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Abstract—The multi-armed bandit (MAB) model has been
deeply studied to solve many online learning problems, such as
rate allocation in communication networks, Ad recommendation
in social networks, etc. In an MAB model, given N arms
whose rewards are unknown in advance, the player selects
exactly one arm in each round, and his goal is to maximize
the cumulative rewards over a fixed horizon. In this paper, we
study the budget-constrained auction-based combinatorial multi-
armed bandit mechanism with strategic arms, where the player
can select K (<N ) arms in a round and pulling each arm has a
unique cost. In addition, each arm might strategically report its
cost in the auction. To this end, we combine the upper confidence
bound (UCB) with auction to define the UCB-based rewards and
then devise an auction-based UCB algorithm (called AUCB). In
each round, AUCB selects the top K arms according to the
ratios of UCB-based rewards to bids and further determines the
critical payment for each arm. For AUCB, we derive an upper
bound on regret and prove the truthfulness, individual rationality,
and computational efficiency. Extensive simulations show that the
rewards achieved by AUCB are at least 12.49% higher than those
of state-of-the-art algorithms.

Index Terms—Combinatorial multi-armed bandits, auction
mechanism, strategic cost, regret bound, truthfulness.

I. INTRODUCTION

In recent years, the multi-armed bandit model [1], [2] has
been widely used to solve problems where some parame-
ters are unknown in advance, such as the rate allocation in
wireless channels [3], user selection in crowdsensing [4], Ad
recommendation in social networks [5], etc. Generally, there
exists a dilemma between exploration and exploitation in the
MAB model. The exploration means that the player (a.k.a.
decision-maker) will select some sub-optimal arms to find the
potentially optimal arm that may yield higher rewards in the
future; the exploitation indicates that the player will choose
the arms that performed best in the past. In the stochastic
MAB model, the player can select exactly one arm from N
arms at each round. If an arm is selected in a round, a random
reward, which is independent and identically distributed (i.i.d.)
over time, is obtained by the player. The player’s objective
is to maximize the cumulative rewards over a fixed horizon.
Here, maximizing the total rewards is equivalent to minimizing
the regret, which is defined as the difference between the
cumulative rewards achieved in the optimal policy and the
total rewards of the non-optimal policy. The optimal policy
means that the player knows the expected rewards of all arms
in advance and always selects the optimal arm in each round.

In the classic multi-armed bandit model, each player can
select only one arm in a round and the model assumes that
pulling every arm has the same cost. In contrast, a variant
of the classic MAB model, called combinatorial multi-armed
bandit (CMAB), has been recently proposed [6], [7], in which
the player can select exactly K arms from N arm candidates
in each round. After K arms are pulled, the random reward
of each individual arm is observed by the player. The more
complicated case is where pulling each arm has a unique cost
and the player has a limited budget. Now, the player’s goal is to
maximize the cumulative achieved rewards under the budget
constraint. Furthermore, the traditional MAB model simply
assumes that all arms are feelingless machines. However,
in many application models [8], [9], the arms are generally
rational and selfish individuals. In other words, each arm might
strategically report its cost to maximize its own payoff. The
strategic behavior of each arm would hardly harm the player’s
performance. In order to ensure that each arm has no incentive
to lie, the auction-based CMAB model is necessary.

In this paper, we focus on the auction-based combinatorial
multi-armed bandit (ACMAB) problem, in which the player
and arms are seen as buyer and sellers of arm-pulling oppor-
tunity in the auction, respectively. Each arm will claim its cost
(called “bid”) at the beginning of the auction. Then, the player
selects K arms according to the bids and rewards. Here, the
rewards of arms are unknown prior. In fact, the player needs
not only to determine K arms (called winning arms) in each
round, but also to calculate the payment for each winning arm.
Note that each arm is strategic, so it may increase its payoff
by submitting a false bid (i.e., unequal to its true cost). Here,
the payoff of an arm is the difference between the received
payment and its true cost. In particular, since the rewards of
arms are unknown in advance, it is more difficult for the player
to stimulate all strategic arms to report their true cost as the
bids (a.k.a. truthfulness [10]). Furthermore, the proposed arm-
pulling policy also needs to ensure that each strategic arm
has a non-negative payoff (a.k.a. individual rationality [11]).
Otherwise, the arms, as rational individuals, will be unwilling
to participate in the ACMAB model. In addition, compared
with the traditional MAB problem, it is more challenging to
analyze the regret bound in the ACMAB problem.

In fact, the proposed ACMAB model can be adopted in
many real-world applications. For example, in the user selec-



tion problem of mobile crowdsensing [12]–[14], the platform
intends to outsource lots of small-scale homogeneous tasks
to N registered users under the budget constraint. The user
selection process is divided into multiple rounds. In each
round, each user can perform only one task and the platform
would select K (<N ) users. The quality of a user completing
these tasks is unknown (i.i.d. over time) for the platform a
priori. The cost of performing a task for a user is fixed, but
it is only known to the user itself. Since the users, as some
individual persons, are selfish and rational, they may misre-
port their true cost to increase their payoff. The platform’s
objective is to maximize the total achieved quality under the
budget constraint. Fundamentally speaking, the user selection
problem is equivalent to the proposed ACMAB model. That
is, the platform and users are seen as the player and arms,
respectively, while the quality of completing tasks is seen as
an arm’s reward in the ACMAB model.

For the ACMAB problem, the player first needs to face
the uncertainty of the arms’ rewards. To this end, we adopt
the idea of upper confidence bound (UCB), which is always
optimistic about the uncertainty, to deal with the tradeoff
between exploration and exploitation in the multi-armed bandit
problem. More specifically, we carefully design the UCB-
based reward expression, i.e., we let the average empirical
rewards plus the tailor-made bonus denote the UCB-based
reward, in which the bonus is related to the regret bound.
Then we divide the ACMAB problem into two sub-problems
in each round: winning arm selection problem and payment
computation problem. For the winning arm selection problem,
we use the ratio of UCB-based reward to the corresponding
bid as the selection criteria. At the beginning of each round,
we first sort all N arms in the decreasing order of their ratio
values, and then select the top K arms according to this order.
For the payment computation problem, we compute the critical
payment for each winning arm to ensure the truthfulness of the
auction mechanism. That is, we first identify the critical arm
in a round, i.e., the (K+1)-th arm in the completed order of
this round. The critical arm means that the (K+1)-th arm will
win when excluding a winning arm from the arm candidates.
Then, we can determine the critical payment based on the
detailed computation method. After that, all arms’ parameters
are updated for the next rounds.

