Adaptive Battery Charge Scheduling with Bursty Workloads

Dylan Lexie, Shan Lin, and Jie Wu
Temple University
{dylan.lexie, shan.lin, jie.wu}@temple.edu

Presenter: Pouya Ostovari
Motivation

Sensor devices need to be charged after deployment for sustainable performance

Existing Solutions use fixed voltage thresholds for charging, which causes task failures with bursty workloads.
Problem

What is a good voltage threshold to trigger battery charge?
- challenge: bursty workloads
- goal: maintain high utilization of energy

How to adjust battery charge schedule?
- challenge: adapt to workload changes
- goal: maximize a node’s lifetime with a fixed number of charges, while minimizing the task failure ratio
Approach

Bursty workloads
- triggered by physical phenomenon
- spatiotemporal properties
- can be learned over time

Adaptive battery charge schedule
- task failure ratio vs. lifetime
- based on predicted workload patterns
- use feedback control to adapt
Contributions

1. Bursty workloads of sensor nodes are caused by the spatiotemporal nature of physical phenomenon. We design a learning model to capture and predict such workload patterns.

2. By monitoring the workload and the voltage levels, a feedback control solution is applied to adjust the charging schedules. Evaluation shows that we achieve a 68.26% lower task failure ratio compared to existing schemes, with a 3.45% decrease in system lifetime.
Empirical Studies

![Graph showing voltage over time for different currents](image-url)
Empirical Discharging Model

\[r_{\text{discharge}} = a \times w + b \]

where \(r_{\text{discharge}} \) represents the battery discharging rate, \(w \) represents system workload, and \(a \) and \(b \) are model parameters obtained from experiments. Different batteries have different values of \(a \) and \(b \).
Markov Bursty Workload Model

S_i: a task i runs for a certain period of time T_i

$idle_i$: idle state i runs for a time duration of I_i

S_i: a subset of tasks run together, a task in this group is s_i

$p(S_i | s_i)$: transition probability from task s_i to a burst of tasks S_i
Feedback Control based
Adaptive Schedule
Evaluation Setup

Trace-driven analysis: we use real battery charge/discharge data from empirical studies

Four types of schedules
- periodic
- on-demand
- adaptive
- robust

We test three types of workloads
- random
- bursty
- hybrid

The number of charging cycles is set as 10,000. The simulation is run 40 times for statistical results.
Evaluation Results
Evaluation Results
Conclusions

We design a feedback control based charge scheduling algorithm to adapt to bursty workloads.

Our algorithm is based on an empirical battery model obtained from experiments.

Our solution

- achieves a 68.26% lower task failure ratio with a decrease of 3.45% in the system lifetime under bursty workloads

- adapts to workload and battery characteristics