
Learning Scheduling Bursty Requests in Mobile Edge

Computing Using DeepLoad

Ning Chena, Sheng Zhanga,∗, Jie Wub, Zhuzhong Qiana, Sanglu Lua

aState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing
210023, China

bDepartment of Computer and Information Sciences, Temple University, Philadelphia,
PA 19122, USA

Abstract

The emergence of Mobile Edge Computing (MEC) alleviates the large trans-
mission latency resulting from the traditional cloud computing. For the
compute-intensive requests such as video analysis, mobile users prefer to
obtain a desired quality of experience (QoE) with neglected latency and re-
duced energy consumption. The popularity of smart devices allows users
to release a run of compute-intensive as well as latency-sensitive requests
anywhere, which may lead to bursty requests. A single resource-constrained
edge server nearby is capable of handling a small amount of requests quickly,
yet it seems helpless when encountering bursty compute-intensive requests.
Despite the abundance of recently proposed schemes, the majority focus on
efficiently scheduling pending requests in a single edge server, and ignored
the potential role of edge collaboration to schedule bursty requests. Besides,
while some recent studies proposed to finish a task using multiple devices,
they focused on collaboration between mobile devices rather than between
edge servers. Hence, we propose DeepLoad, a S2S system that schedules
the bursty requests with a collaborative method using reinforcement learn-
ing (RL). DeepLoad decouples the scheduling decision into AP selection for
setting the access point and workload redistribution for collaborative servers.
DeepLoad trains a neural network model that picks decisions for each re-

∗Corresponding author. Tel.: +86 25 83681369
Email addresses: ningc@smail.nju.edu.cn (Ning Chen), sheng@nju.edu.cn

(Sheng Zhang), jiewu@temple.edu (Jie Wu), qzz@nju.edu.cn (Zhuzhong Qian),
sanglu@nju.edu.cn (Sanglu Lu)

Preprint submitted to Computer Networks August 28, 2020

quest based on observations collected by mobile devices. DeepLoad learns
to make scheduling decisions solely through the resulting performance of
historical decisions rather than rely on pre-programmed models or specific
assumptions for the environment. Naturally, DeepLoad automatically learns
the scheduling algorithm for each request and obtains a gratifying QoE. We
aim to maximize the fraction of requests finished before their attached dead-
lines. Based on the Shanghai taxi trajectory data set, we design a simulator
to obtain abundant samples, and leverage two GeForce GTX TITAN Xp
GPUs to train the Actor-Critic network. Compared to the state-of-the-art
bandwidth-based and server resources-based methods, DeepLoad can achieve
a significant improvement in average fraction.

Keywords: bursty requests, edge collaboration, deep reinforcement learning

1. Introduction

The rise of 5G has greatly strengthened the connection between humans
and machines. Meanwhile, compute-intensive applications such as interactive
gaming, image/video processing, augmented/virtual reality and face recogni-
tion, are becoming popular on mobile devices, and these applications pursue
low delay and low energy consumption. With the emergence of the Mo-
bile Edge Computing (MEC) paradigm [1–4], the data and computation are
pushed away from centralized cloud computing infrastructures to the logical
edge of a network, thereby enabling analytics and knowledge generation to
occur closer to the mobile users, which mitigates the problem of high energy
consumption, limited capability of mobile devices and the unexpected WAN
latency.

In the current MEC paradigm, an edge cloud covers a huge service area,
in which the users can send diverse requests to this single edge cloud for pro-
cessing. Generally, a single edge cloud is sufficient to handle a small amount
of requests quickly. However, we observed that more and more requests are
compute-intensive and bursty, and thus cannot be efficiently handled by a sin-
gle resource-constrained edge cloud. Taking the multi-player Virtual Reality
(VR) game as an example, such as From Other Suns, or Seeking Dawn. Gen-
erally, VR [5, 6] has stringent performance requirements including a fps (i.e.
frames per second) above 60, and a motion-to-photon latency below 20ms,
and yet the compute-intensive rendering processing becomes the key obstacle
to satisfy such stringent requirements. What’s more, during the interaction

2

of VR, many players are likely to release rendering requests simultaneously,
which inevitably causes the bursty arrival of compute-intensive requests. For
an edge cloud, it not only needs to render the foreground and background
for each action, but also needs to synchronize the entire VR scene by sending
real-time images to each user, which results in unpredictable computational
and communication costs. In such a dilemma1, a single resource-constrained
edge cloud may seem helpless.

Existing works have fallen short of handling bursty request in edge com-
puting. Most of them [7–10] focused on offloading bursty requests to either
of a local device, an edge server, or the remote cloud data center. Studies for
edge collaboration highlight its advantages in D2D (device to device). For ex-
ample, Chen et al. [11] proposed a D2D framework to achieve energy-efficient
collaborative task execution at the network-edge for mobile users. Wu et
al. [12] proposed the SVC scheme to achieve a flexible video distribution.
Guo et al. [13] proposed edge-cloud collaborative computation offloading,
but ignored S2S (edge server to edge server). Next, we will put forward the
S2S framework and present the novel algorithm to schedule bursty requests.

In this paper, we consider a general edge scenario of bursty requests.
In a local area network (LAN) environment, the densely-distributed access
points (APs), which refer to wireless access points, small cell base stations
and other hardware that can receive and forward requests from end devices,
are connected with each other through back-haul links via X2 interface or
S1 interface of Core Network. In light of tremendous transmission, the S1
interface is probably the best option. Practically, the edge servers config-
ured with a limited number of services are deployed at APs, so that mobile
users can offload requests attached with a deadline to an AP nearby. We will
use AP and edge server interchangeably in the sequel of the paper, since an
edge server is often attached with an AP. How to make an efficient schedul-
ing when encountering numerous newly released requests is a common but
not well-solved problem. What’s worse, edge servers maintain long queues
in which considerable workloads wait in line to be processed, and the net-
work is degraded to an inferior state. To address it using collaboration, two
fundamental problems must be taken into consideration as follows:

1We can offload partial frames to adjacent servers for rendering may mitigate the
expensive cost of single edge cloud. Of course we ought to eliminate the correlations of
inter-frames and guarantee the playback order of recombined VR video.

3

. AP selection. Generally, each AP covers a specific service area, and
multiple APs are accessible to a user concurrently. When a user releases a
request, the first step is to select an optimal AP in terms of available network
bandwidth and server resources. Picking the AP in a random manner may
lead to network degradation and server overload.

. Workload redistribution. Since the AP is selected, the user offloads
the newly released request to the edge server co-located with the selected
AP. We estimate the completion time of handling this request only in this
AP. If the valuation is bigger than the attached deadline, we fall back on
the selected AP’s adjacent servers, and offload partial workload to them.
However, it is challenging to determine the optimal fraction of workload for
each AP, given the unpredictable future workloads.