Our major contributions are summarized as follows:
• We combine the auction into the combinatorial multi-

armed bandit model (i.e., ACMAB problem), in which
each arm is strategic about its true cost. We carefully
design a UCB-based reward expression for ACMAB, i.e.,
the average empirical rewards plus a tailor-made bonus.

• We divide the ACMAB problem into two sub-problems:
winning arm selection and payment computation. For
the former, we adopt the greedy arm-pulling policy, i.e.,
selecting the top K arms according to the decreasing
order of the ratio of UCB-based rewards to bids; for the
latter, we determine the critical payment for each winning
arm in a round.

• We devise an auction-based UCB algorithm, called

AUCB, to solve the ACMAB problem. We derive an
upper bound on regret for AUCB, i.e., O(NK3 ln(B+
NK2 ln(NK2))), where N means the number of total
arms, K denotes the number of arms selected in a
round, and B is the budget. Meanwhile, we prove that
AUCB can guarantee truthfulness, individual rationality,
and computational efficiency.

• We conduct extensive simulations to verify the significant
performance of AUCB, and the results show that the total
rewards achieved by AUCB are at least 12.49% higher
than those of state-of-the-art algorithms.

The remainder of the paper is organized as follows. We first
review the related work in Section II. Then, we introduce the
ACMAB model and the optimization problem in Section III.
Next, we design the AUCB algorithm in Section IV, and
analyze the theoretical results of AUCB in Section V. After
evaluating the performance of the proposed AUCB algorithm
in Section VI, we conclude the paper in Section VII.

II. RELATED WORK

So far, there has been lots of research on the auction
mechanism [15]–[17] or CMAB problem [18]–[20]. Neverthe-
less, few existing works have considered the combination of
auction and CMAB problems. On the one hand, researches
have focused by far on the auction mechanism design in
various fields, such as resource allocation in cloud comput-
ing [21]–[23], task assignment in mobile crowdsensing [24]–
[28], spectrum sharing in cognitive radio networks [17], [29],
and so on [16]. For example, the works [21], [23] study the
VM provisioning and allocation problem in cloud computing
by using the auction approach. The authors of [27] consider
two system models: a platform-centric model and a user-
centric model, where both Stackelberg game and auction based
incentive mechanisms are proposed. The authors of [24],
[25] design online auction mechanisms for dynamic mobile
crowdsourcing, while the authors of [17] propose a privacy-
preserving auction mechanism, which can improve spectrum
allocation efficiency by stimulating users to truthfully reveal
their valuations of spectrum.

On the other hand, there are a great number of works that
study the CMAB problem [6], [7], [30]–[32]. For example,
the authors of [6] consider general CMAB problems and then
propose an efficient algorithm which can achieve O(lnn)
regret (n is the number of total rounds). Similarly, the authors
of [7] devise an efficient policy for the CMAB problem, which
cannot make regret grow logarithmically with total rounds, but
does ensure that the required storage would grow linearly in
the number of unknown parameters. Also, the authors of [30],
[32] study both the stochastic and adversarial CMAB models
under a budget constraint for pulling cost. They analyze the
upper bound on the regret (i.e., O(NK4 lnB)) through a
rigorous proof. Unfortunately, all of them have neglected the
strategic behavior of arms in the CMAB models.

In fact, only a few researches have studied the combination
of auction and CMAB problems [4], [33]–[36]. Among them,
[4] designs a context-aware MAB incentive mechanism for



the quality-based worker selection problem in crowdsensing,
where a modified Thompson sampling algorithm is devised.
Both works [33], [34] focus on the auction-based MAB
problem in the filed of internet advertising, where the click-
through rate for advertisements are taken into consideration.
The authors of [35] consider a general MAB model with
strategic arms and this problem is modeled as an approximate
Nash equilibrium among all arms. Nevertheless, all of them
differ from our model and problem. The research introduced
by [37] is the most related to our work. However, three
key differences are listed as follows: 1) the exploration and
exploitation phases are separate in [37], i.e., the player will use
a fraction of budget to learn and consider the auction design
in the remaining budget; 2) each arm has a fixed deadline and
only one arm is selected in a round; 3) the method and result
of the regret bound is different from ours.

III. MODEL & PROBLEM

A. Model
Consider that there are N arms, denoted as N =

{1, · · · , i, · · · , N}. In each round t, we use a normalized
nonnegative random variable rti ∈ [0, 1] to denote the reward of
pulling an arm i∈N . Here, each arm i∈N is characterized by
a random reward distribution and we let ri denote the expected
reward. In other words, the values of {rti |i∈N ,∀t≥1} follow
an unknown independent and identically distribution with an
unknown expectation ri, i.e., ri = E[rti ]. On the other hand,
pulling an arm i will incur a cost and each arm i ∈ N has
the strategic behavior about its cost. That is to say, the cost
claimed by each arm will not always equal to its true cost.
Let ci denote the true cost of the arm i and let bi denote the
cost claimed by the arm i, which is called “bid” in the auction
mechanism. Here, we consider that the cost ci and the bid bi
for each arm ∀i∈N is located in the range [cmin, cmax]. We
use B={bi|i∈N} to denote the bid vector. At the beginning
of the auction, each arm will submit their bids to the player.
In round t, if the player selects an arm i∈N , he can obtain
the reward value rti at the end of this round. Also, the player
has to make payment to the winning arms irrespective of the
rewards being generated in this round. During this process, the
player has to face the strategic cost generated from each arm.
Thus, the designed mechanism should ensure the truthfulness
(i.e., telling the truth) of arms. In addition, the player has a
limited budget, denoted as B. The player wants to maximize
the achieved reward under the budget B, while guaranteeing
the truthfulness of the strategic arms.

B. Problem Formulation
Actually, the whole auction-based bandit process includes

two key problems. The first one is how the player should select
K arms in each round so that the expected reward can be
maximized under the budget constraint. The second one is how
the player should determine the payment for each selected arm
in each round, while the truthfulness can be guaranteed.

