IS

Center for Networked

Motivation

Sensor devices need to be charged after deployment for sustainable performance

Existing Solutions use *fixed voltage thresholds* for charging, which causes task failures with **bursty workloads**

Networked

 $f \cap I$

Problem

- What is a good voltage threshold to trigger battery charge?
- challenge: bursty workloads
- goal: maintain high utilization of energy
- How to adjust battery charge schedule?
- challenge: adapt to workload changes
- goal: maximize a node's lifetime with a fixed number of charges, while minimizing the task failure ratio

Approach

Bursty workloads

- triggered by physical phenomenon
- spatiotemporal properties
- can be learned over time
- Adaptive battery charge schedule
 - task failure ratio vs. lifetime
 - based on predicted workload patterns
 - use feedback control to adapt

Contributions

- 1. Bursty workloads of sensor nodes are caused by the spatiotemporal nature of physical phenomenon. We design a learning model to capture and predict such workload patterns.
- 2. By monitoring the workload and the voltage levels, a feedback control solution is applied to adjust the charging schedules. Evaluation shows that we achieve a 68.26% lower task failure ratio compared to existing schemes, with a 3.45% decrease in system lifetime.

IS

Networked

Center

omputina

tor

GS

Center for Networked Computing

NETWORKED

Empirical Discharging Model

where *r*_{discharge} represents the battery discharging rate, *w* represents system workload, and *a* and *b* are model parameters obtained from experiments. Different batteries have different values of *a*

and b.

Center for Networked Computing

S_i: a task *i* runs for a certain period of time *T_i idle_i*: idle state *i* runs for a time duration of *I_i Sⁱ*: a subset of tasks run together, a task in this group is s^{i}_{i} $p(S^{i}|s_{i})$: transition probability from task s_{i} to a burst of tasks *Sⁱ*

mouting

Center for Networked Computing

tor

Cente

omputina

GS

Evaluation Setup

Trace-driven analysis: we use real battery charge/discharge data from empirical studies Four types of schedules

ealth System

- periodic
- on-demand
- adaptive <u>_</u>
- robust

THE We test three types of workloads

- random
- bursty
- hybrid

The number of charging cycles is set as10,000. The simulation is run 40 times for statistical results.

Education

IS

Evaluation Results

Center for Networked Computing

Evaluation Results

Cente

Conclusions

We design a feedback control based charge scheduling algorithm to adapt to bursty workloads.

Our algorithm is based on an empirical battery model obtained from experiments.

Our solution

- achieves a 68.26% lower task failure ratio with a decrease of 3.45% in the system lifetime under bursty workloads

- adapts to workload and battery characteristics