The features of a heterogeneous edge environment, such as the mobility
of users and the variability of network bandwidth, leads to intractable deci-
sions for the above two problems. Additionally, the workload redistribution
relies on the outcome of AP selection. In this paper, we pursue a black-
box approach for scheduling bursty requests that embraces inference while
not relying on detailed analytical performance modeling. Motivated by the
recent inspiring achievement of deep reinforcement learning (DRL)[14–16]
that shows efficient decision-making in dynamic environments, we propose
DeepLoad, an intelligent edge-based scheduler that is customized for bursty
requests and makes coordinated decisions. Given the known network and
server information, the mobile user can make a quick scheduling decision
for each request, which includes the selection of the first access point and
the percentage of workloads being redistributed among the neighbors of the
first AP. DeepLoad learns a policy purely based on the known information,
without foreseeing the future.

DeepLoad depicts its policy as a neural network that maps “raw” ob-
servations (e.g., workload of request, available link bandwidth and server
resources) to the scheduling decision. The neural network incorporates a
rich diversity of observations into the scheduling policy in a scalable and ex-
pressive way. During training, DeepLoad starts knowing nothing and gradu-
ally learns to make better scheduling decisions through reinforcement, in the
form of reward signals that reflect user QoE (the request completion time)
for past decisions. DeepLoad leverages a state-of-the-art asynchronous ad-
vantage actor-critic network model (A3C)[15] to train the policy network,
which takes the edge network situation, server statuses and request features
as inputs and selects an optimal action through the output (e.g., action distri-

4

bution). To obtain abundant samples and evaluate DeepLoad’s performance,
we design a BRS simulator using trace-driven based on the Shanghai taxi tra-
jectory data set, and train the actor-critic network with numerous episodes.
Finally, we set several control experiments, and the results demonstrate the
superiority of DeepLoad compared with state-of-the-art strategies.

We summarize our contributions here as follows.
. We consider a general but tricky scenario, where bursty requests at-

tached with personalized deadlines are released simultaneously without prior
notice, and then we formulate it as a long-term optimization problem, which
aims to maximize the number of requests whose completion times are supe-
rior to the deadlines.

. We propose DeepLoad, an intelligent DRL-based scheduler for bursty
requests. Given the known information about edge network situation, server
statuses and request features, DeepLoad is capable of scheduling each request
efficiently. What’s more, we provide the specific definition of state, action
and reward in DeepLoad, which enables the RL-agents of DeepLoad to train
its actor-critic network continuously.

The remainder of this paper is organized as follows. Section 2 introduces
a motivation example. Section 3 describes our system model followed by
problem formulation. Section 4 details our design of DRL-based algorithm.
Section 5 comprehensively evaluates the performance of DeepLoad with sev-
eral control experiments. We review some related work in Section 6 with the
conclusion in Section 7.

2. Motivation

In this section, we analyze an inspiring example to better illustrate the
main idea of this paper.

We consider a LAN environment, where all APs are connected by back-
haul links that can be used for inter-AP communications, edge servers con-
figured with several specific services are deployed at APs, and each user is
within the service area of multiple APs. Each user independently generates
compute-intensive requests at the beginning of each time slot. Now, we focus
on a particular user u that can connect to AP1 or AP2 directly as shown in
Fig. 1. At this time point, u releases a new request of type R with a total
workload of 96, an input size of 300 and a deadline of 48. Each edge server
deployed at an AP maintains multiple FCFS queues that contain numerous
pending workloads waiting to be processed as Tab. 1 lists. In this example,

5

Table 1: Current states of edge server.

Info.

Servers
E1 E2 E3 E4 E5 E6

Available cores 4 3 8 4 4 6

Pending workload 80 60 120 40 60 120

`

R

AP1

AP3

AP4

AP2

AP5

AP6

E3

E4
E6

E5

E1

E2

20

`

Edge Sever Access Point R Request

Figure 1: A motivation example. Servers are deployed at APs that are connected with each
other through back-haul link. The bandwidth of uplink and downlink, and propagation
delays of inter-APs are marked.

since the type of request generated by u is R, we only consider the pending
workload of type R on each server. Similarly, we only list the number of
cores assigned to the service of type R at each server. The number besides a
link between user u and an AP is the bandwidth. As we know, the back-haul
links between APs have much higher bandwidth than access links between
users and APs. Therefore, we only consider the propagation delay between
APs. Hence, the number besides a link between two APs is the propagation
delay. Fig. 2 shows three different offloading strategies and their completion
times.

Fig. 2a illustrates the traditional scheme. Mobile user u first selects either
AP1 or AP2 to connect, and then sends request R to the server co-located
with the selected AP. From release to completion, requestR goes through four
diverse delays, including data upload delay t1, queuing delay t2, computing
delay t3, and the resulting download delay t4. Without loss of generality,
we assume the size of the results is probably one fifth of the input size. For
instance, if AP1 is selected, we have t1 = 300

20
, t2 = 80

4
, t3 = 96

4
, and t4 = 0.2×300

20
,

leading to a completion time of 62, which is larger than the deadline 48.
Unfortunately, the deadline still cannot be met if we switch to AP2.

In practice, we redistribute the workloads of R, and offload partial compu-

6

 10 30 48 62 64

AP1

AP2

deadline

 15 35 59 62

Transmission time Queuing time Computing time Propogation time

(a) Traditional strategy. u→AP1 or u→AP2.

AP2

AP6

AP1

AP3

 15 35 47 50

 10 30 46 48

 10 13 33 41 44 46

 15 20 35 41 46 49

(b) Collaborative strategy with one neighbor. u→AP1→{AP3}
or u→AP2→{AP6}.

AP2

Time

AP6

AP1

AP3

AP4

AP5

 15 35 43 46

 15 20 35 39 44 47

 15 19 29 37 41 44

 10 30 40.7 42.7 48

 10 14 29 37 41 43

 10 13 33 38.3 41.3 43.3

(c) Collaborative strategy with two neighbors. u → AP1 →
{AP3, AP4} or u→AP2→{AP5, AP6} .

Figure 2: Comparisons of diverse scheduling strategies.

tation to AP1’s adjacent servers (i.e., AP3 and AP4 in this example). Thanks
to the small propagation delay of inter-APs, this method may enable this
request to get a desired completion time.

Fig. 2b shows the single collaboration strategy, in which the first selected
AP (e.g., AP1) sends half of the workload to one of its neighboring servers
(e.g., AP3), and the workflow is u→AP1→{AP3} in the top half of Fig. 2b.
Similarly, we can calculate the completion times to be 50 and 48 in the top
and bottom half of Fig. 2b, respectively. Fig. 2c shows the double collab-
oration strategy, in which the first selected AP (e.g., AP1) sends one third
of the workload to each neighbor (i.e., AP3 and AP4), and the workflow is

7

u→AP1→{AP3, AP4} in the top half of Fig. 2c. The completion times are 47
and 43.3 in the top and bottom half of Fig. 2c, respectively. As a result, the
completion time has a significant improvement over Fig. 2b, which motivates
us to utilize edge collaboration and carefully redistribute the workload.

Note that the example is a simple offline scenario that doesn’t consider
the unpredictable bursty requests. When users anywhere release requests
independently, the offloading decision made by each individual user may
collide. For example, at the current time t, from the perspective of user
u, it seems that offloading the workloads of the request to AP2 and AP6 in
Fig. 2b could finish the request before deadline; however, some other users
may also decide to offload its workloads to AP2 or AP6, which is unknown
to u. Such an online and bursty, yet realistic, setting makes traditional
offline decisions sub-optimal. These challenges together motivate us to make
efficient scheduling in a learning method without priori knowledge of future.