For simplicity, we use Φt, where |Φt|=K for ∀t > 1, to
denote the set of arms selected in round t. Here, i∈Φt means
the arm i will be selected by the player in round t, and i /∈Φt

TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
i, t the indexes for arm and round, respectively.
N , N the number of total arms and the set of arms.
K, B the number of arms selected in a round and budget.
rti the achieved reward of arm i in round t.
ri the mean of the distribution {rti |t ≥ 1}.
ci, bi the true cost and the claimed bid of arm i.
cmin the minimum values among all costs/bids.
cmax the maximum values among all costs/bids.
Φt the set of arms selected in round t.
pti , Pt the payment of i and payment vector in round t.
ri(t) the average empirical reward of i until round t.
βi(t) the total times of i being selected until round t.

ui(t) ui(t)=
√

(K+1) ln t
βi(t)

is upper confidence factor.
r̂i(t) the UCB-based reward of arm i until round t.
αi(t) the counter of arm i until round t.

otherwise. At each round, the player first needs to select the set
of arms so that he can maximize the total rewards and at the
same time compute the payment for each winning arm. Here,
we use pti(bi) to denote the corresponding payment for the
selected arm i with the bid bi in round t. When an arm is not
selected, the payment is 0. Let P={P1, · · · ,Pt, · · · } denote
the payment vector, in which Pt= {pti(bi)|i∈N} means the
payment vector in round t. Based on this, we formalize the
winning arm selection problem as follows.

Maximize : E
[∑

t

∑
i∈Φt rti

]
(1)

Subject to :
∑

t

∑
i∈Φt pti(bi) ≤ B (2)

|Φt|=K for ∀t>1 (3)
Next, we introduce the payment determination problem. The

objective is to determine the payment for each winning arm
so that the whole auction model satisfies the truthfulness and
individual rationality, which are defined as follows:

Definition 1: [Truthfulness] [11], [21], [22] For each win-
ning bid bi, we use pti(ci)−ci and pti(bi)−ci to denote the i-th
arm’s payoffs for the truthful and untruthful bids, respectively.
The truthful mechanism means that

pti(ci)− ci ≥ pti(bi)− ci. (4)
The truthfulness of the auction mechanism can guarantee

that each strategic arm will report its true cost as the bid,
since an untruthful bid will lead to a worse payoff.

Definition 2: [Individual Rationality] [26], [38] Since each
arm in the ACMAB model is rational, its payoff, defined as
the difference between the payment and its true cost, must be
greater than or equal to 0; that is, pti(bi)−ci≥0.

For each strategic arm, the payment it received must be
greater than or equal to its true cost; otherwise, the arm might
be unwilling to participate the ACMAB problem.

Definition 3: [Computational Efficiency] [24], [25] An
auction-based algorithm has the computational efficiency, in-
dicating that it can be conducted in polynomial time.

Facing the uncertainty of arms, the player’s objective is
to maximize the total achieved rewards under the budget
constraint. Comparing to the case where the expected rewards
of arms are known in advance, the proposed policy for the



unknown case cannot acquire the optimal rewards.
Definition 4: [Regret] [2], [5] Regret means the difference

in the total achieved rewards between the optimal policy
which knows the expected rewards of arms in advance and
the proposed solution for the unknown case, i.e.,

R(B) = BR∗/C∗ −
∑τ(B)

t=1

∑
i∈Φt rti , (5)

where R∗ =
∑

i∈Φ∗ ri and C∗ =
∑

i∈Φ∗ bi mean the total
rewards and payments of the optimal solution in a round,
respectively, and Φ∗ denotes the optimal set of arms for the
known case. Meanwhile, τ(B) represents the total rounds of
the proposed algorithm under the budget constraint.

Additionally, we summarize the commonly used notations
throughout the paper in Table I.

IV. ALGORITHM DESIGN

A. Basic Idea
In the Auction-based Combinatorial Multi-Armed Bandit

(ACMAB) problem, we need to solve two key sub-problems
in each round: the winning arm selection problem and the
payment computation problem. For the winning arm selection
problem, the player aims to maximize the total achieved
rewards under the budget constraint. For the payment com-
putation problem, the player needs to determine the suitable
payment for each winning arm so that each strategic arm can
tell the truth (i.e., truthfulness). Actually, only when all of the
arms are truthful can the player make an efficient arm-pulling
policy to maximize the total achieved rewards.

In order to handle the tradeoff between exploitation (i.e.,
selecting the best arms based on the sampling results) and
exploration (i.e., trying some sub-optimal arms to find the
potentially optimal arms) in the winning arm selection prob-
lem, we first introduce the idea of Upper Confidence Bound
(UCB [1], [7], [31]). More specifically, we first use βi(t) to
denote the number of the arm i∈N being selected until the
t-th round, and then use ri(t) to denote the average empirical
reward of the arm i until round t. The values of βi(t) and
ri(t) are updated as follows.

βi(t) =

{
βi(t− 1) + 1; i ∈ Φt

βi(t− 1); i /∈ Φt (6)

ri(t) =


ri(t−1) + rti
βi(t−1) + 1

; i ∈ Φt

ri(t−1); i /∈ Φt

(7)

Furthermore, we let r̂i(t) denote the UCB-based reward for
each arm. The idea of UCB always has the optimism in the
face of uncertainty. r̂i(t) is described as follows.

r̂i(t)=ri(t)+ui(t), where ui(t)=
√

(K+1) ln t
βi(t)

. (8)

Then, we will introduce the winning arm selection and
payment computation procedures in detail. Note that we use Φt

and Pt to denote the set of selected arms and the correspond-
ing payment in round t. The first is the initialization phase (i.e.,
t=1), where the player will select all arms (i.e., Φ1=N ) to
initialize the parameters βi(t), ri(t), and r̂i(t). Here, the player
uses the value of cmax to denote the payment for each arm,
in which all values of costs and bids are located in the range

[cmin, cmax]. In such a case, each arm’s payment received
from the player is larger than its true cost, so the payoff for
each arm is non-negative (i.e., individual rationality). Next, the
player will update the remaining budget.

After the initialization phase, the player will always select
K arms in each round under the budget constraint. More
specifically, at the beginning of each round t, the player can
acquire the values of r̂i(t− 1) for ∀i∈N , and will initialize
Φt and Pt. Then, the player will sort the N arms in the
decreasing order of r̂i(t−1)

bi
, in which r̂i(t−1)

bi
means the ratio

of the UCB-based reward to bid. According to this order, the
player will select the top K arms and add them into Φt. After
that, the player begins to calculate the corresponding payment
Pt. Here, we determine the critical payment for each selected
arm in a round. The specific payment computation method is
denoted as follows:

pti(bi) = min{ r̂i(t−1)
r̂K+1(t−1) · bK+1, cmax}. (9)

Here, r̂i(t−1)
r̂K+1(t−1)bK+1 means the critical payment and min{·}

ensures that the payment will not exceed the maximum value.
The critical payment indicates that a winning arm that claims a
bid larger than the critical payment will not win in the auction
process. However, a smaller bid will always win.

