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Abstract: In existing query-based routing protocols in wireless sensor networks (WSNs), a node 
either keeps precise route information to desired events, such as in event flooding, or does not 
keep any route to desired events, such as in query flooding. In this paper, we propose a routing 
protocol, called hint-based routing by scope decay bloom filter (HR-SDBF), that employs 
probabilistic hints. In the HR-SDBF protocol, each node maintains some probabilistic hints about 
the potential desired events and routes queries intelligently based on these probabilistic hints. We 
also put forward a data structure, scope decay bloom filter (SDBF) to encode the probabilistic 
hints. With SDBF, the amount of information about an event is propagated, without any loss, 
within the k-hop neighbourhood of the event source, but decreases outside the k-hop 
neighbourhood as the distance from the event source increases. Compared to existing  
query-based protocols, HR-SDBF greatly reduces the amortised network traffic without 
compromising the query success rate, and achieves a higher energy efficiency. To the best of our 
knowledge, this is the first query routing protocol in WSNs that utilises probabilistic hints 
encoded in a variant of the bloom filter. Both the analytic and the experimental results support 
the performance improvement of our protocol. 
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1 Introduction 

Recent advances in wireless communications and 
electronics have led to the rapid development of wireless 
sensor networks (WSNs). There is a wide range of 
applications of WSNs, such as in the health industry, 
military, warehouse, and home environment (Akyildiz et al., 
2002a, 2002b). Sensors are typically low-cost, low-power, 
and multi-functional. They communicate with each other 
through wireless media and form a wireless distributed 
network. 

In WSNs, routing is data-centric, i.e., finding data with 
specific attribute values (Agrawal and Zeng, 2003). In many 
WSN applications, routing is query-based. A data 
destination node, also called a sink, initiates a query for 
some desired data, which is forwarded towards the hosting 
sensors (Al-Karaki and Kamal, 2004). Sinks can be static or 
dynamic. In this paper, we are interested in the latter case, 
where any sensor could issue a query. We refer to the 
queried data as events. Because sensors have limited power, 
one of the major challenges in designing WSN routing 
protocols is energy efficiency. One way to achieve this is to 
reduce the total routing traffic (Akyildiz et al., 2002a, 
2002b). 

Existing query-based routing protocols can be classified 
into two types. The first type, called query flooding based, 
is blind forwarding and does not proactively maintain  
any hints. Queries are flooded over the WSNs. Query 
flooding can find desired events quickly but is also costly 
because many query messages are generated. This is evident 
when many events are frequently queried. The second  
type, called event flooding based, employs precise routing 
hints to route queries. The second type can reduce query 
messages at the expense of heavy routing overhead. 
Specifically, keeping precise routing hints for many events 
is expensive. This is because each node keeps a precise list 
of events that may be found through each neighbour. The 
cost to create and update this list is prohibitive when the list 
is large. 

In this paper, we propose a routing protocol, called  
hint-based routing by scope decay bloom filter (HR-SDBF), 
that utilises probabilistic hints. In HR-SDBF, each  
sensor maintains probabilistic hints about events that  
may be found through its neighbours. The hints are encoded 
using the proposed variant of the bloom filter (BF)  
(Bloom, 1970; Fan et al, 1998; Guo et al, 2006), called 
scope decay bloom filter (SDBF). 

A BF is a lossy compression of a set for supporting 
membership queries. It consists of a bit string and a group of 
hash functions. To generate a BF for a set, each set element 
is mapped by each hash function to a bit position in the bit 
string. All mapped bits are set. To determine the 
membership of an item, the item is hashed similarly. If any 
of the hashed bits is not set, then the item definitely does not 
belong to the set. If all bits are set, then the item is possibly 
in the set. If in fact the set does not contain the item, a false 
positive occurs. Nevertheless, the space savings usually 
offset this shortcoming when the false positive rate is 
significantly low. BFs have been used in database 
applications, web caching, searching in peer-to-peer 
networks, and network measurements. Unlike BFs, an 
SDBF can denote different amounts of information about an 
element and represent probabilistic membership. 

The HR-SDBF protocol uses SDBFs to advertise the 
routing hints about an event. The advertisement is designed 
such that the amount of hints do not decay within the k-hop 
neighbourhood of the event source, but decay outside the  
k-hop neighbourhood as the distance from the boundary of 
the k-hop neighbourhood increases. By trading off precise 
routing hints for probabilistic ones, HR-SDBF achieves a 
higher query success rate with the same or less amortised 
routing overhead. 

Sinks may conduct different types of searching based on 
SDBFs. They can specify the minimum amount of 
information that a neighbour must have in order to receive 
queries. 

• One-thread best HR-SDBF. A query is always 
forwarded to the best neighbour that has the maximum 
amount of information among all neighbours. Ties can 
be broken by random selection or based on some SDBF 
component. This option is intended to find at least one 
desired event with the minimum cost. 

• N-threads HR-SDBF. A query is forwarded to all 
neighbours that have the full amount of information 
about the desired event (i.e., all bits for the desired 
event are set). This choice is designed to find all events 
within the no-decay scope, k-neighbourhood. 

Figure 1 illustrates the differences between the proposed 
hint-based scheme, query flooding and event flooding. 
Query cost refers to the number of query messages incurred 
per query. Routing overhead represents the cost for 
maintaining hints. Query flooding has the highest query cost 
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because it does not utilise any hints. Event flooding 
generates the minimum query traffic because each node 
keeps precise hints about all events. On the other hand, 
event flooding incurs the maximum routing over-head while 
query flooding does not have any routing over-head. The 
proposed hint-based scheme is in-between the two extremes. 

Figure 1 Contrast hint-based routing with query flooding and 
event flooding (a) query cost (b) routing over-head  
(c) overall performance 

 
(a) 

 
(b) 

 
(c) 

Note: There are three dimensions: query, event, and 
performance. 

We make the following contributions in this paper. 