3. System Model And Problem Formulation

3.1. System Model

Fig. 3 shows the local area network (LAN) we consider in this paper.
Suppose that there are |U| users, N APs, |M| types of services in total, U ={
u1, u2, · · · , u|U|

}
,AP = {AP1, AP2, · · · , APN} andM =

{
m1,m2, · · · ,m|M|

}
,

respectively. The bandwidths of the uplink and downlink between ui and APj
are r

(ij)
up and r

(ij)
down, respectively. As we know, the back-haul links between

APs have much higher bandwidth than access links between users and APs,
thus, we only consider the propagation delay between APs. We denote by
l(j,k) the propagation delay between APj and APk. In addition, we define a
function N (x) to denote the set of APs, each of which is directly accessible
from x, and x is referred to as a user or an AP.

Main notations are summarized in Tab. 2.

3.1.1. Request Model

We divide the time of interest into multiple slots of equal length, T ={
t1, t2, · · · , t|T |

}
. Each user releases at most one request at any time slot. We

use Rt
i to represent the type of request released by user ui at slot t. Without

causing any confusion, we set Rt
i to 0 if ui doesn’t release any request at slot

t. Let ddlti denote the deadline of Rt
i.

In fact, the requests released by mobile users can be viewed as specific
jobs, which are processed through the corresponding services installed in

8

AP1

AP2

A

A

C

AP Edge Server A Requests Services

1 AP selection

2 Workload redistribution

1

1

2

2

AAA
BB
C

A

1

Local Area Network

AP3

AP4
AP5

A

C

B

C

B

A

C

A

B

Figure 3: In a LAN environment, APs are connected by back-haul links; each edge server
is configured with a limited number of services.

the edge servers. Based on [17, 18], a request can be divided into multi-
ple mutually independent tasks in a fine-grained manner, and each task can
be executed independently in an edge server that configured with the cor-
responding service for that type of request. For example, a real-time video
analytics request needs to analyze real-time images from different cameras.
Since the pictures taken by different cameras are independent of each other,
we can divide this job into multiple independent tasks, and each task analyzes
the pictures from the same camera.

We measure the workload of a request based on the scale of its input
data. We denote the bytes of the input data of Rt

i as Bt
i . Without loss of

generality, denote by ω (in CPU cycles per byte) the number of clock cycles a
microprocessor would perform per byte of data; the specific value of ω usually
depends on the nature of the request, e.g., the time and space complexity.
Then, the workload of Rt

i, denoted by W t
i , is ωBt

i .

3.1.2. Edge Server Model

Generally, the edge servers are deployed at APs, and each AP can accom-
modate up to one edge server. The edge servers are in charge of managing
the resources and virtualizing the resources by means of VM or Docker. Each
edge server has limited storage and computing capability, and in this paper
we pay more attention to the computing capability, which is measured by the
number of cores, and each core has equal processing power f (in cycles per
second). An edge server is usually resource-constrained, thus it can only be
configured with a limited number of services. We use Sij to indicate whether
APj has service mi and use cij to represent the number of cores assigned to
service mi at server APj. Therefore, for an edge server APj with Cj cores,

9

we have
∑

mi∈M Sijc
i
j ≤ Cj. Note that, only if the edge server is configured

with the service corresponding to the request, can the request be executed
in this edge server.

In this paper, each edge server can handle different types of requests
simultaneously. For the same type of requests, an edge server maintains a
request queue, and processes these requests based on a first-come, first-served
(FCFS) basis. Denote by Qt

(j,i) the FCFS queue for service mi on edge server
APj at time slot t.

3.2. Problem Formulation

For any request released by a mobile user, its execution goes through two
stages at most, namely AP selection and workload redistribution. When the
user’s personalized deadline is satisfied in the first stage, the second stage is
not needed. Based on the current information about the network, the edge
servers, and request features, the user selects an AP from its neighboring
APs for offloading. Then the user uploads the input data to the AP, which
first checks whether the deadline can be satisfied if the total workloads are
processed by itself. If the estimated delay is no larger than the deadline,
then the AP processes all the workloads of this request. Otherwise, the AP
performs the workload redistribution stage. For example, as Fig. 3 shows,
a request A released by some user selects either AP2 or AP4 in the AP
selection stage, then if its deadline cannot be satisfied, the selected AP would
further redistribute the workloads of A among the neighbors of the AP. For a
better understanding of AP selection and workload redistribution in the edge
collaboration framework, we start from analyzing its offline scenario with the
known network conditions and resource situations of the edge servers. Now,
we model the AP selection and workload distribution in detail.

AP Selection. For request Rt
i produced by user ui at slot t, ui can only

offload part of its workload to the APs that (1) can be directly accessed by
it, and (2) are configured with the corresponding service mRti

. More formally,
denote by AP t

i the set of such APs, i.e.,

AP ti = N (ui) ∩
{
APj|S

Rti
j = 1

}
. (1)

We use a binary variable X t
(i,j) to denote whether ui selects APj ∈ AP ti for

offloading at time slot t, where X t
(i,j) = 1 (resp. 0) indicates that APj is (resp.

is not) selected. We have
∑

APj∈APti
X t

(i,j) = 1. If no workload redistribution

is performed, the completion time T ti of Rt
i consists of four parts: the upload

10

Table 2: Main notations used in this paper.

Notation Meaning

rdl, rul the available bandwidth of uplink and downlink

AP the set of APs (edge servers)

U the set of mobile users

M the set of services

T the set of time slots

|S| the cardinality of set S
l(j,k) the propagation delay between APj and APk

N (x) the set of direct neighbors of x

Rt
i the type of request Ri released by user Ui at slot t

ddlti the deadline of Rt
i

ω
of clock cycles a microprocessor

performs per byte

Bt
i the total bytes of the input data of Rt

i

W t
i the total workloads of of Rt

i

Si
j indicates whether APj has service mi

cij # of cores assigned to service mi in APj

Cj # of cores in APj

Qt
(j,i) the FCFS queue for service mi on APj at slot t

T t
i the completion time of Rt

i

Xt
(i,j)

indicates whether ui selects APj ∈ APt
i for

offloading at time slot t

Y t
(i,j) % of the workloads of Rt

i processed at APj

Y t
(i,j,k) % of the workloads of Rt

i processed at APk ∈ APt
i

time T
(i,j,t)
up , the queuing time T

(i,j,t)
queue , the processing time T

(i,j,t)
proc , and the

download time T
(i,j,t)
down . Denote by Bt

i and Bt
i
′

the sizes of input data and

results of Rt
i, respectively. Let r

(ij)
ul and r

(ij)
dl be the link bandwidth of uplink

and downlink, respectively. Then, we have

T (i,j,t)
up =

∑
APj∈APti

X t
(i,j)

Bt
i

r
(ij)
ul

, (2)

T (i,j,t)
queue =

∑
APj∈APti

∑
q∈Qt

(j,Rt
i
)

X t
(i,j)

Wq

c
Rti
j f

, (3)

11

T (i,j,t)
proc =

∑
APj∈APti

X t
(i,j)