After computing the payment for each winning arm, the
player determines the total payment in this round. If the total
payment in this round is larger than the remaining budget,
the process will terminate. Else, the player selects the arms in
Φt, observes their rewards in this round, and then updates the
parameters of βi(t), ri(t), r̂i(t), and the remaining budget. The
arm selection and payment computation process will continue
until the budget exhausts.

B. Detailed Algorithm

According to the above solution, we devise the auction-
based UCB algorithm (called AUCB), as shown in Alg. 1.
First, in the initialization phase, i.e., Steps 1-4, the player first
selects all of the arms in the first round (i.e., Φ1 =N ) and
obtains the reward values in this round. After that, the player
determines the payment for each winning arm, i.e., pti=cmax.
In such a way that each arm’s payoff is larger than 0, so
the process can ensure the individual rationality. Next, the
player can update several parameters such as βi(t), ri(t), r̂i(t),
B(t) =B(t−1)−N · cmax, and r(B) = r(B)+

∑
i∈Φt rti , in

which B(t) means the remaining budget after round t.
After the initialization phase, the player begins to select

K arms and calculates the payment for each winning arm in
each round. In Step 6, the player first updates the index for
the round (i.e., t⇐ t+1), and then initializes the parameters
Φt and Pt. In Steps 7-8, the player sorts the N arms in the
decreasing order of r̂i(t−1)

bi
. In Step 9, the player selects the

top K arms according to this order, denoted as Φt. In Step 10,
the player computes the payment for each winning arm based
on the definition of critical payment in Eq.(9). After that, the
player determines the total payment in this round. As shown
in Steps 11-12, if the total payment in this round exceeds
the remaining budget, the process will terminate and output



Algorithm 1 Auction-based UCB Algorithm (AUCB)
Require: N , B, K, and B
Ensure: Φ, r(B), τ(B), and P

1: Initialization: t=1, B(0)=B, and r(B)=0, the player
selects all arms in the first round, i.e., Φ1=N ;

2: Obtain the reward values r1i for ∀i∈N in the first round;
3: Determine the payments for selected arms, i.e., p1i =cmax;
4: Update the parameters: ri(t), r̂i(t), B(t)=B(t−1)−N ·

cmax, and r(B)=r(B)+
∑

i∈Φt rti ;
5: while true do
6: t ⇐ t+1, Φt=ϕ, and pti(bi)=0 for ∀i∈N ;
7: Sort the arms according to the value r̂i(t−1)

bi
;

8: Consider r̂i1 (t−1)

bi1
≥ · · · ≥ r̂ij (t−1)

bij
· · · ≥ r̂iN (t−1)

biN
;

9: Select the top K arms, denoted as Φt;
10: Compute the payments for each selected arm in Φt, i.e.,

ptij (bij )=min{ r̂ij (t−1)

r̂iK+1
(t−1) · biK+1

, cmax};
11: if

∑
i∈Φt pti(bi) ≥ B(t−1) then

12: return Terminate and output Φ, r(B), τ(B)= t, P;
13: Obtain the rewards rti for ∀i ∈ Φt;
14: Update the parameters: ri(t), r̂i(t), B(t) =B(t−1)−∑

i∈Φt pti(bi), and r(B)=r(B)+
∑

i∈Φt rti ;

the results. Else, the player will update several parameters in
Steps 13-14.

V. PERFORMANCE ANALYSIS

In this section, we analyze the regret bound, truthfulness,
individual rationality, and computational efficiency of AUCB.

A. Upper Bound on Regret
First, we analyze the regret bound, which means the total

achieved reward gap between the optimal arm-pulling policy
and ours (i.e., Definition 4). The optimal policy includes both
the optimal winning bid selection solution and optimal pay-
ment computation solution according to the known expected
rewards of all arms in advance. Here, we use the ratio of the
expected rewards to bids, i.e., ri

bi
, as the selection criteria.

Meanwhile let the bid (true cost) as the extremely-critical
payment, i.e., pi = bi, for each winning arm. Note that
Φ∗ and Φt mean the optimal set of K strategic arms (the
expected rewards are known in advance) and the set of K
arms selected in round t, respectively. For the computation
of Φ∗, we consider r1

b1
≥ · · · ≥ rK

bK
≥ rK+1

bK+1
≥ · · · ≥ rN

bN
and further determine Φ∗ = {1, · · · ,K}. In the process of
analyzing the regret bound, we consider that each arm i∈N
is truthful, i.e., bi = ci. In the next section, we will prove
the truthfulness of AUCB to validate the presupposition. For
simplicity of following descriptions, we let R∗ and C∗ denote
the total expected rewards and the total expected payments of
the optimal set, respectively. That is to say, we have

R∗ =
∑

i∈Φ∗ ri, C∗=
∑

i∈Φ∗ ci. (10)

Note that in this paper, we always use ∗ to denote the
corresponding identifications of the optimal set of arms. Then,
we define the smallest and largest possible difference of the

ratios of rewards to bids (also the total rewards) among all
non-optimal sets of arms Φt ̸=Φ∗:

△max =
∑

i∈Φ∗
ri
bi

− minΦt ̸=Φ∗
∑

i∈Φt
ri
bi
, (11)

△min =
∑

i∈Φ∗
ri
bi

− maxΦt ̸=Φ∗
∑

i∈Φt
ri
bi
; (12)

∇max =
∑

i∈Φ∗ ri − minΦt ̸=Φ∗
∑

i∈Φt ri. (13)
Moreover, we use a notation αi(t) to denote the counter

for the arm i after the initialization (i.e., t>1), in which the
counter αi(t) is updated as follows. In each round t>1, when
Φt ̸=Φ∗, we update the vector αi(t):

i = argminj∈Φt αj(t), αi(t) = αi(t) + 1. (14)
Here, if multiple arms satisfy the condition, we select any
one arm randomly. When the set of arms selected in a round
is not the optimal set, one element of the vector αi(t) will
increase by one. This means that the sum of the counter αi(t)
for ∀i ∈ N equals to the total number of the sub-optimal
sets of arms. Next, we will focus on the upper bound of the
counter αi(τ(B)) where τ(B) means the largest total rounds
of the AUCB algorithm under the budget constraint B. More
specifically, we have the following lemma.