• We propose a hint-based routing protocol, HR-SDBF, 
which combines the advantages of both blind and 
precise-hint schemes. To the best of our knowledge, 
HR-SDBF is the first query routing protocol in WSNs 
that improves routing efficiency by utilising 
probabilistic hints. 

• We present a novel data structure, SDBF. SDBFs 
improve the conventional BFs by being capable of 
representing probabilistic membership and various 
amount of information about elements. SDBFs are 
flexible and can include different decay models. 

• We discuss different design tradeoffs in HR-SDBF. 
These include tie breaking by random selection and 
some SDBF component, and different decay models 
such as the exponential decay and the linear decay. 

• We give some extensions of HR-SDBF, including 
extensions to clustered (or actor based) WSNs and 
applications of other BF variants. 

• We conduct an extensive performance analysis and 
simulation of HR-SDBF. 

This paper is organised as follows. In Section 2, we  
review existing query-based routing protocols in WSNs. In 

Section 3, we give an overview of the HR-SDBF protocol. 
In Section 4, we present the detailed design of HR-SDBF. 
We first introduce SDBF and different decay models, then 
describe how to create probabilistic hints and hint updates, 
and how to route queries using these hints. Some extensions 
of HR-SDBF are also discussed. In Section 5, we provide an 
analytical study of the HR-SDBF. In Section 6, we present 
experimental results about HR-SDBF’s performance. In 
Section 7, we summarise the HR-SDBF protocol and point 
out the future work. 

2 Related work 

In this section, we review existing query-based routing 
schemes for flat WSNs that are associated with the work in 
this paper. 

2.1 Query flooding and its variants 

The simplest way to route queries is to flood queries from 
the sink over the entire WSN and set up the reverse paths 
for desired data to be sent back to the sink. Various query 
flooding schemes differ in the manner in which they set up 
and use reverse paths. Directed diffusion (Estrin et al., 1999; 
Intanagonwiwat et al., 2000) tries to find an optimal path 
between the sink and the event sources. A sink first initiates 
an exploratory query. Each node sets gradients between 
neighbouring nodes, and reinforces the best route for real 
databased on local rules while transferring the exploratory 
events. Note that the gradients are only used for sending the 
real data from the discovered event source to the sink that 
initiates the exploratory query. Directed diffusion also 
employs data caching and data aggregation to reduce 
network traffic. 

Gradient-based routing (Schurgers and Srivastava, 2001) 
is another scheme based on query flooding. It associates 
each node with a height, which is the minimum distance in 
terms of the number of hops from the sink. The scheme also 
assigns a gradient to the link between a node and its 
neighbour. A gradient is defined as the height difference 
between a node and its neighbour. A node always forwards 
desired data through the link with the highest gradient 
among all links to its neighbours. Energy aware routing 
(Shah and Rabaey, 2002) is also based on query flooding. 
This scheme tries to maintain multiple paths between a data 
source and the sink. Desired data is propagated through a 
route that is probabilistically selected. The probability of a 
route is set based on its energy consumption. 

To reduce the cost of query flooding, gossiping (Li et 
al., 2002) can be used for query-based routing in WSNs. It 
is essentially a random walk where each node forwards a 
received query to a randomly chosen neighbour. 

2.2 Event flooding and its variants 

Another option to correct the deficiency of query flooding is 
event flooding when the number of events in the WSN is 
small. We can use the minimum cost forwarding algorithm 
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in Ye et al. (2001) to set up the minimum cost path from 
every node to the event source. The event source broadcasts 
an event with cost 0. Each node updates its cost estimate 
and forwards a received message if the message leads to a 
lower cost path. To reduce the number of updates at some 
nodes, a backoff algorithm is applied at those nodes during 
the route setup. 

Rumour routing (Braginsky and Estrin, 2001) combines 
query flooding and event flooding. It deploys an agent at a 
fixed probability for each event. An agent is a long-lived 
packet used to spread a list of events. An agent randomly 
walks in the WSN and synchronises its current event list 
with any node on its path. Synchronisation allows both 
agents and nodes to add new events and update routes to 
their existing events. There is only one route between an 
event source and a sink. After the route setup, when a sink 
queries for an event, if a neighbour has a route to that event, 
the query is forwarded to that neighbour along the known 
route. If no neighbour has a clue, the query is forwarded to a 
neighbour chosen uniformly at random. The neighbour 
repeats the same process. The query terminates when the 
TTL expires or when the desired event is reached. 

Another related work is SQR searching (Kumar et al., 
2005) in peer-to-peer networks that uses an exponential 
decay bloom filter (EDBF) to advertise hints. The major 
differences between SQR-EDBF and HR-SDBF are as 
follows. First, SDBF is more general and can incorporate 
different decay models. An EDBF can be considered as a 
one-hop SDBF with an exponential decay pattern. Second, 
SDBF can be utilised to perform more types of routing:  
one-thread and N-thread. The TTL counters embedded in 
SDBF can be employed for breaking ties. We can also 
specify the amount of hints for controlling the routing 
scope. SQR searching is a special case of HR-SDBF. It can 
be considered as the 1-thread HR-SDBF with random tie 
breaking. 

To the best of our knowledge, only one existing query-
based WSN routing protocol, called resilient data-centric 
storage (Ghose et al., 2003), uses BFs for routing. This 
protocol divides the sensor field into regions, each of which 
has a monitor node and at most one replica node for each 
event type. Unlike most WSN routing protocols where 
events are stored locally at the detecting sensors, this 
protocol stores information about all sources of an event 
type in some replica nodes. Each monitor node has a global 
view of all other monitor nodes and all replica nodes. A BF 
is used to represent the collection of attribute value pairs for 
all event types at each replica node. This protocol differs 
from our approach because the BF is not used for offering 
probabilistic hints. 

