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1. Introduction

Map-Shuffle-Reduce
Map and Reduce: CPU-intensive
Shuffle: I/O-intensive

Merge Sort
Map: sorts local arrays
Shuffle: shuffles sorted arrays
Reduce:  merges sorted arrays

Local sort

Local sort

Local sort

Merge

map reduce



Introduction
Map-Shuffle-Reduce Jobs

Reduce is not discussed (Zaharia, OSDI 2008)

Only 7% of jobs in MapReduce are reduce-heavy

Map and Shuffle
CPU-intensive and I/O-intensive (can overlap)

Centralized scheduler
Determine an execution order of jobs
on map pipeline and shuffle pipeline



Introduction
Dependency relationship

The map emits data at a given rate

Shuffle waits for the data emitted by map
may be delayed by the scheduling policy

Job classification
Map-heavy: map workload > shuffle workload

Balanced: map workload = shuffle workload

Shuffle-heavy: map workload < shuffle workload



Introduction

Impact of overlapping map and shuffle phases
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2. Model and Formulation

Jobs in Map-Shuffle-Reduce
A set of n jobs:

J = { J1, J2, …, Jn }
map workload of Ji

shuffle workload of Ji

Job classification:
Map-heavy if
Shuffle-heavy if
Balanced if



Model and Formulation

Schedule objective
Minimize average job completion time

includes waiting time before job start

Schedule is NP-hard

Offline scenarios
All jobs arrival at the beginning (waiting for schedule)



3. Observation and Ideas

When all jobs are map-heavy, balanced, or shuffle-heavy
Optimal schedule: 

Sort job by dominant workload
Smaller jobs are executed earlier
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Perfect Pair

When jobs can be perfectly “paired”
Jobs Ji and Jj are paired, if

Optimal schedule:
Pair jobs (shuffle-heavy before map-heavy)
Sort job pair by total workload
Smaller pairs are executed earlier
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Theorem:  If jobs can be perfectly paired, the optimal 
schedule pairwisely executes jobs in a pair. 
● In each pair, shuffle-heavy job is executed before map-heavy job
● Job pairs with smaller total workloads are executed earlier

Proof:

In each pair, shuffle-heavy job is executed before map-heavy job
Otherwise a swap leads to a better result

Job pairs with smaller total workloads are executed earlier
Otherwise a swap leads to a better result

Theorem



Proof: jobs in a pair are executed together
Induction: shuffle-heavy J1 and map-heavy J2

Base case validates

Suppose the theorem validates for J
Prove validation for J1, J2, and J
Theorem also holds for uniform data rate

Proof

Time

Time

0%

100%

0%

100%
J2

J2 J1

J1

Time

Time

0%

100%

0%

100%
J2

J2J1

J1



Induction validates: the best schedule is S1 or S2

Proof



Two Insights

Two scheduling factors for non-perfectly paired

Schedule smaller jobs first (dominant)

Jobs should be paired (non-dominant)



4. Algorithms

Two-stage scheduling algorithm
Group jobs by their workloads (first factor)

Optimally divide jobs into k groups
Criterion: minimize the sum of maximum job 
workload difference within each group

Execute the group of smaller jobs earlier

Job are paired in each group (second factor)
Jobs in each group have close workloads
Pair shuffle-heaviest and map-heaviest jobs:



Algorithms
Example: two-stage scheduling algorithm

(order only)
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Algorithms

Dominant workload scheduling policy (DWSP)
Group jobs by dominant workloads,
Performs well when jobs are simultaneously 
map-heavy, balanced, or shuffle-heavy

Total workload scheduling policy (TWSP)
Group jobs by total workloads,
Performs well, when jobs can be perfectly paired

Weighted workload scheduling policy (WWSP)
A tradeoff between pair-based and couple-based policies
Group jobs by weighted workloads 



5. Experiments

Google Cluster Dataset
About 11,000 machines
96,182 jobs over 29 days in May 2011 (time collapsed) 
Number of job submissions per hour (arrival rate)



Experiments

Google Cluster Dataset
Distribution of map and shuffle time



Experiments

Comparison algorithms

Pairwise: has only one group, then iteratively pairs the
map-heaviest and shuffle-heaviest jobs in the group

MaxTotal: rank jobs by total workload
smaller total workload is executed earlier

MaxSRPT: rank jobs by dominant workload
smaller dominant workload is executed earlier



Experiments

Performance (group k = 20 and weight α = 0.5)

Improvement by considering both job workloads and pairs



Experiments

Impact of k and α
Group-based scheduling policy with k groups
Sort jobs by 

Small/Large group k
Small/large weight α

Minimized 
when α = 0.57



Simulation Summary

○ Pairwise has the smallest average job execution time, but
large job waiting time, since job workloads are ignored

○ MaxTotal and MaxSPRT do not balance the trade-off       
between job size and job pair

○ DWSP, TWSP, and WWSP jointly consider job sizes and 
job pairs



6. Conclusion

Map and Shuffle phases can overlap
CPU and I/O resource

Objective: minimize average job completion time

Two-stage schedule
Job workloads (dominant factor)
Job pairs (avoid I/O underutilization)
Optimality under certain scenarios