Lemma 1: The expected counter αi(τ(B)) has an upper
bound for any arm i∈N , that is,

E[αi(τ(B))]≤ 4K2(K + 1)

(cmin△min)2
ln(τ(B))+1+

Kπ2

3
. (15)

Proof: In each round t, one of the following cases must
happen: 1⃝the optimal set of arms, i.e., Φ∗, might be selected;
2⃝ the player will choose a non-optimal set, i.e., Φt ̸=Φ∗. In

the former case, the counter αi(t) will not change, while in
the latter case, the counter αi(t) will be updated according to
Eq.(14). Here, we first use the notation Iti ∈{0, 1} to denote
the indictor, in which Iti =1 means the corresponding counter
αi(t) is incremented in round t, and Iti =0 otherwise. Based
on this, we have the following results:

αi(τ)=
τ∑

t=2
I{Iti =1}=λ+

τ∑
t=2

I{Iti =1, αi(t)≥λ}

≤λ+
τ∑

t=1
I{

∑
j∈Φt

r̂j(t+1)
bj

≥
∑

j∈Φ∗

r̂j(t+1)
bj

, αi(t)≥λ}

≤λ+
τ∑

t=1
I
{

max
λ≤βi1 (t)≤βi2 (t)···≤βiK

(t)≤t

K∑
j=1

r̂ij (t)

bij

≥ min
1≤βi∗1

(t)≤βi∗2
(t)···≤βi∗

K
(t)≤t

K∑
j=1

r̂i∗
j
(t)

bi∗
j

}
≤λ+

τ∑
t=1

t∑
β1(t)=λ

· · ·
t∑

βK(t)=λ

t∑
βi∗1

(t)=1

· · ·
t∑

βi∗
K

(t)=1

I
{ K∑

j=1

r̂ij (t)

bij
≥

K∑
j=1

r̂i∗
j
(t)

bi∗
j

}
, (16)

in which βi(t) means the total number of the arm i being
selected until the round t. According to the definitions of αi(t)
and βi(t), we get βi(t)≥αi(t) for ∀i∈N and ∀t≥1.

Next, we focus on the bound of
∑K

j=1

r̂ij (t)

bij
≥
∑K

j=1

r̂i∗
j
(t)

bi∗
j

.

The proof follows the ideas provided in the existing work [1],
[30], [32]. More specifically, for the following event∑K

j=1

rij (t)+uij
(t)

bij
≥

∑K
j=1

ri∗
j
(t)+ui∗

j
(t)

bi∗
j

, (17)



we can get that at least one of the following cases must be
true (which is based on the proof by contradiction):∑K

j=1

ri∗
j
(t)

bi∗
j

≤
∑K

j=1

ri∗
j
−ui∗

j
(t)

bi∗
j

; (18)∑K
j=1

rij (t)

bij
≥

∑K
j=1

rij+uij
(t)

bij
; (19)∑K

j=1

ri∗
j

bi∗
j

<
K∑
j=1

rij+2·uij
(t)

bij
(20)

Next, we prove the upper bound of the probability of Eq.(18)
and Eq.(19) as follows:

P
{∑K

j=1

ri∗
j
(t)

bi∗
j

≤
∑K

j=1

ri∗
j
−ui∗

j
(t)

bi∗
j

}
≤

∑K
j=1 P

{
ri∗j (t) ≤ ri∗j − ui∗j

(t)
}
, (21)

and
P
{∑K

j=1

rij (t)

bij
≥

∑K
j=1

rij+uij
(t)

bij

}
≤

∑K
j=1 P

{
rij (t) ≥ rij + uij (t)

}
. (22)

Then, we focus on the bound of P{ri∗j (t) ≤ ri∗j −ui∗j
(t)}

and P{rij (t)≥rij+uij (t)}. Here, we will apply the Chernoff-
Hoeffding bound [1], [39] to analyze the bound.

P
{
ri∗j (t) ≤ ri∗j − ui∗j

(t)
}

≤ e
−2βi∗

j
(t)ui∗

j
(t)2

= t−2(K+1) (23)

Then, we continue Eq.(21) and get the following results:∑K
j=1 P

{
ri∗j (t) ≤ ri∗j − ui∗j

(t)
}
≤ K · t−2(K+1) (24)

At the same time, we can also prove that Eq.(22) has the
same upper bound. Next, we will choose a certain value λ

to make the event
∑K

j=1

ri∗
j

bi∗
j

<
∑K

j=1

rij+2·uij
(t)

bij
impossible.

Based on the fact that βi(t)≥αi(t)≥λ, we have∑K
j=1

ri∗
j

bi∗
j

−
∑K

j=1

rij
bij

− 2 ·
∑K

j=1

uij
(t)

bij

=
∑K

j=1

ri∗
j

bi∗
j

−
∑K

j=1

rij
bij

− 2 ·
∑K

j=1

√
(K+1) ln t

βij
(t)

bij

≥ △min − 2 ·
∑K

j=1

√
(K+1) ln t

βij
(t)

bij

≥ △min − 2 ·
∑K

j=1

√
(K+1) ln t

λ

cmin
≥ 0 (25)

After analyzing Eq.(25), we can conclude that Eq.(25) will
always hold if λ satisfies the following condition:

λ ≥ 4K2(K+1) ln τ(B)
(cmin·△min)2

. (26)

Next, we continue Eq.(16) and get

E[αi(τ)] ≤
⌈
4K2(K+1) ln τ(B)

(cmin·△min)2

⌉
+
∑+∞

t=1 (t− λ+ 1)KtK2Kt−2(K+1)

≤ 4K2(K+1) ln τ(B)
(cmin·△min)2

+ 1 + 2K
∑+∞

t=1 t
−2

≤4K2(K+1) ln τ(B)
(cmin·△min)2

+1+Kπ2

3 =φ1 ln τ(B)+φ2, (27)

where


φ1=

4(K+1)K2

(△mincmin)2
;

φ2=1+
Kπ2

3
.

