
Reducing Average Job Completion Time for
DAG-style Jobs by Adding Idle Slots

Yubin Duan and Jie Wu
Department of Computer and Information Sciences, Temple University, Philadelphia, USA

Email: {yubin.duan, jiewu}@temple.edu

Abstract—Sizes of data processing jobs in cloud clusters have
been growing rapidly in the big data era. It is critical to
execute those jobs efficiently. The average job completion time
(JCT) is a widely used metric to measure executing efficiency.
JCT refers to the length of the time interval between a job’s
arrival to its completion. Typically, a data processing job contains
multiple stages with complex precedence constraints. Carefully
scheduling the processing sequence of stages within a job may
significantly reduce its JCT. Our objective is to minimize the
average JCT for online arrival jobs. The computation graphs of
those jobs are usually directed acyclic graphs (DAGs). It makes
the scheduling problem challenging. Recent works have shown
that reinforcement learning (RL) agents can adaptively adjust
the scheduling policies by dynamically assigning priorities for
job stages. However, we notice that other factors besides stage
priories may impact the JCT significantly. In particular, we
observe that inserting idle slots before large jobs may reduce the
waiting time of small jobs that arrive slightly later and reduce
the average JCT. We analyze the benefits of inserting idle time
for simple cases theoretically and show the condition in which
idle slots should be inserted for two adjacent jobs. In addition,
we adapt the RL-based scheduler by integrating the observation.
Experiment results on both real-world and synthetic datasets
show the efficiency of our scheduler. Also, a perturbation-based
method is applied to demonstrate the contribution of each
proposed feature.

I. INTRODUCTION

Nowadays, the computation workload at large-scale cloud

clusters has been significantly increased. As shown in [1],

Alibaba’s data clusters may encounter more than 70 million

transactions per second. The average job completion time

(JCT) could be large at those clusters. It is critical to optimize

the average JCT, especially for time-sensitive applications. The

average JCT is mainly determined by the cluster scheduler.

In particular, the cluster scheduler may adjust the processing

sequence of pending jobs and the number of executors allo-

cated to each job. Therefore, it is an important topic for cluster

operators to update their scheduling algorithms.

Our objective is to minimize the average JCT for online

arrival jobs. The JCT of a job is measured by the length of

duration between the job’s arrival to its completion. When

there are multiple jobs, we use the average JCT of those jobs to

evaluate the scheduler performance. Note that a job may need

to wait for available executors after its arrival. The waiting

This research was supported in part by NSF grants CNS 2214940, CPS
2128378, CNS 2107014, CNS 2150152, CNS 1824440, and CNS 1828363.

Fig. 1. Job scheduling in cloud clusters.

time is also a part of the JCT. For data processing engines

such as Spark, their jobs usually have multiple tasks or stages.

Those stages usually have complex precedence constraints. A

stage cannot execute until all its predecessors are completed.

A directed acyclic graph (DAG) can be used to describe the

job, where graph vertices represent stages and edges reveal

precedence constraints. The arrival time of a job is random,

and it is unknown to the scheduler. We assume those jobs are

well annotated. The DAG structures including stage lengths

are available to the scheduler when at jobs’ arrival. The

cluster scheduler would determine the start time and number

of executors allocated to each stage. We assume the schedule

is non-preemptive. Specifically, the executors allocated to each

stage cannot be retrieved until the stage is finished. In addition,

an executor can process at most one stage at a time. We

propose to optimize the cluster scheduler by minimizing the

average JCT for online arrival jobs represented as DAGs.

It is challenging to optimize the scheduler performance.

The precedence constraints among stages and the jobs’ online

arrival make it difficult to generate the optimal schedule. The

general DAG scheduling problem is NP-hard [2]. Existing

approximation algorithms mainly discuss simplified versions

of the DAG scheduling problem [3]. Considering heuristic

algorithms can hardly perform well on all cases, [4] proposed

to build the scheduler with reinforcement learning (RL). The

RL-based scheduler can adaptively update its schedule policy

for different types of DAGs. However, the RL-based scheduler

lacks useful insights used by heuristic algorithms. In particular,

we observe that inserting deliberate idle slots before certain

jobs may decrease the average JCT. As an attempt to combine

heuristic and RL approaches, this observation is integrated

into an RL-based scheduler. This combination makes RL

agents learn useful features faster and improve the model

interpretability.