3 HR-SDBF protocol – overview 

This section outlines the overall design of the HR-SDBF 
routing protocol. The design details will be discussed in the 
next section. The basic idea in the HR-SDBF protocol is to 
route the query based on probabilistic hints about the 
desired events. To obtain these probabilistic hints, we 

spread the knowledge about an event from the event source 
such that the amount of information about the event does 
not decay within the k-hop neighbourhood, but decreases 
outside the k-hop neighbourhood as the distance increases. 

HR-SDBF protocol includes two types of searching, 
one-thread best HR-SDBF and N-thread HR-SDBF. The 
first approach is pictured in Figure 2(a). A query is always 
forwarded to the best neighbour that has the maximum 
amount of information among all neighbours. If multiple 
neighbours tie, we can select one randomly or break the tie 
based on some SDBF component. To control scope decay, 
each SDBF bit segment is equipped with a TTL counter. A 
counter for a segment is set to k at an event source if an 
event hashes to a bit in that segment. A TTL counter 
decreases by 1 at an advertisement. Ties can be broken by 
choosing the neighbour with the maximum TTL counter 
value associated with the desired event (i.e., selecting the 
one closest to an event source). A sink can control which 
neighbours are qualified for receiving queries by stipulating 
the minimum amount of information that a neighbour must 
have. This design choice is for finding at least one desired 
event efficiently. 

The second approach is demonstrated in Figure 2(b). A 
query is redirected to all neighbours whose SDBF sets all 
bits of an event. A neighbour does not receive the query if it 
does not have the full amount of information. This scheme 
is targeted at efficiently locating all events within a  
no-decay k-neighbourhood. 

Figure 2 HR-SDBF routing overview 

(b) N−thread HR−SDBF search

B sink
{e2}

C
{e2}

sink

data source

regular sensor

sinkA{e1}

(a) 1−thread best search

 
Notes: e1, e2: detected events. A, B, C, D: event sources. 

The hint update is accomplished as follows. A sensor first 
creates a local SDBF, encoding the set of events detected by 
itself. This SDBF is broadcast to all its neighbours. A 
neighbour combines this SDBF with the SDBFs from its 
own neighbours and propagates the aggregated SDBF. To 
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reduce the routing traffic further, incremental updates to 
SDBFs are actually disseminated. 

We consider two options for decreasing the information 
about an event, exponential decay and linear decay. In the 
exponential decay model, each bit that is currently 1 in an 
SDBF remains 1 at a constant probability p. The amount of 
information about an event at a node outside the k-hop 
neighbourhood is an exponential function of the distance 
from the boundary of the k-hop neighbourhood of the event 
source. In the linear decay model, the information about an 
event is approximately a linear function of the distance from 
the boundary of the k-hop neighbourhood. Neither decay 
model couples the amount of decay with a particular event 
source and a particular distance. Therefore, they do not need 
to memorise states. 

4 HR-SDBF protocol – detailed design 

This section presents the design details of the HR-SDBF 
routing protocol. We first introduce our SDBF BF. Then we 
discuss how to use the SDBF to build up and maintain the 
probabilistic routing hints. At the end, we describe how to 
route queries intelligently with the help of these 
probabilistic routing hints. We make the following 
assumptions about the WSN we are concerned about. The 
event source model is the random source model where event 
sources are selected uniformly at random from all sensors. 
Each sensor may potentially initiate event queries. An event 
query is considered successful if at least one desired event is 
found. 

4.1 Scope decay bloom filter 

An SDBF is designed as a lossy channel coding scheme to 
reduce the amount of network traffic. An SDBF  
can represent the set membership information and the 
different amount of information about an element in the  
set. Similar to a BF, an SDBF also has a bit string of  
width m and d hash functions, h1, h2, ..., and hd. An SDBF 
encodes the information about an element similarly to the 
way a BF inserts an element. Given an element e, the  
SDBF sets all bits h1(e), h2(e), ..., and hd(e) in the bit string. 
An SDBF differs from a BF in the decoding procedure. A 
BF obtains the membership information by checking 
whether all mapped d bits are set or not. An SDBF decodes 
the information about an element e by computing  
the number of 1s among the d mapped bits, denoted by  
I(e). This number ranges from 0 to d. The more bits set  
to 1, the larger I(e), and the more information about e will 
exist. 

Figure 3 shows an example of an SDBF where m = 16 
and d = 3. The SDBF is composed of a 16-bit string bstr and 
three hash functions, h1, h2 and h3. When the SDBF initially 
encodes the information about element e1, h1, h2 and h3 hash 
e1 to bits 3, 8, and 12 respectively and set these bits to 1s. 
When we decode e1 from this initial SDBF, we apply these 

three hash functions to e1, and compute the number of 1s, 
I(e1), in bit positions 3, 8, and 12. Clearly I(e1) has the 
maximum value 3 that corresponds to the maximum 
information about e1. 

During the decay process, some bits in the initial SDBF 
are probabilistically reset to 0s. In the decayed SDBF in 
Figure 3, bit 8 is reset to 0, bits 3 and 12 remain 1s. When 
we decode e1 from this decayed SDBF, I(e1) = 2, which 
means that this decayed SDBF has less information about e1 
than the initial SDBF. 

Figure 3 The structure of SDBF 

Decoding:            I(e1) = 2

0 1 1 0 0 0 0 0 0 1 0 0 10 00

0 1 1 0 0 0 0 1 0 0 0 1 0 0 10

h1(e1) h2(e1) h3(e1)

Decaying

0 3 7 8 151242 9

Initial

SDBF

Decayed
SDBF

0 3 7 8 151242 9

Encoding

non−decayed   

Decoding:            I(e1) = 3

 

There are many design choices for decreasing the 
information about an element in an SDBF. To simplify the 
decay process, we choose two stateless decay schemes that 
do not need to remember the specific event contributing to a 
particular bit. These two models are the exponential decay 
and the linear decay. 