Hence, the lemma holds. �

Since the bound of αi(τ(B)) is highly related to the
expected number of total rounds in the AUCB algorithm, we
then analyze the upper bound of τ(B). τ(B) represents the
total rounds of the AUCB algorithm under the budget B.
Here, we also define another payment computation method
in the case where the expected rewards are known in ad-
vance. That is, according to the selection criteria ri

bi
, we let

pi(bi) =
ri·bK+1

rK+1
≥ bi be the payment for each winning arm

i. Thus, the total payment in each round, denoted as C⋆, is
determined and we have

C⋆=
∑

i∈Φ∗
ri·bK+1

rK+1
≥
∑

i∈Φ∗ bi=C∗. (28)

For the stopping round τ(B), we have the following lemma.
Lemma 2: The stopping round of the AUCB algorithm

under the budget B, i.e., τ(B), is bounded as follows:
B

C⋆
−φ1φ4 ln(

2B

C∗ +φ3)−φ2φ4−1≤τ(B) ≤ 2B

C∗ +φ3, (29)

in which


φ3=

2Ncmax

Kcmin
(φ2−φ1+φ1 ln(

2Ncmaxφ1

Kcmin
));

φ4=
Ncmax

C⋆
.

Proof: We first let τ∗(B) denote the stopping round of the
optimal solution under the budget B. Since the optimal solu-
tion knows the expected rewards of all arms in advance and the
bids submitted by each strategic arm are fixed, the optimal set
of arms selected in each round is determined, i.e., Φ∗. Then,
the payment for each winning arm can be determined and
the total payment in one round can be calculated according
to Eq.(10). Thus, the number of total rounds is fixed, i.e.,
τ∗(B)=⌊B/C∗⌋, and further we have the following results:

B/C∗ − 1 ≤ τ∗(B) ≤ B/C∗. (30)

When deriving the upper bound of τ(B), we first analyze
the relationship between τ∗(B) and τ(B). According to the
payment computation, we get that the payment for each
winning arm in AUCB algorithm is greater than its true cost.
Thus, the total payment in each round is greater than the value
K · cmin, and we have τ(B)≤ B

Kcmin
. Then, we have

τ(B) ≤ τ∗(B) + τ(
∑

i/∈Φ∗ βi(τ(B)) · cmax)

≤ τ∗(B) + cmax · τ(
∑N

i=1 αi(τ(B)))

≤ τ∗(B) + N ·cmax

K·cmin
E[αi(τ(B))]

≤ B
C∗ + N ·cmax

K·cmin
(φ1 ln(τ(B)) + φ2). (31)

According to the inequality lnx≤x−1 for ∀x>0, we have
the following results:

ln( Kcmin

2Ncmaxφ1
τ(B)) ≤ Kcmin

2Ncmaxφ1
τ(B)− 1

⇒ ln(τ(B))≤ Kcmin

2Ncmaxφ1
τ(B)−1+ln( 2Ncmaxφ1

Kcmin
) (32)

By substituting the bound of ln(τ(B)) in Eq.(32) into
Eq.(31), we have

τ(B) ≤ B
C∗ + N ·cmax

K·cmin
(φ1 ln(τ(B)) + φ2)



≤ B
C∗ +

1
2τ(B)+Ncmax

Kcmin
(φ2−φ1+φ1 ln(

2Ncmaxφ1

Kcmin
))

⇒τ(B)≤ 2B
C∗ +

2Ncmax

Kcmin
(φ2−φ1+φ1 ln(

2Ncmaxφ1

Kcmin
)) (33)

For simplicity of following description, we let φ3 =
2Ncmax

Kcmin
(φ2−φ1+φ1 ln(

2Ncmaxφ1

Kcmin
)) and have τ(B)≤ 2B

C∗+φ3.
Next, we focus on the lower bound of τ(B). Here, we divide

B into two parts: B∗ and B−, in which B∗ means the budget
is used to select the optimal set of arms and B− indicates
the remaining budget spent on pulling the non-optimal sets
of arms. Then, we use τ⋆(B) to denote the total rounds in
which the budget B is given and the payment is calculated by
pi(bi)=

ri·bK+1

rK+1
. Hence, we get τ⋆(B)≤ τ∗(B) and B/C⋆−

1≤ τ⋆(B)≤B/C⋆. Since τ⋆(B) and τ(B) are based on the
same payment computation method, we have

τ(B) = τ(B∗ +B−) ≥ τ⋆(B∗)

≥ τ⋆(B −
∑

i/∈Φ∗ βi(τ(B)) · cmax)

≥ τ⋆(B − cmax ·
∑N

i=1 αi(τ(B)))

≥ τ⋆(B − cmax ·N · (φ1 ln(τ(B)) + φ2))

≥ B−Ncmax(φ1 ln(τ(B))+φ2)
C⋆ − 1 (34)

We first take the logarithm of Eq.(33) and then substitute
the result into Eq.(34). Now, we get the lower bound of τ(B):

τ(B) ≥ B
C⋆ −Ncmax(φ1 ln(2B/C∗+φ3)+φ2)

C⋆ − 1

= B
C⋆ −φ1φ4 ln(

2B
C∗ +φ3)−φ2φ4−1, (35)

where we let φ4=
Ncmax

C⋆ for simplicity.
The lemma holds. �
At last, we analyze the expected regret of the AUCB

algorithm. Here, we let R(B) denote the expected regret, i.e.,

R(B) = BR∗/C∗ −
∑τ(B)

t=1

∑
i∈Φt

rti . (36)

Then, we prove the upper bound of the expected regret for
our proposed algorithm, and we have the following theorem.

Theorem 1: The expected regret of the AUCB algorithm is
bounded as O

(
NK3 ln(B+NK2 ln(NK2))

)
. More specifi-

cally, we have the following inequality, where φ1, φ2, φ3, and
φ4 are some fixed constants shown before.

R(B) ≤ (φ1φ4R
∗ +N∇maxφ1) ln(

2B
C∗ + φ3)

+φ2φ4R
∗ +N∇maxφ2 +R∗. (37)

Proof: According to the definition of regret, Lemma 1 and
Lemma 2, we have the following results:

R(B)= B
C∗R

∗−τ(B)R∗+τ(B)R∗−E[
∑τ(B)

t=1

∑
i∈Φt rti ]

≤ B
C∗R

∗−τ(B)R∗+
∑N

i=1 αi(τ(B))∇max

≤ B
C∗R

∗−τ(B)R∗+N∇max

(
φ1 ln(

2B
C∗ +φ3)+φ2

)
≤ B

C∗R
∗ − ( B

C⋆ − φ1φ4 ln(
2B
C∗ + φ3)− φ2φ4 − 1)R∗

+N∇max

(
φ1 ln(

2B
C∗ + φ3) + φ2

)
≤ (φ1φ4R

∗ +N∇maxφ1) ln(
2B
C∗ + φ3)

+φ2φ4R
∗ +N∇maxφ2 +R∗. (38)

Thus, the theorem holds. �

TABLE II
SIMULATION SETTINGS

parameter name range
budget, B 104 – 106 (5×105 in default)
number of arms, N 50 – 100 (60 in default)
number of selected arms, K 10 – 50 (20 in default)
expected reward, ri 0.1 – 1
variance of reward, σi 0 – min{ri/3, (1−ri)/3}
cost, ci and bid, bi 0.1 – 1

B. Truthfulness

Then, we prove the truthfulness of AUCB in each round
according to Definition 1 in the following theorem.