To integrate our observation of inserting deliberate idle

time, we carefully design the feature and action spaces of RL

agents. Specifically, we introduce DAG heights and widths

to describe abstract DAG structures. The height is measured

by the length of the critical path of a DAG. The width978-1-6654-3540-6/22 © 2022 IEEE



of a job is its total workload divided by the length of its

critical path. RL agents can quickly capture abstract structures

of different DAGs through those features. What’s more, we

theoretically analyze the conditions in which adding deliberate

idle slots can decrease the average JCT. We also calculate the

optimal lengths of idle slots for one-stage jobs. Furthermore,

we evaluate our RL-based scheduler with real-world and

synthetic datasets. Our experiment results on the real-world

dataset present the effectiveness of the RL-based scheduler.

Evaluation results on the synthetic dataset show the RL agents

can determine proper idle time length which is similar to the

theoretical results.

We summarize our contributions as follows:

• We investigate the online job scheduling problem for

cloud clusters. We propose to insert deliberate idle slots

into job execution pipelines, which can decrease the

average JCT of online jobs.

• We apply RL agents to learn idle slot lengths from

execution traces considering that scheduling online arrival

jobs with DAG-style precedence constraints is NP-hard.

• We provide theoretical analysis for scheduling one-stage

jobs. Our analysis shows in which conditions inserting

idle slots can decrease the average JCT.

• We further extend the discussion for a more general case.

For multiple one-stage jobs, we can sequentially investi-

gates all pairs of adjacent jobs to determine whether idle

slots should be inserted before each job.

• Experiments on real-world and synthetic datasets show

that adding idle slots can decrease the average JCT.

In addition, the features we selected can improve the

efficiency of the RL-based scheduler.

II. RELATED WORKS

We first review the difficulties of the job scheduling prob-

lem. In general, it is NP-hard to schedule online arrival jobs.

For a spatial case in which there is only one machine and

jobs arrive at time 0, the problem can be optimally solved in

polynomial time. The scheduling problem becomes NP-hard

when jobs arrive online and have precedence constraints [5].

[6] and [7] have shown that online algorithms cannot achieve

bounded competitive ratios. It is also hard to find approximate

solutions for job shop scheduling problems [2].

Although the job scheduling problem is challenging, there

have been many studies on this topic. From the theoreti-

cal analysis perspective, [8]–[10] investigate the scheduling

problem for online arrival jobs. For example, [8] analyzes

the online scheduling for unrelated machines. Different from

those solutions, we consider the general case where job stages

may contain parallel tasks. [11]–[15] consider more practical

cases and provide heuristic solutions. In particular, Mesos [11]

and Omega [12] provide scheduling platforms for large scale

clusters. [16] considers a spatial DAG structure where stages

only have chain structure dependency. [13] considers the case

where job DAGs are heterogeneous. A heuristic algorithm

that considers both resource packing and job scheduling is

proposed. However, existing solutions pay little attention on

adding deliberate idle slots to job execution pipelines. [17]

consider inserting idle slots and [18] discusses the stage delay

scheduling. [19] shows the scheduling method for heteroge-

neous dynamic scheduling with reinforcement learning. They

did not discuss the parallelism level of each job and only

considered heuristic approaches. In this paper, we consider

the parallelism level and investigate RL-based schedulers.

It is intractable to optimally schedule DAG-style jobs in

polynomial time [13]. [20] and [4] propose to apply RL

techniques for resource management and job scheduling, re-

spectively. In particular, [4] proposes a scheduler that trains RL

agents to schedule the processing priorities of online arrival

jobs. However, it ignores the fact that adding deliberate idle

slots into job execution pipelines may shorten the average JCT.

[21] presents an RL-based scheduler that considers adding idle

slots, but it lacks theoretical analyses. We show the optimal

conditions in which inserting idle slots can efficiently shorten

the average JCT.