• The exponential decay model. The information about an 
element (e.g., an event) decreases exponentially as the 
distance from the boundary of the k-hop neighbourhood 
of an element source (e.g., the sensor detecting an 
event) increases, assuming that there is no hash 
collision. Specifically, if any bit in an SDBF is 
currently 1, it remains 1 at a constant probability p 
during each decay. The number of 1s corresponding to 
an element (an event e) at an i-hop distance from the 
element source is 

( ) ( )* .i kI e d p −=  

• The linear decay model. The information about an 
element decreases in a linear fashion as the distance 
from the k-hop boundary of the element source 
increases. Let sumI denote the current total number of 
1s in an SDBF and r be a random number in the range 
[c1, c2], where c1 and c2 are system parameters. 
Randomly select r bits among the sumI bits and reset 
these bits to 0. The total number of 1s in the SDBF after 
the decay, denoted by sumI’, is 

.sumI sumI r′ = −  
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Assuming no hash collision, a bit currently at value 1 is 
reset to 0 with the probability pl. 

.lp r sumI=  

Obviously, a bit is more likely to be reset to 0 (i.e., decay 
faster) when the SDBF has a smaller number of 1s. 

The SDBF can also be used to represent probabilistic 
sets. The number of 1s corresponding to an element can be 
considered as the probability of the element being in the set. 
The more 1s in the corresponding d bits, the more likely the 
element is in the set. 

4.2 Probabilistic routing hint creation and 
maintenance 

Probabilistic routing hints are represented by SDBFs.  
Each sensor maintains an SDBF for each neighbour. An 
SDBF encodes hints about events that may be found 
through a neighbour. To create these hints, each sensor first 
creates a local SDBF that encodes all local events detected 
by itself. Then these local SDBFs are propagated according 
to the decay model. At each sensor, the SDBF hints from 
different neighbours are first decayed if they contain 
information outside the k-hop neighbourhood of event 
sources, then aggregated (including the non-decayed local 
SDBF), and propagated further to other neighbours. Figure 
4 shows how a node A propagates updates to its neighbour 
E. A ORs its own SDBF and the SDBFs it receives from 
neighbour B, C and D, and sends the combined SDBF as 
hints to neighbour E. If a sensor notices some change to its 
local SDBF, the changes are incrementally spread out to 
nearby nodes. 

Figure 4 Event hint update from A to its neighbour E 
C

A

B
D

IMP_C

IMP_B

LOCAL

IMP_D

EXP_E

E

OR

 
Notes: B, C, D and E are A’s neighbours. LOCAL: A’s 

local SDBF. IMPi: the SDBF hint imported 
(received) from neighbour i. 

The control of no-decay within k-hops is illustrated in 
Figure 5. An SDBF is partitioned into n segments and one 
TTL counter is equipped for each SDBF segment. The 
counter for a segment has the same value as the decay range 
k at an advertising source that contributes to the segment. In 

the example, the SDBF is 16-bit and the segment size is 4 
bits. Only 4 TTL counters are required. 

Figure 5 Control no decay within k-hop neighbourhood of an 
event source 

(segment size = 4 bits)

0 1 1 0 0 0 0 1 0 0 0 1 0 0 10
0 3 7 8 151242 9

TTL
counters c0 c1 c3c2

SDBF

1 TTL counter per SDBF segment

 

Figure 6 and Figure 7 show how to create a local SDBF  
and hint update at a sensor s. To create a local SDBF LRs  
for the local event set LEs, s first checks whether LEs is 
empty. If not, s hashes each event e using d hash functions 
and sets the corresponding d bits in LRs to 1s. s also 
initialises the TTL counter for each segment to the 
maximum value k. If LEs is empty, LRs has all 0s in its  
bit array and counter array. To create a hint update 

inUR  to 

a neighbour ni, s first assigns LRs to 
inUR  if LEs is not 

empty. Then for each segment in the SDBF of each 
neighbour nj other than ni, s calls the procedure Decay() to 
process the SDBF segment according to the pre-defined 
decay model. 

Figure 6 Algorithms for creating local hints and hint updates 
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Figure 7 Algorithm for decay an SDBF segment 

 

4.3 Query routing based on SDBF hints 

Figure 8 illustrates the one-thread best search in HR-SDBF. 
The sink finds all neighbours whose SDBFs have at least 
minBits set among the bits for event e. These qualified 
neighbours are ranked according to the number of bits set 
for e. The query is routed to the top-ranked neighbour. On 
receiving Qe, a neighbour checks if the query is a duplicate. 
If so, Qe is dispatched to a random neighbour. If e is a local 
event at this neighbour, the query forwarding terminates. If 
not, Qe is redirected similarly if the query TTL does not 
expire. 

During query forwarding, there may be top-one ties. If 
tie breaking is random, a neighbour among all ties is 
randomly selected as the best neighbour. If the tie breaking 
is TTL counter, a max-min strategy is used to select the best 
neighbour. First, for each neighbour, the minimum TTL 
counter value among those of all segments in association 
with e is chosen as the TTL counter value for that 
neighbour. Then the neighbour with the maximum TTL 
counter value with respect to e is considered the best. 

Figure 8 One-thread best HR-SDBF search 

 

Figure 9 Locate the best neighbour for one-thread HR-SDBF 

 

The rationale for the max-min TTL counter strategy is 
explained as follows. When an SDBF segment is only used 
by one event, the TTL counter for that segment is set to k at 
the event source and decreased by one (until 0) during each 
advertisement. When two events share a segment, if the 
TTL counter for the segment is set according to one event, 
the other event can only cause the shared TTL counter to 
stay the same or increase but not decrease. Therefore, in 
each neighbour’s SDBF, among all segments of an event, if 
at least one segment’s TTL counter value is not changed by 
other events, the minimum TTL value is the correct value 
for that event. If TTL counters of all segments that are 
related to an event are false, the minimum TTL counter 
value has the smallest error. 

If all neighbours’ TTL counter values are correct with 
respect to an event, the neighbour with the maximum TTL 
counter value is closest to the event source. Otherwise, there 
is no way to distinguish between true and false TTL counter 
values. Choosing the neighbour with the maximum TTL 
counter value is like a random selection. 