Theorem 2: In each round, AUCB has the truthfulness.
Proof: By considering the Myerson’s theorem [10], we

know that the auction mechanism is truthful if and only if it
satisfies two conditions: 1) the winning arm selection process
is monotonic; 2) each winning arm is paid the critical value.
First, we can easily prove that our winning arm selection is
monotonic in each round. For each bid value bi, if the arm i
can win the auction with bi in round t, the arm i must win
when it submits a smaller value b̃i=bi−θ in which θ≥0. This
conclusion is based on the greedy selection criteria r̂i(t)

bi
.

Next, we prove that our proposed algorithm will also meet
the second condition. For the bid bi, we remove the arm i and
let N−i denote the new arm set. Then, we re-select the new K
arms based on N−i, denoted as Φt

−i. Due to the elimination of
bi, there must be another arm/bid, denoted as bi′ , which will
be selected to add into the solution. Additionally, due to the
selection criteria r̂i1 (t)

bi1
≥· · ·≥ r̂iK (t)

biK
≥ r̂iK+1

(t)

biK+1
≥· · ·≥ r̂iN (t)

biN
,

the candidate bid for any winning bid is the same, i.e., biK+1
.

In other words, given all other arms’ selection strategies, the
critical payment for winning bid bi is determined by pti(bi)=

r̂i(t)
r̂K+1(t)

bK+1. In such a case, if the bid claimed by the arm i

is lower than pti(bi), i.e., b≤pti(bi), then r̂i(t)
b must be greater

than r̂K+1(t)
bK+1

. This means that the bid b must be selected prior

to bK+1 according to the selection criteria r̂i(t)
bi

. However,
the payment for the winning bid b is still the same, that is,
pti(bi)=

r̂i(t)
r̂K+1(t)

bK+1. On the other hand, if b>pti(bi) happens,
then the bid bK+1 must be selected prior to b. This indicates
that the bid b will lose the auction.

By combining the two aspects, we conclude that pti(bi) =
r̂i(t)

r̂K+1(t)
bK+1 is the critical payment exactly. Therefore, in each

round, the AUCB algorithm can ensure the truthfulness of all
strategic arms according to the Myerson’ theorem [10]. This is
because a higher bid (i.e., bi>ci) will not increase its payment
according to pti(bi) =

r̂i(t)
r̂K+1(t)

bK+1. Furthermore, this action
might incur the failure of this arm in the auction process.
Thus, the theorem holds �

C. Individual Rationality

The individual rationality indicates that each arm’s payoff
is greater than 0 (i.e., Definition 2).

Theorem 3: In each round, AUCB has individual rationality.
Proof: For each arm i, if the bid bi does not win the auction

in round t, the corresponding payoff is 0; otherwise, the payoff
is denoted as pti(bi)−ci. Here, we have pti(bi)=min{ r̂i(t)

r̂K+1(t)
·
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bK+1, cmax} in the t-th round. Since the arm bi is selected
prior to bK+1 in round t, we get r̂i(t)

bi
≥ r̂K+1(t)

bK+1
. Then, we have

bi≤ r̂i(t)
r̂K+1(t)

· bK+1=pti(bi). Further, based on the truthfulness
of AUCB in each round, we have bi= ci for any arm i∈N .
Thus, we get ci≤ r̂i(t)

r̂K+1(t)
·bK+1=pti(bi), i.e., pti(bi)−ci≥0, in

any round t. We can prove the individual rationality of AUCB
in each round and the theorem holds. �
D. Computational Efficiency

In order to prove the computational efficiency of the pro-
posed AUCB algorithm, we need to demonstrate that AUCB
can be conducted in polynomial time. According to Definition
3, we get the following theorem.

Theorem 4: AUCB is computationally efficient.
Proof: By analyzing Alg.1, we get that AUCB has total

τ(B) rounds. In each round, the computational overhead
is denoted as O(N), where N means the total number of
arms. According to Lemma 2, the stopping round τ(B) is
bounded as τ(B)≤2B/C∗+φ3, in which φ3=

2Ncmax

Kcmin
(φ2−

φ1 + φ1 ln(
2Ncmaxφ1

Kcmin
)). Therefore, we can determine that

the algorithmic procedure of Alg. 1 is in polynomial time
and the corresponding computational overhead is denoted as
O(NB+N2K2 ln(NK2)). The theorem holds. �

VI. EXPERIMENTAL SIMULATIONS

A. Experimental Methodology
Compared Algorithms: We design three other algorithms for

comparison, called “optimal”, “separated”, and “ϵ-first”. “op-
timal” means that the algorithm knows the expected rewards
of all arms in advance, and then it sorts the N arms in the
decreasing order of ri

bi
. Then, the optimal algorithm selects

the top K arms according to this order. The extremely-critical
payment for each winning arm is computed as pi(bi) = bi.
The “separated” algorithm [37] divides the budget B into
two parts: exploration budget and exploitation budget. Here,
it lets B1 = (cmaxN ln(NB))1/3∗B2/3

21/3
denote the exploration

budget. During the exploration phases, the player will select
K arms in sequence from all N arms and lets pti(bi)= cmax

denote the payment for each selected arm in a round. Be-
fore the exploration budget exhausts, this algorithm always

updates the average sampling rewards, denoted as ri, in
each round. In the exploitation phases, the algorithm uses
r̃i=ri+

√
Ncmax ln(NB)

2∗B1
to denote the upper confidence bound

of arms’ rewards, and it lets r̃i/bi denote the selection criteria.
According to this, it always selects the top K arms in each
round under the exploitation budget constraint. The payment
is calculated by pti(bi) = min{ r̃i

r̃K+1
bK+1, cmax}. Note that

in the “separated” algorithm, the average sampling reward
results in the exploitation phase will not update, indicating
that the exploration and exploitation are separated. While in
the ϵ-first algorithm [40], the player will use the first ϵ ∗ B
budget to randomly select K winning arms in each round (i.e.,
exploration). Based on the exploration results, the player can
update several parameters of all arms, such as βi(t) and ri(t)
for ∀i∈N . In the remaining (1−ϵ)∗B budget, the player will
always select the top K arms in the decreasing order of ri(t)

bi
where ri(t) denotes the average empirical reward of the arm
i, and calculate the payment for each winning arm by using
pti(bi)=min{ ri(t)

rK+1(t)
bK+1, cmax}. In the ϵ-first algorithm, we

will change ϵ from 0.1 to 0.5.