III. MODEL

Let J = {J1, J2, . . . , Jn} denote the job set, where n
represents the number of jobs. Each job Ji in J contains

multiple stages. There are precedence relations among dif-

ferent stages. The precedence relations among stages within

a job are modeled by a DAG. Formally, let Ji = (Si, Ei)
denote the DAG for the i-th job, where Si is the stage set

and Ei is the edge set. Specifically, Si = {si1, si2, . . . , sim}
is the stage set of job Ji, where m represents the number of

stages. The length of stage sij is denoted as lij . The stage

length lij shows the time consumption of processing sij on

a single executor. If more executors are allocated to process

sij , the parallel processing time would be smaller than lij . In

practice, the speedup of parallel execution is not linear and

this is investigated in detail in the next section. The edge

set Ei = Si × Si reveals the precedence constraints among

stages in Si. We use ≺ to denote the precedence constraint

between two stages. A stage cannot be executed unless all its

predecessors are processed.

We consider the online scheduling problem. Formally, we

use ai to denote the arrival time of job Ji and bi to denote

the completion time of Ji. In the online arrival setting, the

arrival time ai is stochastic. The scheduler does not know

the arrival time ai until the job Ji arrives. Each job’s DAG

structure and lengths of stages in the DAG are also unknown

to the scheduler until the job arrives. In addition, we assume

the scheduler can immediately obtain the DAG structure of

a job when it arrives. Each executor processes only one job

stage at a time, but non-preemptively. When job Ji arrives, our

scheduler would convert the DAG-style job into an ordered

list Oi that represents the processing sequence of stages in

the job. When any executor becomes available, the scheduler

would pick a stage from the list and assign executors to the

stage and decide the parallelism level pij of every stage sij .

The parallelism level pij represents the number of executors

allocated to the stage sij . Furthermore, the scheduler needs to

determine the idle slot’s length dij for each stage sij . dij = 0



means there is no idle slots before sij . A schedule of a job Ji
is denoted by (Oi, pij , dij).

IV. IDLE-AWARE JOB SCHEDULER

A. Scheduling for One-stage Jobs

We first perform theoretical analysis for simple cases and

show the condition where inserting deliberate idle slots can

shorten the average JCT. We mainly focus on the jobs with one

stage, which eliminates the scheduling complexity introduced

by the precedence constraint of stages.

Optimal conditions To derive the optimal condition for one-

stage jobs, we focus on two adjacent jobs. The adjacent jobs

are two jobs whose arrival times are adjacent. Let J1 and J2
denote those two jobs respectively. Each job has only one

stage. The lengths of the two jobs are denoted as l1 and l2.

W.l.o.g., we assume J1 arrives earlier than J2. The interval

between the two jobs is denoted as x, i.e., x = a2 − a1. We

consider the case that there is only one available machine.

Otherwise, both jobs could be executed immediately when

they arrive. This case usually happens when the cluster has

a heavy workload. Since there is only one stage in each job,

inserting idle time for stages is equivalent to inserting idle

time for jobs. Let d1 denote the length of the idle time slot

inserted before job J1. Then, the following theorem shows the

condition in which inserting deliberate idle time with a proper

length for J1 could reduce the average JCT.

Theorem 1: There exists an idle slot with length d1 such

that inserting it before J1 could reduce the average JCT of J1
and J2 when 0 < (a2 − a1) ≤ (l1 − l2)/2 and l1 > l2.

Proof: Firstly, we calculate the average JCT without con-

sidering the deliberate idle time. W.l.o.g., we set a1 = 0,

since we focus on the interval x = a2 − a1 between two

adjacent jobs. In this case, the job J1 would be executed

immediately at its arrival since there are no other jobs are

waiting. Therefore, its termination time is b1 = l1 + a1 = l1.

If x < b1, meaning the job J2 arrives before J1’s termination,

J2 cannot be processed until J1 is finished. The termination

time of J2 is b2 = b1 + l2 = l1 + l2. If x ≥ b1, then J2 could

be processed immediately when it arrives. The termination

time b2 becomes b2 = a2 + l2 = a1 + x + l2 = x + l2.

Combining those two cases, the termination time of J2 is

b2 = max{a2, b1} + l2 = max{x, l1} + l2. Hence, the

completion times of J1 is c1 = b1 − a1 = l1, and that of

J2 is c2 = b2 − a2 = max{x, l1}+ l2 − x. The average JCT

is η = (c1 + c2)/2 = (max{x, l1}+ l1 + l2 − x)/2.