In the N-thread search, the minBits must be the same as 
d and the maximum query TTL must equal to k. The sink 
forwards a query Qe to all neighbours with all d bits set for 
event e. When a neighbour receives a non-duplicate query 
Qe for a local event e, the detailed information about e is 
returned to the sink. The neighbour continues to send Qe 
similarly to the sink until the query TTL expires. Duplicate 
queries are discarded at the receiving neighbour. 

4.4 Extensions 

The HR-SDBF routing can be extended in the following 
ways. First, we can run HR-SDBF on a hierarchical 
topology to increase scalability. The WSN can be divided 
into non-overlapping clusters with one clusterhead (CH) per 
cluster. Clusters can be formed by data correlation. Each 
CH computes a local SDBF for events detected within its 
cluster. Each CH also aggregates and propagates SDBF 
hints from other neighbour CHs. When a CH receives a 
query, it first checks its own cluster. If the query is not 
resolved, the CH forwards the query to the best neighbour 
CH that has the most hints about the desired event.  
HR-SDBF can also be extended to actor-based WSNs 
(Akyildiz and Kasimoglu, 2004; Melodia et al., 2005) in a 
similar way. Second, we can combine compressed BFs 
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(Mitzenmacher, 2002) and SDBFs. CHs or actors compress 
an SDBF using arithmetic coding before it is propagated. 

5 Analysis 

In this section, we analyse the query traffic of the  
HR-SDBF routing protocol. The analysis focuses on  
one-thread forwarding with the exponential decay model. 
We prove the best query performance within no-decay 
scope and the average query traffic outside the no-decay 
scope. The simulation study of the HR-SDBF protocol will 
be presented in the next section. 

We assume that sensors are randomly deployed. The 
network topology is a random graph where each neighbour 
has the same average degree nc = Nsn *π*R2/TDs, where Nsn 
refers to the number of sensors in the WSN; R is the 
wireless transmission radius of a sensor; TDs is the total area 
of the sensing field. 

Theorem 1 (Best query performance within k-hops): In the 
best scenario, the one-thread query forwarding within  
k-hops of an event source follows the shortest path if the  
max-min TTL counter strategy is used to break ties. 

Proof: Within k-hops of an event source, a query may be 
forwarded to a neighbour that is not actually the best due to 
two factors, sharing one TTL counter (g > 1) and hash 
collision. When g > 1, as shown in Figure 10(a), A is the 
query source, S has the desired event e1. At node C, a local 
event e2 hashes to a different bit in each segment of event e1. 
This causes the TTL counter value for C with respect to e1 
to be 3. The max-min TTL counter strategy incorrectly 
chooses C as the best neighbour. When g = 1, hash collision 
may still cause a false selection of the best neighbour. For 
example in Figure 10(b), a local event e2 at node C hashes 
to the same set of bits as the desired event e1, which causes 
I(e1) at C to be d and the TTL counter value for C with 
respect to e1 to be 3. C is incorrectly selected by the max-
min TTL counter strategy to be the best neighbour. 

There are four scenarios in which the two factors together 
cause a false selection of the best neighbour. 

• g = 1 and no hash collision 

• g = 1 and hash collision 

• g > 1 and no hash collision 

• g > 1 and hash collision. 

The best scenario is the first one, where there is one TTL 
counter per bit and no two events ever hash to the same bit. 
As illustrated in Figure 10(c), the TTL counter values for all 
neighbours are true values for the desired event. And they 
represent the shortest distance between neighbours and the 
event source. Therefore, the best one-thread query 
forwarding within k-hops follows the shortest path. ⁫ 

Figure 10 (a) Error due to shared TTL counters (g > 1) alone  
(b) error due to hash collision (g = 1) alone (c) best 
scenario in one-thread forwarding 
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Proposition 1 (Impact of false positives): The number of 
bits set due to false positives in an SDBF-ED follows a 
binomial distribution B(d, λp), where 
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wi (wt) denotes the number of nodes i (t) hops away from  
a sensor; k is the no-decay neighbourhood radius; d is  
the number of hash functions in an SDBF-ED; p is  
the decay rate; U represents the total number of bits that  
are caused by an event and propagated throughout the 
network. 

Proof: See Appendix. ⁫ 

The average energy consumed by a query is proportional to 
the average number of messages forwarded per query, Nqs, 
which is computed by modelling the query forwarding 
process as a Markov chain, as shown in Figure 11. There is 
one Markov chain for each query for events that actually 
exist in the WSN. Each sensor stays in exactly one state in 
each Markov chain. A sensor stays in state i, except k and  
k + 5, if its shortest distance from an event source is i. State 
k refers to nodes that are within a no-decay k-hop 
neighbourhood. State k + 5 refers to nodes that receive a 
negligible amount of information about a desired event. It is 
assumed that the hint about an event decays to a negligible 
amount outside the k + 5 neighbourhood. This assumption 
holds as long as 5* 1.d p  Therefore all nodes outside the 
(k + 5) – hop neighbourhood stay in state k + 5. The  
number of nodes in state i, denoted by wsi, is the  
same as wi mentioned above if i ≠ k; i ≠ k + 5. 

4
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Figure 11 A Markov chain model of HR-SDBF-ED 
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Proposition 2 (state transition matrix C): The state 
transition probability matrix for the Markov chain of an 
event is the matrix C in Figure 12. ai refers to the 
probability of transition from state i to state i – 1 when  
i ∈ [k + 1, k + 5]. bij denotes the transition probability from 
state i to state j ≥ i when i ∈ [k + 1, k + 5]. 
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Z is the number of bits set to 1 among the d bits of an 
SDBF-ED that is received from the upstream neighbour on 
the shortest path of a sensor in state i to an event source. Z is 
a random variable that follows the binomial distribution  

B(k, pi–k + λp – λp * pi–k). ( )( )5

1
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Figure 12 The state transition matrix C 

 

Proof: See Appendix. ⁫ 

Proposition 3 (average query traffic outside k-hops): In the 
HR-SDBF-ED protocol, the average number of query 
messages forwarded by sensors outside k-hop, denoted by 
Nqs, is as follows. 