W t
i

c
Rti
j f

, (4)

T
(i,j,t)
down =

∑
APj∈APti

X t
(i,j)

Bt
i
′

r
(ij)
dl

, (5)

where Qt
(j,Rti)

is the FCFS queue for service Rt
i in edge server APj, c

Rti
j rep-

resents the number of cores assigned to service Rt
i in APj, and W t

i = ωBt
i

is the total workload of Rt
i. If t + T

(i,j,t)
up + T

(i,j,t)
queue + T

(i,j,t)
proc + T

(i,j,t)
down ≤ ddlti,

i.e., Rt
i can be finished before its deadline, then no workload redistribution

is needed. Otherwise, we have to make workload redistribution.
Workload Redistribution. We redistribute the workload of Rt

i among
the direct neighboring APs of the selected AP in AP Selection. For each
APj ∈ AP ti, we define the set of its direct neighboring APs, each of which is
configured with the corresponding service mRti

, as follows:

AP t(i,j) = N (APj) ∩
{
APk|S

Rti
k = 1

}
. (6)

Without loss of generality, we use Y t
(i,j) and Y t

(i,j,k) to represent the percent-

age of workload to be processed at APj and APk, ∀APk ∈ AP t(i,j). Therefore,
the selected APj leaves Y t

(i,j)W
t
i units of workload for its local processing, and

sends Y t
(i,j,k)B

t
i units of input for each APk ∈ AP t(i,j) simultaneously, after

which APk puts this workload at the end of its local queue Qt
(k,Rti)

and pro-

cesses the workloads in the queue in a FCFS manner. Therefore, for this part
of workload of Rt

i that is sent to neighbor servers, it experiences another four
phases: being uploaded from APj to APk, waiting in the queue of service Rt

i

in APk, being processed by APk, and being downloaded from APk to APj.

The time consumed by these four phases are T
(i,j,k,t)
up , T

(i,j,k,t)
queue , T

(i,j,k,t)
proc , and

T
(i,j,k,t)
down , respectively. Note that, we use l(i,j) to denote the propagation delay

between APi and APj. Therefore,

T (i,j,k,t)
up = T

(i,j,k,t)
down = l(j,k), (7)

T (i,j,k,t)
queue =

∑
APj∈APti

∑
q∈Qt

(k,Rt
i
)

X t
(i,j)

Wq

c
Rti
k f

, (8)

T (i,j,k,t)
proc =

∑
APj∈APti

X t
(i,j)

Y t
(i,j,k)W

t
i

c
Rti
k f

. (9)

12

Denote by T
(i,t)
j→k the time consumption of redistributing Y t

(i,j,k)W
t
i units of

workload from APj to APk. Thus,

T
(i,t)
j→k = T (i,j,k,t)

up + T (i,j,k,t)
queue + T (i,j,k,t)

proc + T
(i,j,k,t)
down . (10)

For APj itself, it has to process Y t
(i,j)W

t
i units of workload. Denote by T

(i,t)
j→j

the time consumption of such local processing. It is easy to see,

T
(i,t)
j→j =

∑
APj∈APti

X t
(i,j)

 ∑
q∈Qt

(j,Rt
i
)

Wq

c
Rti
k f

+
Y t
(i,j)W

t
i

c
Rti
k f

 . (11)

Formulation. Based on the above modeling, we now can define the Com-
pletion Time T ti of request Rt

i. A request is completed if all of its workloads

have been processed. If t+ T
(i,j,t)
up + T

(i,j,t)
queue + T

(i,j,t)
proc + T

(i,j,t)
down ≤ ddlti,

T ti = T (i,j,t)
up + T (i,j,t)

queue + T (i,j,t)
proc + T

(i,j,t)
down ; (12)

otherwise,

T ti = T (i,j,t)
up + max

{
T

(i,t)
j→j , max

APk∈APt(i,j)

{
T

(i,t)
j→k

}}
+ T

(i,j,t)
down . (13)

We use a binary variable Zt
(i,j) to denote whether the Completion Time T ti of

request Rt
i is smaller than the ddlti, where Zt

(i,j) = 1 (resp. 0) indicates that

T ti is smaller (resp. is bigger) than the ddlti.
To sum up, we are committed to maximizing the number of requests that

finish before deadlines, thus we get the following optimization problem (P):

max
t∈T ,i∈|U|

∑
t∈T

Zt
(i,j) (14)

s.t.
∑

APj∈APti

X t
(i,j) = 1,∀i ∈ |U|,∀t ∈ T , (15)

∑
APj∈APti

X t
(i,j)[

∑
APk∈APt(i,j)

Y t
(i,j,k)+Y

t
(i,j)] = 1, (16)

∑
mi∈M

cij ≤ Cj, ,∀APj ∈ AP , (17)

X t
(i,j) ∈ {0, 1} , Y t

(i,j,k) ∈ [0, 1] , (18)

13

Eq. (15) ensures that the user can only connect to one AP at one time slot,
Eq. (16) implies the total percentage assigned to the current server and its
neighboring servers is 1, Eq. (17) is the resource limitation of each server.

Considering that the target variables contain both integers and continu-
ous decimals, we define the problem (P) as a mixed integer problem (MIP),
which is a proved NP-complete problem. Even though this problem has a
pseudo-polynomial solution, it is challenging to achieve fast and effective
scheduling with such compute-intensive bursty requests, not to mention that
the users are arriving and leaving dynamically. Inspired by the great suc-
cess in decision-making achieved by the deep reinforcement learning in dy-
namic environments, we propose a DRL-based method to solve this problem.
Nonetheless, this section concluding system and formulation is essential to
our DRL model. For example, the total delay T ti in Eq. (12) and Eq. (13)
are key vital elements for the reward definition, and the final simulation is
established based on this system model.

4. DRL-based Algorithm Design

In this section, we first introduce the basic learning mechanism of DeepLoad.
Then, we present how we transform the AP selection and workload redistri-
bution into a learning task. Finally, we design a DRL-based algorithm in
details.

4.1. Basic Learning Mechanism

Unlike the existing request scheduling strategies using predefined rules or
specific heuristics, DRL is committed to learning an effective policy from the
past experiences based on the current state and instant reward. To better un-
derstand the learning mechanism of DRL, we show the workflow of DeepLoad
as illustrated in Fig. 5. A RL-agent interacts with the environment, where
the RL-agent is the main component for making scheduling decisions, and
the environment is an abstraction that integrates the information about edge
network, mobile users, edge servers, and diverse requests. The RL-agent can
only observe a small part of the environment, which is called state. In this
paper, we view each mobile device as a RL-agent, the known information
about network and edge server as state, and the scheduling decision as ac-
tion. At each time slot t, the RL-agent observes a state st and chooses an
action at based on the specific policy π. When the action is done, the current
state will transit to the next state st+1 and the agent will receive an instant

14

reward rt. Through constant interaction with the environment until done,
the RL-agent is likely to get higher accumulated rewards. The objective
of DRL is to find the best policy π (i.e. action probability distribution in
A3C) mapping a state to an action that maximizes the expected discounted

accumulated reward as E
[∑t0+|T |

t=t0
γtrt

]
, where t0 is the current time and

γ ∈ (0, 1] is a factor to discount the future reward.
Note that each RL-agent (i.e., a mobile user) makes scheduling decisions

based on probability distributions (i.e. policy π) rather than specific actions,
which can potentially avoid excessive loads on a single edge server.