Then, we consider the scheduling where an idle slot with

length d1 is inserted before J1. We note that d1 should be

larger than x for any x > 0, l1 > 0, and l2 > 0. Otherwise,

inserting idle time would only increase the average JCT.

When d1 < x, the job J2 would still be processed after

J1. In this case, inserting idle time before J1 is equivalent

to increasing the l1 by d1. The average JCT can still be

formulated by η. Note that η is monotonically non-decreasing

w.r.t. l1. Therefore, inserting d1 < x idle time would not

reduce the average JCT. However, d1 ≤ x cannot guarantee to

reduce the average JCT, since its formulation is no longer η.

When d1 ≥ x, job J2 would be processed first since a1 +
d1 ≥ a2. The termination time of J2 is b′2 = a2+ l2 = x+ l2.

If x ≤ d1 < x+ l2, job J1 would be processed right after the

termination of J2. In this case, the termination time of J1 is

b′1 = x+ l2+ l1. If d1 ≥ x+ l2, then J1 needs to keep waiting

even after the termination of J2. Although it is not the optimal

value of d1, it would reduce the average JCT. In this case, the

termination time of J1 is b′1 = d1 + l1. Combining those two

cases, the termination time of J1 is b′1 = max{x+ l2, d1}+ l1
for any d1 ≥ x. The completion time of J1 and J2 become

c′1 = b′1 − a1 = max{x+ l2, d1}+ l1 and c′2 = b′2 − a2 = l2.

The average JCT becomes η′ = (c′1 + c′2)/2 = (max{x +
l2, d1}+ l1 + l2)/2.

Finally, we show the condition in which delaying J1 with

optimal time length d1 would reduce the average JCT. Note

that the value of η′ is determined by the choice of d1. The

lower bound of η′ is η′b = (x + l1 + 2l2)/2, and could be

reached if x ≤ d1 < x+ l2. To guarantee that adding idle slots

can shorten the average JCT, we let η′b < η. When x < l1, it

is equivalent to x+ l1+2l2 < 2l1+ l2−x or x < (l1− l2)/2.

When x > l1, it is equivalent to x + l1 + 2l2 < l1 + l2
which never holds for x > 0. Above all, we have the condition

that x < (l1 − l2)/2. We could examine that there exists a

d1 ∈ [x, x + l2) such that η′ < η when x < (l1 − l2)/2 and

l1 > l2. �
Theorem 1 shows that adding idle slots with a proper

length can improve the scheduler performance and shorten the

average JCT. If the scheduler knows the value of the interval

x (or a2 − a1) and l2 in advance, i.e. before the arrival of J2,

then the optimal value of d1 can be determined. However, in

our online scheduling problem, the arrival time and the job

lengths are unknown to the scheduler in advance. Therefore,

it is not trivial for the scheduler to determine the length of idle

time before each job when the job is ready to be executed.

Theorem 2: If x and l2 are independent random variables

whose probability density functions are known, then we could

formulate the expression of the optimal d∗1 which could

minimize the expected value of the average JCT.

Proof: Let f(·) denote the probability density function of a

random variable. As we have shown in the proof of Theorem

1, when an idle time slot with length d1 is inserted before

J1, the average JCT η′ depends on the relation between d1
and x. If 0 ≤ d1 < x, inserting an idle slot is equivalent

to enlarging the length of l1. Formally, the average JCT is

η′ = (max{x, l1 + d1}+ l1 + d1 + l2 − x)/2. If d1 ≥ x, the

average JCT is η′ = (max{x+ l2, d1}+ l1+ l2)/2. Combining

those two cases, we have

η′ =

{
(max{x, l1+d1}+ l1+d1+l2−x)/2, 0≤d1<x;

(max{x+l2, d1}+l1+l2)/2, d1≥x.

E[η′|d1]=1
2

∫ ∞

0

[∫ d1

0

(max{x+l2, d1}+l1+l2)f(x, l2)dx

+

∫ ∞

d1

(max{x, l1+d1}+l1+d1+l2−x)f(x, l2)dx

]
dl2



8

3

2
3

4
7

Fig. 2. Job structure and its abstraction.