( ) ( )1 1* *qsN G I G I G− −= − −  

where G is the resulting matrix by changing the top-left 
element in C from 1 to 0. 

Proof: Let Ti,0, i = k + 1, k + 2, …, k + 5, denote the number 
of steps it takes for a query that starts at a node in state i to 
first encounter a node at distance k from the target (i.e., state 
k). Let T denote the number of steps for a query that starts at 
a node chosen uniformly at random to first encounter a node 
at distance k from the event source. Since the probability of 
a query originating in state i is wsi/Nsn, therefore 
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Let G be the matrix resulting from just changing the top-left 
element in C from 1 to 0. It is not difficult to verify, from 
the meaning of the stochastic matrix G, that the element in 
the ith row 0th column of Gl is the probability that  
when a node starts in state i, it first reaches a node at 
distance k from the event source after l steps. Therefore, the 
element in the ith-row 0th-column of the matrix 

1
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some convergence arguments for matrices. ⁫ 

6 Evaluations 

In this section, we will discuss the experimental setup, 
evaluate the tradeoffs in the HR-SDBF design, and compare 
HR-SDBF to SQR routing and query flooding. 

6.1 Experimental setup 

The sensor network is generated by randomly deploying 500 
sensors in the field of size 200 m × 200 m. It is assumed that 
each node can reliably send packets to any node within R 
meters. R is set to 15 or 20. The event model is the random 
source. 250/1000/2500 events are randomly distributed 
among all sensors to simulate small/medium/large event 
scenarios. Each unique event has five replicas. Queries are 
generated by randomly selecting a sensor as a sink and an 
existing event as the desired one. In each simulation run for 
HR-SDBF, hints about events are first propagated according 
to the scope decay model, then queries are processed. The 
performance metrics are routing energy efficiency and 
routing quality. We assume that it costs more to set up a 
connection than to transmit a single message. The routing 
energy efficiency is computed in terms of the average 
number of query messages and the average number of 
amortised messages. The latter is defined as the sum of the 
total number of query messages and the routing update 
messages divided by the number of queries. The routing 
quality is evaluated based on the query success rate. A 
query is considered successful if at least one desired event is 
found. Table 1 lists the major system parameters. 

Table 1 Major system parameters 

Notation Definition Value 
m The width of SDBF filter 12 kbits 
d The number of hash functions 16 
g The SDBF segment size 8 
k The no-decay scope 3 
p The exponential decay rate 1/8 
(c1, c2) The linear decay control range (3, 6) 
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6.2 One-thread HR-SDBF: random vs. TTL  
tie-breaking 

In the one-thread HR-SDBF protocol, a query is always 
forwarded to the best neighbour. Ties can be broken 
randomly or based on the max-min TTL counter  
strategy. Figure 13 contrasts the performance of these two 
design choices when the same scope decay model is used 
and different number of queries are executed. The number 
of events is 2500. The labels one-thread best 
MaxMinTTLCnt and one-thread best random refer to 
breaking ties using TTL counters and random tie-breaking 
respectively. Clearly, tie-breaking using TTL counter  
value surpasses random tie-breaking. It achieves a higher 
query success rate with less query messages and less 
amortised messages. This suggests that in HR-SDBF we can 
use both the BF and the TTL counter as hints about event 
locations. The TTL counter tie-breaking is a better design 
choice. 

Figure 13 One thread HR-SDBF: random tie breaking vs. TTL 
tie-breaking (a) average number of query messages  
(b) average number of amortised messages (c) query 
success rate (see online version for colours) 
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(b) 

Figure 13 One thread HR-SDBF: random tie breaking vs. TTL 
tie-breaking (a) average number of query messages  
(b) average number of amortised messages (c) query 
success rate (continued) (see online version for 
colours) 
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Figure 14 One-thread HR-SDBF: exponential decay vs. linear 
decay (a) average number of query messages  
(b) average number of amortised messages (c) query 
success rate 
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Figure 14 One-thread HR-SDBF: exponential decay vs. linear 
decay (a) average number of query messages  
(b) average number of amortised messages (c) query 
success rate (continued) 
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(c) 

Figure 15 One-thread HR-SDBF compared to SQR, varying 
number of queries (R = 15) (a) average number of 
query messages (b) average number of amortised 
messages (c) query success rate 
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Figure 15 One-thread HR-SDBF compared to SQR, varying 
number of queries (R = 15) (a) average number of 
query messages (b) average number of amortised 
messages (c) query success rate (continued) 
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6.3 Decay models: exponential vs. linear 

Another tradeoff in the HR-SDBF design is exponential 
decay or linear decay. Figure 14 shows the performance 
contrast between these two choices. The number of events is 
2,500. The search type is one-thread HR-SDBF with tie 
breaking by max-min TTL counter policy. Figure 14(a) 
indicates that the two decay models generate approximately 
the same amount of query traffic. Exponential decay incurs 
less routing overhead than linear decay, as shown in  
Figure 14(b). In addition, slightly more queries are 
successfully resolved with exponential decay than with 
linear decay, as illustrated in Figure 14(c). Therefore, 
exponential decay is slightly better than linear decay. 

6.4 One-thread HR-SDBF vs. SQR 

The one-thread HR-SDBF with tie-breaking using max-min 
TTL counter values is compared to SQR routing. We first 
compare their performance by varying the number of 
queries (i.e., varying the frequency of an event being 
queried) and the number of events. This is shown in  
Figure 15. 