Simulation Settings: Then, we present the simulation set-
tings in detail. We let the number of arms (i.e., N ) be selected
from {50, 60, 70, 80, 90, 100}, and let N =60 in default. We
generate the number of arms selected in each round, i.e., K,
from {10, 20, 30, 40, 50} and let K=20 in default. Also, we
change the budget from [104, 106] and let B = 5× 105 in
default. When generating the rewards of each arm, we let the
expected reward (i.e., ri) be selected from the range [0.1, 1].
Note that we adopt the Gaussian distribution to generate the
rewards of all arms in each round. In order to ensure that
the generated reward values are located in (0, 1], we let the
variance of Gaussian distribution for the arm i, denoted as
σi, be selected from the range (0,min{ ri

3 ,
1−ri
3 }]. In such

settings, the generated reward values in each round (i.e., rti)
is located in the range (0, 1] with the probability of at least
99.7%, according to the properties of Gaussian distribution.
Moreover, we use the uniform distribution to generate the
cost and the claimed bid for each arm, i.e., ci and bi. Since
we have proven the truthfulness in Theorem 2, we here let
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bi = ci for ∀i∈N . We generate ci randomly from the range
[0.1, 1]. We adopt two main evaluation metrics: total rewards
and total rounds under the budget constraint. In addition, we
will also evaluate the truthfulness, individual rationality, and
computational efficiency in the simulations. We list the major
simulation settings in Table II.

B. Simulation Results
Now, we display and analyze the simulation results in detail.

First, when we change the budget from 104 to 106, we evaluate
the achieved total rewards and the total rounds, as shown in
Fig. 1 and Fig. 2. We see that the achieved rewards of all
four algorithms rise along with the increase of the budget
B. Moreover, the performance of AUCB is better than the
two compared algorithms, and we calculate that the achieved
rewards of AUCB are 19.49% and 21.65% higher than those
of the “separated” and 0.1-first algorithms on average, re-
spectively. From Fig. 1, we get that the gap between AUCB
and optimal (i.e., “regret”) is enlarging with the increase of
budget. We also present the relationship between the total
rounds and budget in Fig. 2. The variation tendency is similar
with Fig. 1. The difference lies in that the total rounds of
the “separated” algorithm will be greater than that of AUCB
when B≥5×105. This means that the total payment calculated
by the “separated” algorithm in a round is smaller than ours.
Even so, the total rewards of AUCB are still better than that
of “separated”. We get that both the total rewards and rounds
achieved by AUCB are higher than that of the ϵ-first algorithm.

Furthermore, we analyze the impact of the number of total
arms (i.e., N ), and display the results in Fig. 3 and Fig. 4.
In any settings, the total rewards achieved by AUCB are
higher than those of the two compared algorithms. Precisely,
the total reward of AUCB is 17.67% and 18.98% larger
than those of the “separated” and 0.1-first algorithms on
average, respectively. We also evaluate the performance of all
algorithms by changing the number of arms selected in each
round (i.e., K). We present the simulation results in Fig. 5
and Fig. 6. Along with the increase of the parameter K, the
total achieved rewards of all algorithms are going down. This
is because the total payment in each round increases, which
results in the decrease of total rounds, as shown in Fig. 6. K is
used to balance the tradeoff between the achieved rewards and
execution time. In such settings, we get that the total rewards
achieved by AUCB are about 12.49% and 15.51% higher than
those of “separated” and 0.1-first, respectively. These results
are consistent with our theoretical analysis.

On the other hand, we evaluate the properties of auction
mechanism in the AUCB algorithm. First, we prove the
truthfulness of AUCB in each round and present the simulation

results in Fig. 7. In any one round, we randomly select one
arm and change its bid values. During this process, we ensure
that all other settings remain unchanged. From Fig. 7, we see
that the true cost is about 0.2 and the critical payment is about
0.45. When the claimed bid is lower than the critical payment,
the arm always wins and the corresponding payoff is about
0.25, which does not vary with the change of the bid values.
However, when the bid is higher than the critical payment, the
arm must fail in the AUCB algorithm. As a result, the payoff
becomes 0. Thus, each arm has no incentives to lie in the
AUCB algorithm. Next, we analyze the individual rationality
of AUCB in Fig. 8. More precisely, we record the payment for
each arm in each round and the number of each arm selected
under the budget. After the budget is exhausted, we compute
the average payment for each arm. We see that each arm’s
average payment is higher than his true cost. This results prove
the individual rationality of AUCB. Finally, we evaluate the
computational efficiency of AUCB in Fig. 9. When we change
the budget B and the number of arms N , we find that the
highest running time is about 200 seconds under the settings
of B=106 and N=100. These simulation results still remain
consistent with our theoretical analysis.

VII. CONCLUSION
In this paper, we study the budget-constrained auction-

based combinatorial multi-armed bandit (ACMAB) problem
where each arm is strategic about its cost. In addition to the
dilemma between exploration and exploitation, the ACMAB
problem also has to face the truthfulness of the strategic cost.
Particularly, the player must handle the payment computation
problem so that the total rewards can be maximized under the
budget constraint. To this end, we adopt the idea of UCB and
further propose the AUCB algorithm. AUCB greedily selects
the top K arms according to the ratio of UCB-based reward to
bid, and meanwhile determines the critical payment for each
winning arm in a round. We derive an upper bound on regret
for AUCB, i.e., O(NK2 ln(B +NK2 ln(NK2))), and prove
the truthfulness, individual rationality, and computational effi-
ciency of AUCB. Extensive simulations results show that the
total rewards of AUCB are at least 12.49% higher than those
of state-of-the-art (e.g., “exploration-separated”) algorithms.
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