The optimal value of d1 is d∗1 = argmind1 E[η
′|d1]. It has

a closed-form expression if the probability density function f
has a closed-form expression. �

Theorem 2 discusses the optimal idle slot length for two

jobs and we can extend the discussion for more general cases.

When there are multiple jobs, we can analyze the optimal idle

slot length for every pair of adjacent jobs. Let Ji and Ji+1

denote two adjacent jobs. For any pair of jobs (Ji, Ji+1), 1 ≤
i < n, we can repeatedly calculate idle slot length for Ji. If an

idle slot is inserted before Ji when analyzing pair (Ji−1, Ji),
we would skip the pair (Ji, Ji+1) to prevent starvation.

One-stage job abstraction Even if a job has multiple stages,

we could abstract DAGs into one-stage jobs. An illustration

of this is shown in Fig. 2. The number associated with each

node represents the stage’s processing time on one executor.

The double lines indicate the critical path of the job. We can

approximate a job with multiple stages into a one-stage job.

Specifically, when processing the job Ji on a single executor,

the processing time is the summation of stage lengths in the

job. Therefore, the length of the corresponding one-stage job

is
∑

sij∈Si
lij . If we treat the DAG shown in Fig. 2 as a one-

stage job, the length of the stage is 27s.

B. Scheduling for General DAGs

After delivering theoretical analysis on simplified one-stage

job cases, we consider a more complex but also more practical

scenario: scheduling jobs with DAG structures on an arbitrary

number of executors. When the stages in the DAG can have

arbitrary lengths, this problem is known as NP-complete, even

for offline scheduling.

Non-linear speedup Typically, the speedup of parallel exe-

cution is not linear and hard to formulate. Assigning more

executors usually brings greater speedups. However, assigning

too many executors to a job stage may be a waste since

the speedup increases slowly after the number of executors

exceeds a threshold. It is difficult to calculate the proper

parallelism level for each job, especially when the computation

graph of the job is a DAG. The average width might be used

as a clue, as we have shown in Fig. 2. We propose to integrate

the average width and critical path length into RL agents

as training features. In this way, we avoid formulating the

speedup ratio, but let RL agents find the proper parallelism

level from execution traces.

Scheduling variables and events As we introduced in Section

III, a schedule is represented by (Oi, pij , dij). Because jobs

arrive online, we need to frequently update the schedule

(Oi, pij , dij) to cover newly arrived jobs. Our scheduler

would refresh the schedule at certain events. In particular,

the (Oi, pij , dij) would be updated in the following events: i)

when new jobs arrive, ii) when an occupied executor become

available, and iii) when idle slots end. Compared to updating

the schedule at a fixed frequency, the event-based refresh is

more adaptive and efficient.

In addition to determining the scheduling events, it is also

important to carefully determine the granularity of adding

idle slots. In particular, we can insert idle slots before each

job or before each stage. Those two scheduling granularities

are denoted as job-level insertion and stage-level insertion,

respectively. The job-level insertion has a smaller action space

compared to the stage-level insertion since the number of

potential insertion points is smaller in the job-level insertion.

However, the job-level insertion may pass over the optimal

solution. We use the following example to show that the job-

level insertion is suboptimal. In the example, there is one

available executor. Job J1 has three stages, s11 ≺ s12 ≺ s13,

and each stage costs 10s to finish. Job J2 has one stage s21
whose length is also 10s. If we treat job J1 as a whole, i.e.

a job with one 30s stage, then inserting idle time brings no

benefit for the average JCT according to Theorem 1. However,

inserting a length of ε → 0+ idle slot before stage, s12,

could reduce the average JCT of J1 and J2 from 30s to 25s.

Although the stage-level insertion keeps the optimal solution,

the action space of the stage-level insertion is exponentially

large. It is hard to go through all possible actions in polynomial

time. Therefore, we propose to combine the ideas of job-level

and stage-level insertions. In particular, our scheduler would

investigate all available stages at each scheduling event. The

available stages refer to the stages which have no unprocessed

predecessors. If an idle slot is already inserted into an available

stage, our scheduler would recalculate the length of the idle

slot. To prevent starvation, if a stage is the next one to be

processed, its idle time would not be changed.