Each line in Figure 15(a) plots the average number of 
query messages per query when the number of queries 
increases and the maximum TTL for a query is fixed at 50. 
Different lines correspond to the performances of different 
algorithms under three different event scenarios: 2,500 
events, 1,000 events, and 250 events. Each unique event has 
five replicas. The figure indicates that in the same event 
scenario, the average query traffic in neither scheme 
increases as events are queried more frequently. One-thread 
HR-SDBF incurs about 33% less query traffic than SQR in 
all three event scenarios. This is because HR-SDBF does 
not decay event hints within k-hop neighbourhoods of event 
sources and therefore can propagate hints further. 
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The amortised messages including the update overhead 
is illustrated in Figure 15(b). In the 250-event scenario,  
one-thread HR-SDBF always has lower amortised traffic 
than SQR. This is because HR-SDBF generates about the 
same amount of hint propagation traffic as SQR but 
significantly less query traffic than SQR. In the other event 
scenarios, both schemes generate decreasing amortised 
traffic with increasing queries. One-thread HR-SDBF has 
higher amortised traffic than SQR when the number of 
queries is small. However, the difference decreases 
dramatically as the number of queries increases. In the 
1,000-event/2,500-event scenario, HR-SDBF generates less 
amortised traffic than SQR when the number of queries is 
greater than 3,000/6,000. This means that the extra hint 
propagation traffic caused by no-decay within k-hops in  
HR-SDBF is effectively amortised by the increase in query 
frequency. 

Figure 15(c) shows the query success rates of both 
schemes when the number of queries increases. It is 
observed that in the same event scenario, the number of 
queries does not impact the query success rate in either 
scheme. One-thread HR-SDBF achieves a dramatically 
higher query success rate than SQR in all three event 
scenarios. The query success rate of HR-SDBF is about 
twice as much as that of SQR in the same event scenario. 
This significant increase is due to the fact that HR-SDBF 
can push event hints further than SQR. 

To compare the performance of 1-thread HR-SDBF and 
SQR when they incur the same per-query traffic,  
we gathered data with varying maximum query TTLs and 
plot the query success rate in terms of the amortised  
per-query traffic, as shown in Figure 16. The number of 
queries is 8000. Clearly, 1-thread HR-SDBF is superior to 
SQR. It can achieve a higher query success rate than SQR 
with the same amount of amortised traffic in all three event 
scenarios. 

Figure 16 One-thread HR-SDBF vs. SQR, query success rate in 
terms of amortised per-query traffic (a) R = 15  
(b) R = 20 
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(a) 

Figure 16 One-thread HR-SDBF vs. SQR, query success rate in 
terms of amortised per-query traffic (a) R = 15  
(b) R = 20 (continued) 
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We also simulate one-thread HR-SDBF and SQR in denser 
networks where the wireless communication radius is 
increased from 15 meters to 20 meters. All other system 
parameters remain the same. Their performance with  
respect to varying number of queries and different event 
scenarios are pictured in Figure 17. Similar trends are 
observed in denser networks, but the absolute values are 
different. In denser networks, the average query traffic is 
lower, the amortised per-query traffic is slightly heavier, 
and the query success rate is higher. This is because in 
denser networks, nodes have more neighbours and the 
network diameter is smaller. Compared to SQR, HR-SDBF 
generates 40% less query traffic, and increases the query 
success rate around 28%. The amortised traffic is only 8% 
more than SQR when the number of queries is more than 
6,000. Figure 16(b) shows the changes of the query success 
rate with respect to the amortised traffic in the denser 
network when the number of queries is fixed at 8,000 and 
the query TTL changes. The one-thread HR-SDBF still 
outperforms SQR though SQR performs much better in 
densor networks. 

In summary, HR-SDBF generates less query traffic and 
achieves a significantly higher query success rate than SQR. 
This is because HR-SDBF does not decay event hints within 
k-hop neighbourhoods of event sources. Therefore, hints can 
propagate further. When there are many events, this  
no-decay within k-hops also causes more traffic in spreading 
hints. But the decrease in the query traffic out-weighs the 
increase in the hint maintenance traffic at high query 
frequencies. 
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Figure 17 One-thread HR-SDBF compared to SQR, varying 
number of queries (R = 20) (a) average number of 
query messages (b) average number of amortised 
messages (c) query success rate 
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6.5 N-thread HR-SDBF vs. query flooding 
The N-thread HR-SDBF is evaluated against query flooding. 
Both schemes have the same query TTL, which is k, the  
no-loss scope in HR-SDBF. Each query is flooded within  
k-hops in query flooding. In N-thread HR-SDBF, the 
minimum hint percentage for forwarding a query is 100. A 
sensor forwards a query to a neighbour only if all bits of the 
desired event are set in that neighbour’s SDBF. Queries are 
not forwarded outside k-hop neighbourhoods of sinks. We 
are interested in the number of events that both approaches 
find, and the query traffic and the routing traffic that both 
approaches generate as the number of queries changes (i.e., 
the event query frequency changes). 

The simulation results show that both N-thread  
HR-SDBF and query flooding locate all events within the 
same k-hop neighbourhood in three event scenarios. 
Therefore we only plot the query traffic and the amortised 
traffic incurred by both schemes in Figure 18. The average 
number of query messages forwarded by N-thread HR-
SDBF is always much smaller than query flooding, as 
shown in Figure 18(a) because N-thread HR-SDBF utilises 
hints. 

Figure 18 N-thread HR-SDBF vs. query flooding, varying 
number of queries (R = 15) (a) average number of 
query messages (b) average number of amortised 
messages 
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Figure 18(b) shows that query flooding has almost the same 
amortised traffic when the number of queries changes. N-
thread HR-SDBF generates a larger amortised traffic than 
query flooding when the number of queries is small 
(<1000). However, the amortised traffic in N-thread  
HR-SDBF drops dramatically as the number of queries 
increases. When the number of queries is greater than 1,000, 
N-thread HR-SDBF incurs less amortised traffic than query 
flooding. The number of amortised messages delivered by 
N-thread HR-SDBF decreases slowly when the number of 
queries is more than 2,000. At 9,000 queries, HR-SDBF 
finds the same number of events with almost three times 
less traffic. Figure 18 also shows that the number of events 
does not make an impact on the performances of N-thread 
HR-SDBF and query flooding. 

