
Optimizing MapReduce through Joint
Scheduling of Overlapping Phases

Huanyang Zheng, Ziqi Wan, and Jie Wu
Dept. of Computer and Info. Sciences

Temple University

Road Map

○ Introduction

○ Model and Formulation

○ Observation and Ideas

○ Algorithms

○ Experiments

○ Conclusion

shuffle

1. Introduction

Map-Shuffle-Reduce
Map and Reduce: CPU-intensive
Shuffle: I/O-intensive

Merge Sort
Map: sorts local arrays
Shuffle: shuffles sorted arrays
Reduce: merges sorted arrays

Local sort

Local sort

Local sort

Merge

map reduce

Introduction
Map-Shuffle-Reduce Jobs

Reduce is not discussed (Zaharia, OSDI 2008)

Only 7% of jobs in MapReduce are reduce-heavy

Map and Shuffle
CPU-intensive and I/O-intensive (can overlap)

Centralized scheduler
Determine an execution order of jobs
on map pipeline and shuffle pipeline

Introduction
Dependency relationship

The map emits data at a given rate

Shuffle waits for the data emitted by map
may be delayed by the scheduling policy

Job classification
Map-heavy: map workload > shuffle workload

Balanced: map workload = shuffle workload

Shuffle-heavy: map workload < shuffle workload

Introduction

Impact of overlapping map and shuffle phases

map
pipeline

shuffle
pipeline

Time

Time

0%

100%

0%

100%
J2

J2J1

J1

Map CPU
utilization

Shuffle I/O
utilization

2 310

Time

Time

0%

100%

0%

100%
J2

J2 J1

J1

Map CPU
utilization

Shuffle I/O
utilization

2 3 40

Word count (map-heavy) Merge sort (shuffle-heavy)

2. Model and Formulation

Jobs in Map-Shuffle-Reduce
A set of n jobs:

J = { J1, J2, …, Jn }
map workload of Ji

shuffle workload of Ji

Job classification:
Map-heavy if
Shuffle-heavy if
Balanced if

Model and Formulation

Schedule objective
Minimize average job completion time

includes waiting time before job start

Schedule is NP-hard

Offline scenarios
All jobs arrival at the beginning (waiting for schedule)

3. Observation and Ideas

When all jobs are map-heavy, balanced, or shuffle-heavy
Optimal schedule:

Sort job by dominant workload
Smaller jobs are executed earlier

map
pipeline

shuffle
pipeline

Time

Time

J1

J1

J2

J2

J3

J3
Time

Time

J1

J1

J2

J2

J3

J3

Perfect Pair

When jobs can be perfectly “paired”
Jobs Ji and Jj are paired, if

Optimal schedule:
Pair jobs (shuffle-heavy before map-heavy)
Sort job pair by total workload
Smaller pairs are executed earlier

Time

Time

0%

100%

0%

100%
J2

J2J1

J1

2 310

map pipeline

shuffle pipeline

Theorem: If jobs can be perfectly paired, the optimal
schedule pairwisely executes jobs in a pair.
● In each pair, shuffle-heavy job is executed before map-heavy job
● Job pairs with smaller total workloads are executed earlier

Proof:

In each pair, shuffle-heavy job is executed before map-heavy job
Otherwise a swap leads to a better result

Job pairs with smaller total workloads are executed earlier
Otherwise a swap leads to a better result

Theorem

Proof: jobs in a pair are executed together
Induction: shuffle-heavy J1 and map-heavy J2

Base case validates

Suppose the theorem validates for J
Prove validation for J1, J2, and J
Theorem also holds for uniform data rate

Proof

Time

Time

0%

100%

0%

100%
J2

J2 J1

J1

Time

Time

0%

100%

0%

100%
J2

J2J1

J1

Induction validates: the best schedule is S1 or S2

Proof

Two Insights

Two scheduling factors for non-perfectly paired

Schedule smaller jobs first (dominant)

Jobs should be paired (non-dominant)

4. Algorithms

Two-stage scheduling algorithm
Group jobs by their workloads (first factor)

Optimally divide jobs into k groups
Criterion: minimize the sum of maximum job
workload difference within each group

Execute the group of smaller jobs earlier

Job are paired in each group (second factor)
Jobs in each group have close workloads
Pair shuffle-heaviest and map-heaviest jobs:

Algorithms
Example: two-stage scheduling algorithm

(order only)

J1

J1

J4

J4J2

J2 J3

J3

map
shuffle

group jobs by workloads
J1

J1

J4

J4 J2

J2J3

J3

pair jobs in each group
J1

J1

J4

J4 J2

J2 J3

J3

Algorithms

Dominant workload scheduling policy (DWSP)
Group jobs by dominant workloads,
Performs well when jobs are simultaneously
map-heavy, balanced, or shuffle-heavy

Total workload scheduling policy (TWSP)
Group jobs by total workloads,
Performs well, when jobs can be perfectly paired

Weighted workload scheduling policy (WWSP)
A tradeoff between pair-based and couple-based policies
Group jobs by weighted workloads

5. Experiments

Google Cluster Dataset
About 11,000 machines
96,182 jobs over 29 days in May 2011 (time collapsed)
Number of job submissions per hour (arrival rate)

Experiments

Google Cluster Dataset
Distribution of map and shuffle time

Experiments

Comparison algorithms

Pairwise: has only one group, then iteratively pairs the
map-heaviest and shuffle-heaviest jobs in the group

MaxTotal: rank jobs by total workload
smaller total workload is executed earlier

MaxSRPT: rank jobs by dominant workload
smaller dominant workload is executed earlier

Experiments

Performance (group k = 20 and weight α = 0.5)

Improvement by considering both job workloads and pairs

Experiments

Impact of k and α
Group-based scheduling policy with k groups
Sort jobs by

Small/Large group k
Small/large weight α

Minimized
when α = 0.57

Simulation Summary

○ Pairwise has the smallest average job execution time, but
large job waiting time, since job workloads are ignored

○ MaxTotal and MaxSPRT do not balance the trade-off
between job size and job pair

○ DWSP, TWSP, and WWSP jointly consider job sizes and
job pairs

6. Conclusion

Map and Shuffle phases can overlap
CPU and I/O resource

Objective: minimize average job completion time

Two-stage schedule
Job workloads (dominant factor)
Job pairs (avoid I/O underutilization)
Optimality under certain scenarios