RL-based scheduler We use RL agents to adaptively adjust

the schedule (Oi, pij , dij) for online arrival jobs. The action

space of the RL agent consists of the priority of each stage, the

parallelism level of the next stage, and the lengths of idle slots.

To generate those actions, we adapt the RL policy network

proposed in [4]. In addition, the revised policy network has

three types of output neurons. The first type of neurons

indicates the priority of each stage. Output values of those

neurons represent the probabilities of corresponding stages

being selected. The second category of neurons represents the

parallelism level. There are K neurons in this category, where

K represents the number of executors. If the k-th neuron’s

output value is the largest, then the parallelism level is set

to k. The third type of neuron shows the idle slot length. To

reduce the action space size, we discretize the idle slot length.

There are G + 1 neurons belonging to this type. If the g-th

neuron has the largest output value. Then, the idle time length

is set to (g − 1)lij/G, where lij is the length of the next

stage sij . To prevent starvation, at most one idle slot can be

inserted into each stage. In addition, we integrate the novel

features we proposed to the feature space of RL agents. RL

agents introduced in [4] use graph neural network (GNN) to



TABLE I
AVERAGE JCT EVALUATED IN DIFFERENT DATASETS

(1,1) (0,1) (1,0) (0,0)
Synthetic 46.3 52.7 53.5 55.0

Mixed 69.4 75.2 74.5 77.6

workload
30 40 50 60 70 80

A
v
e
ra

g
e
 J

C
T

50

60

70

80

90

100

110

Fig. 3. Average JCT under different workload.

extract features from input DAGs. On top of the GNN, the

critical path length and the average width illustrated in Fig. 2

are added into the feature space. Those features help RL agents

gain a better understanding of job DAGs. The importance of

those features are evaluated in Section V.

V. EXPERIMENT

A. Experiment Setup

We use both real-world and synthetic datasets to evaluate

our proposed scheduling method. In particular, the real-world

dataset is used to show whether our scheduler could deal with

online jobs with DAGs. The synthetic dataset is used to verify

the efficiency of inserting idle time slots in scheduling.

There are two types of jobs in the synthetic dataset: short-

term jobs and long-term jobs. Lengths of short-term and long-

term jobs are fixed at 10s and 50s, respectively. The arrival

of these two types of jobs is random and obeys the Poisson

process. The arrival rate is controlled by the parameter λ.

Specifically, the length of the interval between two adjacent

events obeys the exponential distribution. The probability

density function of the interval length x is

f(x) = λ exp(−λx), x ≥ 0.

For experiments using the synthetic datasets, we set the pa-

rameter λ such that the average interval between two adjacent

jobs is 10s. According to the Theorem 1, the average JCT can

be reduced by inserting idle time slots under this setting. We

extract TPC-H queries to build the real-world dataset. In total,

the TPC-H dataset contains 22 different queries and the input

data size can be chosen from 1GB to 3TB. In our real-world

dataset, we randomly sample 103 jobs from all 22 queries

with input sizes varying from 1GB to 100GB. The arrival of

jobs in the real-world dataset also obeys the Poisson process.

The average interval between two adjacent jobs is set to 40s,

which keeps the cluster load at about 80%. In addition to

the real-world and synthetic datasets, a mixed dataset is used

in the experiment. Specifically, we randomly sample entries

from the real-world and synthetic datasets and use the sampled

entries to build the mixed dataset. We use a hyper-parameter

α ∈ [0, 1] to adjust the percentage of data entries selected

from the synthetic dataset. α = 0 represents all data samples

are from the real-world dataset.

The policy network is trained on a lab PC equipping

a Nvidia GTX 1080 GPU. During training, the RL agent

35 45 55 65 75
Workload (%)

0

100

200

300

400

Av
er

ag
e 

JC
T

(0, 0)
(1, 1)
Opt. Weighted Fair

(a) synthetic dataset

35 45 55 65 75

Wordload (%)

0

100

200

300

400

500

A
ve

ra
g
e
 J

C
T

(0, 0)

(1, 1)

Opt. Weighted Fair

(b) mixed dataset

Fig. 4. Investigating different measurement metrics.

gradually improve its performance by learning from history

traces. The RL agent can only generate random policies at

early training iterations. Therefore, we reduce the initial cluster

load by enlarging the length of job intervals. The cluster

workload is determined by the parameter λ of the Poisson

process. Specifically, if λ is larger, then the number of job

arrivals in a fixed time interval would increase, which means

the workload of the cluster is heavier. We gradually increase

the workload alone with the training process. Moreover, a

simulator is used to estimate the reward for the RL agent.

