Efficient and scalable
query routing for unstructured peer-to-peer net-works’, Proc.
of IEEE INFOCOM’05.

Li, L., Halpern, J. and Haas, Z. (2002) ‘Gossip-based adhoc
routing’, Proc. of the 21st Conference of the IEEE
Communications Society (INFOCOM’02).

Melodia, T., Pompili, D., Gungor, V.C. and Akyildiz, I.F. (2005)
‘A distributed coordination framework for wireless sensor and
actor networks’, Proc. of ACM Mobi-Hoc'05.

Mitzenmacher, M. (2002) ‘Compressed bloom filters’, IEEE
Transactions on Networks, Vol. 10, No. 5, pp.604–612.

Schurgers, C. and Srivastava, M.B. (2001) ‘Engergy efficient
routing in wireless sensor networks’, Proc. of 2001
MIL-COM Communications for Network-centric Ops:
Creating the Information Force.

Shah R.C. and Rabaey J.M. (2002) ‘Energy aware routing for low
energy ad hoc sensor networks’, Proc. of IEEE WCNC’02.

Whang, K., Vander-Zanden, B. and Taylor, H. (1990) ‘A linear
time probabilistic counting algorithm for database
applications’, ACM Transactions on Database Systems,
Vol. 15, No. 2, pp.208–229.

Ye, F., Chen, A., Lu, S. and Zhang, L. (2001) ‘A scalable solution
to minimum cost forwarding in large sensor networks’, Proc.
of the 10th International Conference in Computer
Communication Networks.

Appendix

Proof of Proposition 1 Impact of false positives

Proof: It is assumed that in a small neighbourhood, wi = nc *
(nc – 1)i–1. The simplifying assumption holds as long as

1
.

i
i snj

w N
=∑ Then, the total amount of hint update

originated at the event source s and spread over the entire
WSN is

()

1 1

1 1

1

* * *

 * * *

 + * * .

k i k
i ii i k

k j i k
i ii i k

ji j
sn tt

U w d w d p

w d w d p

d p N w

∞ −
= = +

−
= = +

−
=

= +

≤ +

−

∑ ∑
∑ ∑

∑

U equals to the total hint update traffic that comes from all
other sensors and flows into the sensor s because of the
symmetry of the decay model. U is evenly distributed
among the SDBF-EDs of the nc neighbours of s. The
number of 1s in each SDBF-ED is U/nc. According to
Whang et al. (1990) statistics, the number of 1s in an
SDBF-ED, is, ()()** 1 .cU n mm e−− The percentage of bits set

to 1 in an SDBF-ED, denoted by λp, is

()*1 cU n m
p e−= −λ

The number of bits set to 1 because of false positives in an
SDBF-ED is a random variable, F, which follows a
binomial distribution B(d, λp). ⁫

Proof of Proposition 2 State transition probability
matrix C

Proof: If a sensor is within the no-decay k-hop
neighbourhood of an event source, it always forwards a
query for that event to its upstream neighbour on its shortest
path to the event source because the hint about the event is
precise within the k-hop neighbourhood. The transition
probability from state k to itself is 1 and to any other state 0.
Because a sensor cannot forward a query to another sensor
on its shortest path that is 2 or more hops closer to the event
source, the transition probability from state i to state j ≤ i – 2
is 0. To compute ai, we need to know the amount of
information for an event coming from the upstream
neighbour on the shortest path at state i. In the SDBF-ED,
the hint, initially d bits, decays exponentially at rate p ∈ (0,
1] outside the k-hop neighbourhood. The probability of a bit
at distance i from the event source remaining 1 is pi–k. In the
SDBF-ED from the upstream neighbour on the shortest
path, each of the d bits survives with a probability, λs = 1 –
(1 – pi–k)(1 – λp) = pi–k + λp – λp * pi–k. Therefore, the number
of bits set to 1 among the d bits of the SDBF-ED from the
upstream neighbour is a binomial random variable, Z, which
follows the distribution B(k, λs).

ai is the sum of the probabilities in the following two cases.

196 X. Li et al.

1 The hint from the upstream neighbour is greater than
that from any downstream neighbour. The query is
definitely forwarded to the upstream neighbour. The
probability that this case occurs is

() 1
,1 .cn

ip P Z F −⎡ ⎤= >⎣ ⎦

2 The hint from the upstream neighbour is the same as u
downstream neighbours but greater than all others. The
query is forwarded to the upstream neighbour with
probability 1/(u + 1). This case happens with a

probability () ()1 1
,2 1

.c c
n u n u

i u
p P Z F Z F

− − −

=
⎡ ⎤= = >⎣ ⎦∑

Therefore, ai = pi,1 + pi,2.
A sensor transits from state i to state j > i if the number

of false positives caused by a non-upstream neighbour is
greater than the hints from the upstream neighbour. All
neighbours generate uniformly random false positives. The
probability of state i to all states j > i, denoted by bi, is

()()5 5

1 1
1 . 1 .

k k
i ij i ij i t ij t k

b b a b ws ws a
+ +

= = +
= = − = −∑ ∑ ⁫