4.2. Algorithm Design

Due to the lack of future knowledge and the state transition probability
matrix, as well as the discrete decision space, we propose the model-free
DRL-based DeepLoad, which is trained using a state-of-the-art actor-critic
DRL model called A3C. We introduce the detailed functionality design as
follows.

4.2.1. State Space

The state is the observation of a RL-agent (i.e. mobile device or user in
our scenario) from the environment. The RL-agent aims to constantly learn
policies from historical information to approach the perspective of the God
(i.e. have future and global knowledge), thus a comprehensive state is critical
to the decision-making efficiency. We take the known information of network,
edge server and request into consideration as Fig. 6 shows. Specifically, we
list the components as follows.

. Estimated bandwidth vector for uplink bububu and downlink bdbdbd. We denote
them as bububu =

〈
r1ul, r

2
ul, · · · , rNul

〉
and bdbdbd =

〈
r1dl, r

2
dl, · · · , rNdl

〉
, where riul is the

uplink bandwidth from local user to APi, and rjdl represents the downlink
bandwidth from APj. We set rkul = rkdl = 0 if user ui is not within the ser-
vice area of APk. Considering that we have no means to get the real-time
bandwidth for current. Many requests are initiated from mobile devices over
cellular networks like LTE, which experience frequent bandwidth fluctua-
tion [19]. To illustrate the variability of bandwidth, we depict two network
traces from the Mahimahi[20] project as Fig. 4 shows. Across the upload and
download traces, we made the following observations: (1) Periods of extreme
low/high are uncommon: only 14.5% of the time, the upload bandwidth is
0 or larger than 10 Mbps, and 14.9% for the download bandwidth; (2) The

15

0 200 400 600 800 1000
��������	���

0

5

10

15

20

25

�
�

�

ATT-LTE-driving.up
ATT-LTE-driving.down

(a) Available network bandwidth

1 3 5
��
����������������	���

0.0

0.2

0.4

0.6

0.8

�
��

���
���

	�
��
���

��	
��
��
��
�� 0.763

0.815

0.892

0.701
0.735

0.794
upload
download

(b) Bandwidth estimation

Figure 4: Bandwidth fluctuation over time. (a) The bandwidth of uplink and downlink.
(b) The Y-axis denotes the fraction of slots, in which the bandwidth is within [80%, 120%]
of the average bandwidth of past 1, 3 or 5 slots.

bandwidth of the next slot is closely related to the values of past several
slots: as Fig. 4b shows, for uploading capacity, 76.3% slots own less than
20% bandwidth variation compared to the previous one slot, and it reaches
89.2% when referring to past five slots. The download capacity shares the
similar rule with upload capacity. Hence, we view the weighted bandwidth
of previous k slots as the estimated bandwidth of slot t+ 1,

riul(t+ 1) =
t∑

j=t−k+1

ωjr
i
ul(j), (19)

where ωm < ωn if m < n, and
∑
ωj = 1. We estimate the downlink band-

width in the similar method.
. Estimated propagation delays of inter-APs. We denote it as bpbpbp =〈

l(i,j)|i 6= j, i, j ∈ {1, 2, ..., N}
〉
. Practically, the APs are connected with each

other through S1 interface of Core Network (rarely X2 interface for trans-
ferring amounts of data). Hence, it remains relatively stable. To reflect the
variance of different APs pair, we still view it as an input for DeepLoad.

. Pending workload www of each edge server, www = 〈w1, w2, · · · , wN〉 . As-
sume that each AP periodically and frequently sends a heartbeat message
to the users in its proximity, which includes the amount of workloads to be
processed in each queue on this server. Although it is a delayed message
relative to the current, it makes sense to evaluate the pending workload.

. Critical features of current request. The input size B of request affects
the transmission delay, the workload W determines the processing delay, and

16

Server resources

Synthetic Traces

Request workload

State

Policy Network Action Distribution

Agent

QoE metrics (accuracy-

latency-fluency)

Observe next state

Reward

Network status

Figure 5: Illustration of the basic learning mechanism. RL-agent trains the policy network
through continuous interaction with the environment. For each state observed from the
environment, the RL-qgent can make a quick decision based on the action distribution.

deadline ddl represents the user’s expectation.
We integrate the above components together and present the state as

st =
{
bububu, bdbdbd, bpbpbp, www, B, W, ddl

}
.

4.2.2. Policy

In our proposed DeepLoad, a RL-agent needs to take an action for request
scheduling when receiving a state st. In our scenario, a request goes through
two stages (i.e. AP selection and workload redistribution) from its generation
to completion, and the second stage relies largely on the first stage, because
the servers in the second stage are adjacent to the server in the first stage.
Thus, we jointly consider both of AP selection and workload redistribution.
Thus the action space is represented as {APk, AP 1

k , · · · , AP z
k , Pk, P

1
k , · · · , P z

k },
where APk is the first AP, Pk is the percentage of workloads processed at
APk, AP

z
k and P z

k denote a neighboring server of APk and the corresponding
offloading proportion, thus, Pk+

∑
1≤i≤z P

i
k = 1 and Pk, P

i
k ∈ {0, 1, · · · , 100}.

Therefore, the action space is bounded. However, the value of the workloads
of a request is continuous and unbounded, so there are infinite (state, action)
pairs. We cannot store them in tabular form and solve the problem us-
ing traditional methods, e.g., Q-learning and SARSA. Fortunately, the A3C
model addresses this issue perfectly, which uses a neural network [9] to rep-
resent a policy π, and the adjustable parameter of the neural network is
referred to as the policy parameter θ. Therefore, we can present the policy
as π (at|st; θ)→ [0, 1], indicating the probability of taking action at at state
st.

Note that the different types of requests have different policies; if there

17

are |M| types of requests, |M| policies are needed.

4.2.3. Reward

Once applying an action at to the state st, a RL-agent will receive an
instant reward rt from the environment. Recall that in the problem formula-
tion, our optimization objective is to maximize the number of requests that
finish before their deadlines. If the deadline can be met in the first stage (i.e.,
AP selection), the second stage can be skipped directly. To mitigate the risk
of privacy leakage and the expensive communication cost of inter-APs, users
may prefer to execute their requests without edge collaboration. However,
when the estimated delay of the first stage is worse than the deadline, the
workload redistribution stage is needed. To reflect the risk of privacy leakage
and the cost of edge collaboration, we define the reward as

reward=

ddlti−T ti
ddlti

, if redistribution is performed,
ddlti−T ti
T ti

, otherwise,
(20)

where ddlti is the attached deadline of ui at time slot t, and T ti is the com-
pletion time of ui. T

t
i is modeled in details in section 3. If Pk in the action

is 100, then the total workload is executed in the edge server deployed at
the selected AP. Apparently, the reward may be a negative when the T ti
can’t meet the ddlti, which is acceptable on account of considering a maxi-
mized accumulative reward. According to Eq. (20), for the same completion
time T ti , the reward without the workload redistribution stage is much more
attractive.