Figure 19 N-thread HR-SDBF vs. query flooding, varying 
number of queries (R = 20) (a) average number of 
query messages (b) average number of amortised 
messages 
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Figure 19 demonstrates the query traffic and the amortised 
traffic of N-thread HR-SDBF and query flooding in a denser 
network with the same configuration except that the 
wireless communication radius is set to 20 metres. We 
observe similar performance patterns. N-thread HR-SDBF 
outperforms query flooding when events are queried 
frequently. The average number of query messages and the 

average number of amortised messages of both approaches 
increase in the denser network because the average degree is 
higher. Both schemes also locate more events in the  
denser network because more nodes can be searched within 
k-hops. 

In summary, when designing HR-SDBF, breaking ties 
according to the Max-Min TTL counter strategy is 
significantly better than random selection. The exponential 
decay model is slightly better than the linear decay  
model. One-thread HR-SDBF accomplishes a higher  
query success rate with the same amortised traffic than 
SQR. The N-thread HR-SDBF locates all desired events 
within k-hop neighbourhoods but incurs much less 
amortised traffic than query flooding when events are 
queried frequently. 

7 Conclusions 

In this paper, we proposed a routing protocol, called  
HR-SDBF. It routes queries based on probabilistic hints that 
are advertised by the proposed data structure, SDBF.  
An SDBF is a variant of the BF. Like a BF, an SDBF  
can represent a set of elements. In addition, an SDBF  
can describe different amounts of information about an 
element, denote probabilistic membership, and can be  
used as a channel coding scheme. The HR-SDBF protocol 
uses SDBFs to propagate routing hints about a set of  
events such that the information about an event does not 
attenuate within a k-hop neighbourhood of the event source 
but decreases outside the k-hop neighbourhood as the 
distance from the boundary of the k-hop neighbourhood 
increases. 

In HR-SDBF, sinks can conduct two types of searches: 
one-thread best search or N-thread search. In the one-thread 
best search, a node always forwards a query to the best 
neighbour that has the most hints about a desired event. Ties 
can be resolved by random selection or based on the TTL 
counter values. In the N-thread search, a node directs a 
query to all neighbours with the full amount of information. 
Compared to existing query-based routing protocols in 
WSNs, HR-SDBF improves the query success rate with low 
amortised routing overhead and reduces energy 
consumption by keeping probabilistic hints instead of 
precise hints. 

In the future, we plan to explore other decay models in 
HR-SDBF, such as decaying based on node degrees. We 
also intend to do analytical and simulation study in 
extending HR-SDBF to clustered WSNs or actor-sensor 
model WSNs. 
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Appendix 

Proof of Proposition 1 Impact of false positives 

Proof: It is assumed that in a small neighbourhood, wi = nc * 
(nc – 1)i–1. The simplifying assumption holds as long as 
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U equals to the total hint update traffic that comes from all 
other sensors and flows into the sensor s because of the 
symmetry of the decay model. U is evenly distributed 
among the SDBF-EDs of the nc neighbours of s. The 
number of 1s in each SDBF-ED is U/nc. According to 
Whang et al. (1990) statistics, the number of 1s in an  
SDBF-ED, is, ( )( )** 1 .cU n mm e−−  The percentage of bits set 

to 1 in an SDBF-ED, denoted by λp, is 

( )*1 cU n m
p e−= −λ  

The number of bits set to 1 because of false positives in an 
SDBF-ED is a random variable, F, which follows a 
binomial distribution B(d, λp). ⁫ 

Proof of Proposition 2 State transition probability 
matrix C 

Proof: If a sensor is within the no-decay k-hop 
neighbourhood of an event source, it always forwards a 
query for that event to its upstream neighbour on its shortest 
path to the event source because the hint about the event is 
precise within the k-hop neighbourhood. The transition 
probability from state k to itself is 1 and to any other state 0. 
Because a sensor cannot forward a query to another sensor 
on its shortest path that is 2 or more hops closer to the event 
source, the transition probability from state i to state j ≤ i – 2 
is 0. To compute ai, we need to know the amount of 
information for an event coming from the upstream 
neighbour on the shortest path at state i. In the SDBF-ED, 
the hint, initially d bits, decays exponentially at rate p ∈ (0, 
1] outside the k-hop neighbourhood. The probability of a bit 
at distance i from the event source remaining 1 is pi–k. In the 
SDBF-ED from the upstream neighbour on the shortest 
path, each of the d bits survives with a probability, λs = 1 – 
(1 – pi–k)(1 – λp) = pi–k + λp – λp * pi–k. Therefore, the number 
of bits set to 1 among the d bits of the SDBF-ED from the 
upstream neighbour is a binomial random variable, Z, which 
follows the distribution B(k, λs). 

ai is the sum of the probabilities in the following two cases. 
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1 The hint from the upstream neighbour is greater than 
that from any downstream neighbour. The query is 
definitely forwarded to the upstream neighbour. The 
probability that this case occurs is 

( ) 1
,1 .cn

ip P Z F −⎡ ⎤= >⎣ ⎦  

2 The hint from the upstream neighbour is the same as u 
downstream neighbours but greater than all others. The 
query is forwarded to the upstream neighbour with 
probability 1/(u + 1). This case happens with a 

probability ( ) ( )1 1
,2 1

.c c
n u n u

i u
p P Z F Z F

− − −

=
⎡ ⎤= = >⎣ ⎦∑  

Therefore, ai = pi,1 + pi,2. 
A sensor transits from state i to state j > i if the number 

of false positives caused by a non-upstream neighbour is 
greater than the hints from the upstream neighbour. All 
neighbours generate uniformly random false positives. The 
probability of state i to all states j > i, denoted by bi, is 
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