Using the simulator can improve the training speed.

B. Experiment Results

We investigate the impact of our selected features and the

idle slots to the RL agent. For simplicity, we use a two-tuple to

distinguish different RL agents. Specifically, the first element

indicates whether the agent takes selected features. The value

0.5 represents using partial features, i.e., either critical path

or average width, but not both. The second elements indicates

whether the agent considers inserting idle slots.

First, we show the comparison of the average JCT in

the real-world dataset. The workload is measured by the

percentage of busy executors. We compare our idle aware

job scheduler (labeled as (1, 1)) to the SOTA RL-based job

scheduler [4] (labeled as (0, 0)) The workload is adjusted

by changing the parameter λ. Fig. 3 shows the experiment

result. The red line in the figure represents the average JCT

achieved by our scheduler. The average JCT increases with the

workload. This is because a larger workload makes scheduling

more challenging. If the workload is very low such that the

arrival interval between two jobs is larger than the length of the

largest job, then even a FIFO policy could achieve the optimal

JCT for each job. In contrast, if the workload is larger than

100%, the job would accumulate in the job queue no matter

which scheduling policy is used. Therefore, in our experiment,

we control the workload under 80%. The experiment results

show that no matter what the level of workload is, the average

JCT can be further reduce by inserting idle slots.

We also evaluate the effectiveness of the features we pro-

posed. In particular, two types of RL agents are compared in

the experiment. The first type is the RL agent we proposed,

which is denoted as (1, 1). This notation means that the RL

agent can insert idle slots and it uses the features we proposed

on top of GNN. The second category of RL agent can insert

idle slots but it does not consider the additional features we



100 200 300 400 500 600
Job Size

5

10

15

20

25

30

35
Av

er
ag

e 
nu

m
be

r
of

 m
ac

hin
es

 p
er

 jo
b (0, 0)

(1, 1)
Opt. Weighted Fair

(a) synthetic dataset

100 200 300 400 500 600
Job size

0

10

20

30

40

Av
er

ag
e 

nu
m

be
r 

of
 m

ac
hin

es
 p

er
 jo

b (0, 0)
(1, 1)
Opt. Weighted Fair

(b) mixed dataset

Fig. 5. Investigating machine allocation scheme.

proposed. We use (0, 1) to denote this category of RL agent.

We use the mixed dataset with α = 0.5 and the synthetic

dataset to perform the comparison. We use the same device

to train those two types of RL agents with the same training

time length. Table 3 shows the evaluation results. In addition

to those two types of RL agents, we also show the evaluation

results on RL agents that cannot insert idle slots. The notation

(0, 1) refers to the agent who cannot insert idle slots but

uses the features we proposed. (0, 0) refers to the baseline,

where idle slots and addition features are not considered by

RL agents. From the evaluation results, we can find that using

the features we proposed can efficiently improve RL agents’

performance.

Fig. 4 shows the performances of different learning agents

and optimal weighted fair, a heuristic algorithm. The experi-

ment results for both the synthetic and mixed dataset show that

the learning agent with additional features and idle time would

have a better performance. Compared to heuristic algorithms,

a learning based approach can achieve much smaller average

JCT, especially when the workload is heavy.

Finally, we illustrate the number of machines allocated to

each job in Fig. 5. We find our RL-based agent allocates

more machines to smaller jobs. Letting smaller jobs finish

first would help to reduce the average JCT, since the wait

time for other queuing jobs could be reduced. This becomes

more clear when comparing the RL-based schedulers with the

optimal-weighted-fair scheduler. It shows that RL agents can

find the proper parallelism level for each job based on the

job’s length.

VI. CONCLUSION

We propose to improve the scheduler of data processing

clusters by minimizing the average JCT. The data processing

jobs arrive online and have complex DAG structures. We have

observed that the average JCT can be reduced by adding

deliberate idle slots before certain jobs. For simplified one-

stage jobs, we theoretically analyze the conditions in which

deliberate idle slots should be inserted. In addition, we show

the optimal lengths of deliberate idle slots for the simplified

case. For general DAG-style jobs, we adapt an RL-based

scheduler by combining our observation of inserting idle slots.