4.2.4. DRL Model Training Methodology

The configuration space is bounded, but the sophisticated state space
seems infinite, thus there are endless (st, at) pairs. Instead of storing the
value of each (st, at) pair in tabular form, e.g. Q-table, we adopt A3C,
which uses a neural network to represent a policy π as Fig. 6 shows, and
the adjustable parameter of the neural network is referred to as the policy
parameter θ. Therefore, we can present the policy as π (at|st; θ) → [0, 1],
indicating the probability of taking action at at state st. The objective of
DRL is to find a best policy π mapping a state to an action that maximizes

18

State Policy (Actor) Network t
s

1D-CNN

1D-CNN

1D-CNN

1D-CNN

···

policy

(),t t
s aqp

estimated uplink bandwidth

1

u lr
2

u lr u lr
N···

estimated downlink bandwidth

1

d lr
2

d lr d lr
N···

propagation delay of inter-APs

(1,2)l ···(1,3)l (i j)l

Pending workload

1w 2w Nw···

Workload of request

W

deadline

ddl

1D-CNN

1D-CNN

1D-CNN

1D-CNN

···

value

()tV s
qp

Value (Critic) Network

Input size

B

Figure 6: The Actor-Critic algorithm that DeepLoad uses to generate scheduling policies.

the expected accumulative discounted reward as

J(θ) = E

t0+|T |∑
t=t0

γtrt

 , (21)

where t0 is the current time and γ ∈ (0, 1] is a factor to discount the future
reward.

4.2.5. Policy Gradient Training

The actor-critic network used by DeepLoad is trained with policy gradient
method, whose key idea is to estimate the gradient of the expected total
reward by observing the trajectories of executions obtained by following the
policy. We highlight the key steps of the algorithm, focusing on the intuition.
The policy gradient of J(θ) with respect to θ, to be used for policy network
update for slot t, can be calculated as follows [21]:

∇θJ(θ)=Eπθ

[∑
t∈T

∇θ log (πθ (st, at))A
πθ (st, at)

]
, (22)

where Aπθ (st, at) is the advantage function that represents the gap between
the expected accumulative reward when we deterministically select at at

19

state st following πθ and the expected reward for actions drawn from policy
πθ.Indeed, the advantage function reflects how much better a current spe-
cific action is compared to the “average action” taken based on the policy.
Intuitively, we reinforce the actions with positive advantage value Aπθ (s, a),
but degrade the actions with negative advantage value Aπθ (s, a).

In particular, the RL-agent extracts a trajectory of scheduling decisions
for the bursty requests and uses the empirically computed advantage A(st, at)
as an unbiased estimated Aπθ (st, at). The update rule of actor network
parameter θ follows the policy gradient,

θ ← θ + α
∑
t∈T

∇θ log πθ (st, at)A (st, at) , (23)

where α is the learning rate. The marrow behind this update law is sum-
marized as follows, the gradient direction ∇θ log πθ (st, at) indicates how to
change parameter θ to improve πθ (st, at) (i.e., the probability of action at
at state st). Eq. (23) goes a step along the gradient descent direction. The
specific step size is up to the advantage value Aπθ (st, at). Hence, the goal
of each update is to reinforce actions that empirically have better feedbacks.
To compute the advantage value A(st, at) for a given sample, we need to get
the estimated value function vπθ (s), i.e., the total expected reward starting
at state s following the policy πθ. As Fig. 6 shows, the role of critic network
is to learn an estimated vπθ (s) from observed rewards. We update the critic
network parameters θv based on the Temporal Difference [22] method,

θv←θv−α′
∑
t

∇θv(rt+γV
πθ (st+1; θv)−V πθ (st; θv))

2 , (24)

where V πθ (st; θv) is the estimated vπθ (st) that is produced by the critic net-
work, and α′ is the learning rate. We take a specific experience 〈st, at, rt, st+1〉
– take action at for state st, obtain instant reward rt, and transit to next
state st+1– as an example, we estimate the advantage value A(st, at) as
rt + γV πθ (st+1; θv) − V πθ (st; θv). Note that the critic network does noth-
ing to train the actor network other than evaluate the policy of the actor
network. In the actual AR scenario, only the actor network is involved in
making configuration decisions.

To reach an adequate exploration for the RL agent during training to dis-
cover better policies, thereby reducing the risk of falling into suboptimal, we
add an entropy regularization [15] term to encourage exploration. This prac-
tice is significant to help the agent converge to a fine policy. Correspondingly,

20

we modify Eq. (23) to be

θ←θ+α
∑
t

∇θlogπθ(st,at)A (st,at)+β∇θH (πθ (·|st)) , (25)

where β is entropy weight that is set to a large value and decreases over time
to emphasize improving rewards, and H(·) is the policy entropy to encourage
exploration by pushing θ in the direction with higher entropy.

4.2.6. Parallel Training

To further enhance exploration and speed up training. As shown in Fig. 7,
we use a parallel approach to obtain abundant training samples quickly. We
start n threads (i.e. agents) at the same time, and adopt diverse environment
settings (e.g., diverse network traces and AR videos). Different agents are
likely to experience different states and transitions, thus avoiding the cor-
relation. Specifically, each agent continuously collects their samples (tuple
{st, at, rt, st+1}), and uses the actor-critic algorithm to compute a gradient
and perform a gradient descent step as Eq. (24) and Eq. (25), independently.
Then, each agent pushes its actor parameters to the central agent, which
integrates the parameters, and generates a global actor network. Finally,
each agent pulls the global model from the central agent, and starts the next
training episode until the global actor network is convergent. Since the actor-
critic network has been well trained, we can take a fast and accurate action
based on the action probability distribution for each encoding slot.

5. Performance Evaluation

In this section, we validate the performance of DeepLoad with extensive
data-driven simulations. In addition, we verify its efficiency through several
control experiments.

5.1. BRS Simulator

An ideal well-trained DeepLoad needs numerous samples. It is unrealistic
to train DeepLoad through continuous trial and error in the real scenario
due to the unbearable cost. Instead, we design a BRS (Bursty Requests
Scheduler) simulator that best matches the real scenario.

First of all, we depict the distribution of APs as well edge servers, and
simulate the arrival model of bursty requests. Several vital characteristics
of Shanghai taxi trajectory data set [23] that inspire us are as follows: (1)

21

Agent

push

pull

· · ·

Environment
Network

Server

Application

Network

Server

Application

···

· · ·

Environment

···

· · ·

Environment

···

t
a

t
s

t
a

t
s

t
a

t
s

0

0
s

0

k
s

··· ···

0

0
a

0

0
r

1

0
a

1

0
r

0

n
a

0

n
r

Agent

Agent

Network

Server

Application

Network

Server

Application

Network

Server

Application

Network

Server

Application

Asynchronous Update

· · ·

· · ·

· · ·

··· ···

Central Model

1

0
s

2

k
s

0

n
s

n

k
s

Figure 7: The training methodology of A3C model. A3C adopts multi-thread technology
to train the actor-critic network. Each thread, which can be viewed as a RL-agent, trains
its own network independently, and interacts with the main network through pull-push
method.

it records the real-time GPS location (i.e., the longitude and latitude) of
each taxi; (2) it documents the time stamps of entering and leaving the
common infrastructures such as stations or intersections for each taxi. Hence,
the variant GPS location of each taxi can be applied to show the user’s
mobility. Based on the taxi’s location in the same slot, we mark several
regions called Point of Interests (PoIs) that have crowded taxis with similar
location, and these PoIs are perfect candidates for deploying APs and edge
servers. Practically, the PoIs is likely to be a station or an intersection. Note
that each taxi may be in the coverage of several PoIs simultaneously. For
example, the stops are close to intersections. What’s more, we count the
number of taxis residing in each PoI at each slot based on the time stamps,
and thus we use the residing taxis at each slot to represent the bursty requests
identified by tuple 〈W,B, ddl〉. Specifically, we select the data records for 28
February, 2007. By preprocessing, we know the number of PoIs is 12. Each
time slot is 5 minutes, thus a day has 288 time slots, which form an episode.
Note that this time slot of 5 minutes is just for sampling, and the actual time
slot towards bursty request is far less than it, perhaps only 1 second.

Furthermore, the initialization of requests (i.e., B, W , ddl) as well as
edge servers, and the simulation of a dynamic edge environment (i.e. the
time-variant network condition and server status) are also supposed to be
well-crafted. We introduce a general-used mechanism named transparent
request offloading, in which every mobile user knows nothing about other
users, including the location, the type of request, and not to mention the

22

Table 3: Initial parameter setting.

Types Parameters

Input size [3000, 4000]

Total workload [400, 600]

Pending workload [125, 175]

Propagation delay of inter-APs [25, 35]

Table 4: Actor-Critic network design of DeepLoad

Types Actor network Critic network

Input layer 4×1D-CNN+3 4×1D-CNN+3

Hidden layer 400× 400× 400 400× 400× 400

Output layer |action space| 1

exact value of 〈W,B, ddl〉. This mechanism is in line with the ideology of
DRL, and the characteristic of edge environment. Specifically, we model
the fluctuation of uplink and downlink bandwidth (i.e., rul and rdl) in a
trace-driven method from the Mahimahi[20] project recorded the transmit-
ted MTU-sized packed per millisecond. We make some statistics and modifi-
cations, and obtain the bandwidth per millisecond. In BRS, the input scale
B, total workload W and deadline ddl of request, and the pending workload
wq in each edge server is initialized from uniform distribution with differ-
ent parameters as Table 3 shows. Particularly, we set the deadline ddl from

range
[

B
r(avg)

+ W
c(avg)

−10, B
r(avg)

+ W
c(avg)

+10
]
, where r(avg) is average band-

width, and c(avg) represents the average computing capability.

5.2. Training Testbed and Benchmark

We train the DeepLoad learning model using the A3C model. The general
Actor-Critic networks structure is illustrated as Fig. 6, they share the same
parameters of the input layer and hidden layer, but output the action distri-
bution and value, respectively. The detailed design is listed in Table 4. To
enhance the convergent rate and training efficiency, we leverage two GeForce
GTX TITAN Xp GPUs. In DeepLoad, an episode including 288 slots can be
viewed as a training sequence in DRL. We set the following benchmarks to
further evaluate the performance of DeepLoad:

• SSP (Single Server Processing). Each request is processed only in the
server selected in AP selection. The user first calculates the estimated

23

delay for each accessible AP, and then selects the optimal one.

• DSP (Double Server Processing). Each request is processed in the
server selected in AP selection and one of its adjacent server. The user
first calculates the estimated delay for each accessible AP, and then
selects the optimal one. If the estimated completion time is bigger
than the ddl, the selected AP will offload half of the workload to one
of its adjacent server with the most available resources.

• LOCP (Link Optimal Collaborative Processing). In workload redistri-
bution, the selected AP chooses two neighboring servers with the lowest
propagation delay, and then offloads some percentages of workloads to
them. Note that the offloading proportions are the same as the target
proportions in the action chosen by DeepLoad.

• QOCP (Queue Optimal Collaborative Processing). The selected AP
selects two neighboring servers with the minimum amount of pending
workloads in the queue, and then offloads some percentages of work-
loads to them. QOCP and DeepLoad have the same target proportions.

• FCP (Fair Collaborative Processing). The selected AP selects two
neighboring servers and offload one third of the workloads to them.

5.3. Effectiveness and Impact Factor of DeepLoad

In this subsection, we make a horizontal and vertical comparison for
DeepLoad. We first compare our model with benchmarks in the following
aspects to analyze its effectiveness. Then, we show the impact of the inherent
parameter setting of DeepLoad on the performance.

5.3.1. Effectiveness of DeepLoad

In our scenario, we aim to maximize the number of requests whose com-
pletion times are ahead of their deadlines. Since the number of users at each
time slot is dynamically changing, we use the Fraction of Requests finished
(FoRf) before deadline to measure the effectiveness of DeepLoad. As illus-
trated in Fig. 8, with the increasing number of training episodes, the FoRf
of DeepLoad approaches 1, which implies almost all of the requests can be
completed before deadlines. As Fig. 8a shows, even with an optimal AP se-
lection, traditional SSP performs poorly with a FoRf less than 0.5, which is
largely due to the unpredictable queuing time. DSP mitigates this dilemma,

24

0 1000 2000 3000 4000 5000

Training episode

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

o
R

f

DeepLoad

DeepLoad fit

SSP

SSP fit

DSP

DSP fit

(a) DeepLoad vs. SSP and DSP

0 1000 2000 3000 4000 5000

Training episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
o

R
f

DeepLoad

DeepLoad fit

LOCP

LOCP fit

QOCP

QOCP fit

FCP

FCP fit

(b) DeepLoad vs. LOCP, QOCP and FCP

Figure 8: Comparison of DeepLoad and other strategies. Y-axis denotes the fraction of
requests finished before deadlines (i.e. FoRf) in current episode.

but it still performs badly. The edge servers adopt FCFS such that each new
incoming request is arranged at the end of the queue. As Fig. 8b shows, in the
early episodes of training, Deepload focuses on exploration such that its av-
erage effectiveness is even inferior to LOCP, QOCP and FCP, yet with more
training episodes, DeepLoad has a significant performance improvement and
shows superiority to them. Note that DeepLoad can greatly alleviate the
burden produced by the bursty requests, but cannot fundamentally elimi-
nate such burden, because there may be too many requests that exceed the
processing power of the LAN. Therefore, the FoRf of DeepLoad presents a
fluctuating state but maintains at a high value.

5.3.2. Impact Factor

The internal parameter settings are critical to the model performance.
Take the number of parallel threads and the learning rate as two exam-
ples. We train our DeepLoad through 10,000 episodes under different thread
numbers and learning rates. As described in Section IV, we use a parallel
approach (i.e. multithreading technology) to obtain abundant training sam-
ples and adopt diverse environment settings. Generally, the more threads the
training adopts, the broader scope the DeepLoad can explore, and thus al-
most all exploratory sequences can be gathered. In Fig. 9a, the accumulated
reward of DeepLoad trained with 40 threads surpasses the other two cases,
while the final FoRf with different threads are almost the same as shown in
Fig. 9b. Secondly, we show the relationship between the accumulated reward

25

0 2000 4000 6000 8000

Training episode

-2

-1

0

1

2

3

4

A
c
c
u

m
u

la
te

d
 r

e
w

a
rd

training with 40 threads

training with 30 threads

training with 20 threads

(a) Accumulated reward.