We investigate features that can be used to integrate the

observation. The average DAG width and the critical path

length can be used to capture the abstract DAG structure. DAG

details, such as precedence constraints, can be extracted by

graph neural networks. We evaluate our RL-based scheduler

on both real-world and synthetic datasets. Experiment results

show the length of idle slots learned by RL agents are close

to theoretical results in simplified cases. For general data

processing jobs from the real-world dataset, the RL-based

scheduler also outperforms a heuristic baseline.

REFERENCES

[1] F. Li, “Cloud-native database systems at alibaba: Opportunities and
challenges,” Proceedings of the VLDB Endowment, vol. 12, no. 12, 2019.

[2] M. Mastrolilli and O. Svensson, “(acyclic) job shops are hard to
approximate,” in FOCS. IEEE, 2008, pp. 583–592.

[3] S. Im, N. Kell, J. Kulkarni, and D. Panigrahi, “Tight bounds for online
vector scheduling,” in FOCS. IEEE, 2015, pp. 525–544.

[4] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of SIGCOMM. ACM, 2019, pp. 270–288.

[5] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys,
“Sequencing and scheduling: Algorithms and complexity,” Handbooks
in operations research and management science, vol. 4, pp. 445–522,
1993.

[6] N. Garg and A. Kumar, “Minimizing average flow-time: Upper and
lower bounds,” in FOCS. IEEE, 2007, pp. 603–613.

[7] J. S. Chadha, N. Garg, A. Kumar, and V. Muralidhara, “A competitive
algorithm for minimizing weighted flow time on unrelatedmachines with
speed augmentation,” in STOC. ACM, 2009, pp. 679–684.

[8] S. Im and B. Moseley, “An online scalable algorithm for minimizing
lk-norms of weighted flow time on unrelated machines,” in Proceed-
ings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2011, pp. 95–108.

[9] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós, “On scheduling
in map-reduce and flow-shops,” in Proceedings of the Twenty-
Third Annual ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 289–298. [Online]. Available:
https://doi.org/10.1145/1989493.1989540

[10] L. A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk, “Better
approximation guarantees for job-shop scheduling,” SIAM Journal on
Discrete Mathematics, vol. 14, no. 1, pp. 67–92, 2001.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011,
pp. 22–22.

[12] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” 2013.

[13] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“GRAPHENE: Packing and dependency-aware scheduling for data-
parallel clusters,” in USENIX OSDI, 2016, pp. 81–97.

[14] S. Im, N. Kell, J. Kulkarni, and D. Panigrahi, “Tight bounds for
online vector scheduling,” in 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science. IEEE, 2015, pp. 525–544.

[15] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in INFOCOM. IEEE, 2017, pp. 1–9.

[16] E. Anderson, D. Beyer, K. Chaudhuri, T. Kelly, N. Salazar, C. Santos,
R. Swaminathan, R. Tarjan, J. Wiener, and Y. Zhou, “Value-maximizing
deadline scheduling and its application to animation rendering,” in
Proceedings of the seventeenth annual ACM symposium on Parallelism
in algorithms and architectures. ACM, 2005, pp. 299–308.

[17] H. Zhu and H. Zhou, “Single machine predictive scheduling using
inserted idle times,” Journal of Applied Mathematics, vol. 2014, 2014.

[18] W. Shao, F. Xu, L. Chen, H. Zheng, and F. Liu, “Stage delay scheduling:
Speeding up dag-style data analytics jobs with resource interleaving,” in
ICPP, 2019, pp. 1–11.

[19] N. Grinsztajn, O. Beaumont, E. Jeannot, and P. Preux, “Readys:
A reinforcement learning based strategy for heterogeneous dynamic
scheduling,” in IEEE Cluster 2021, 2021.

[20] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, 2016, pp. 50–56.

[21] Y. Duan and J. Wu, “Improving learning-based dag scheduling by
inserting deliberate idle slots,” IEEE Network, vol. 35, no. 6, pp. 133–
139, 2021.