0 2000 4000 6000

Training episode

0.2

0.4

0.6

0.8

1

F
o

R
f

Training with 40 threads

Training with 30 threads

Training with 20 threads

(b) FoRf.

Figure 9: The effects of thread numbers on the results.

0 2000 4000 6000 8000

Training episode

-2

-1

0

1

2

3

4

A
c
c
u

m
u

la
te

d
 r

e
w

a
rd

learning rate 0.01

learning rate 0.001

learning rate 0.0005

(a) Accumulated reward.

0 2000 4000 6000 8000

Training episode

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
o

R
f

Training with learning rate 0.005

Training with learning rate 0.001

Training with learning rate 0.0005

(b) FoRf.

Figure 10: The effect of learning rate on the results.

and the learning rate in Fig. 10. It is clear to see that the model with a higher
learning rate reaches the peak interval faster (e.g. convergence) but gains a
more dramatic fluctuation. Generally, the selection of learning rate depends
on the system-level need. A high learning rate means fast convergence speed
and high volatility, while a low learning rate means slow convergence speed
and low volatility.

6. Related Work

6.1. Scheduling Compute-intensive Requests with Cooperative Methods

Although the new emerging edge computing paradigm brings lots of
possibilities to process the compute-intensive requests efficiently by push-

26

ing the services closer to the end users [1–3], it is challenging to handle
bursty requests via a single edge server. In [7], the authors adopted an ARM
big.LETTLE architecture, and aimed to minimize the energy consumption
through a better requests scheduling policy. In [9], the authors proposed
VideoStorm, a video analytics system that explores the accuracy-resource
trade-off in improving analytics quality and lag. In [10], the authors proposed
OREO, which jointly optimizes dynamic service caching and task offloading
to address service heterogeneity, unknown system dynamics, spatial demand
coupling and decentralized coordination. In [24], the authors propose a hi-
erarchical model with intra-fog and inter-fog resource management. In [25],
the authors proposed an effective task scheduling approach with stochastic
time cost for computation offloading in mobile edge computing. Some other
studies [8, 26, 27] focused on scheduling requests to either of local device,
single edge edge, or remote cloud for execution, while we propose DeepLoad
to process bursty requests through edge server collaboration.

6.2. DRL-based Application

Recently, Deep Reinforcement Learning (DRL) has shown its superior-
ity in many fields. In [14], the authors first used Deep Q-Network to learn
policies from sensor input for decision making. In [28], the authors pre-
sented a comprehensive application of DRL in communication and network.
In [29, 30], the authors adopted DQN-based computation offloading strate-
gies for IoT devices, which aim to achieve automatic scheduling. In [31–34],
the authors considered a multi-user MEC system, and proposed A3C-based
optimization framework to tackle resource allocation for MEC. In [35], the
authors used the A3C algorithm to select the optimal bitrate for future video
chunks purely based on the past experience. In [36], the authors applied DRL
to the traffic engineering problem. In [37], the authors proposed ReLeS for
Multipath TCP, which supports a real-time packet scheduling. To our best
knowledge, DeepLoad is the first to apply DRL to solve the bursty requests
scheduling problem in edge computing environments.

7. Conclusion

In this paper, we consider a general edge scenario of bursty requests, in
which we aim to learn an efficient scheduling policy. We first formulate it as
a long-term optimization problem that maximizing the number of requests
finished before deadlines, which is referred to as a NP-complete problem.

27

Inspired by the great achievements in decision-making of DRL in dynamic
environments, we propose DeepLoad, an intelligent scheduler for bursty re-
quests via deep reinforcement learning in edge environments. Finally, based
on the real data set, we design a LAN simulator to collect abundant samples,
and train the actor-critic network with numerous episodes. In addition, we
design several control experiments, and further demonstrate the superiority
of DeepLoad compared to several baseline algorithms.

References

[1] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture
and computation offloading, IEEE Communications Surveys & Tutorials
19 (3) (2017) 1628–1656.

[2] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, Mobile edge com-
puting: Survey and research outlook, arXiv preprint arXiv:1701.01090.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and
challenges, IEEE Internet of Things Journal 3 (5) (2016) 637–646.

[4] M. Xiao, J. Wu, L. Huang, R. Cheng, Y. Wang, Online task assign-
ment for crowdsensing in predictable mobile social networks, IEEE TMC
16 (8) (2017) 2306–2320.

[5] Y. Li, W. Gao, Muvr: Supporting multi-user mobile virtual reality with
resource constrained edge cloud, in: IEEE/ACM Symposium on Edge
Computing, IEEE, 2018, pp. 1–16.

[6] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, H.-S. Lee, Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices, IEEE
TMC.

[7] Y. Geng, Y. Yang, G. Cao, Energy-efficient computation offloading for
multicore-based mobile devices, in: IEEE INFOCOM, IEEE, 2018, pp.
46–54.

[8] M.-H. Chen, B. Liang, M. Dong, Joint offloading and resource allocation
for computation and communication in mobile cloud with computing
access point, in: IEEE INFOCOM, IEEE, 2017, pp. 1–9.

28

[9] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, M. J.
Freedman, Live video analytics at scale with approximation and delay-
tolerance, in: 14th USENIX NSDI, USENIX, 2017, pp. 377–392.

[10] J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for
mobile edge computing in dense networks, in: IEEE INFOCOM, IEEE,
2018, pp. 207–215.

[11] X. Chen, L. Pu, L. Gao, W. Wu, D. Wu, Exploiting massive d2d collab-
oration for energy-efficient mobile edge computing, IEEE TWC 24 (4)
(2017) 64–71.

[12] D. Wu, Q. Liu, H. Wang, D. Wu, R. Wang, Socially aware energy-
efficient mobile edge collaboration for video distribution, IEEE TMM
19 (10) (2017) 2197–2209.

[13] H. Guo, J. Liu, Collaborative computation offloading for mul-
tiaccess edge computing over fiberwireless networks, IEEE
Transactions on Vehicular Technology 67 (5) (2018) 4514–4526.
doi:10.1109/TVT.2018.2790421.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529.

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforce-
ment learning, in: ACM ICML, ACM, 2016, pp. 1928–1937.

[16] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, D. Meger,
Deep reinforcement learning that matters, in: Thirty-Second AAAI,
2018.

[17] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, F. Bai, Hermes: Latency op-
timal task assignment for resource-constrained mobile computing, IEEE
TMC 16 (11) (2017) 3056–3069.

[18] M.-H. Chen, B. Liang, M. Dong, Joint offloading decision and resource
allocation for multi-user multi-task mobile cloud, in: IEEE ICC, IEEE,
2016, pp. 1–6.

29

[19] K. Winstein, A. Sivaraman, H. Balakrishnan, Stochastic forecasts
achieve high throughput and low delay over cellular networks, in: 10th
USENIX NSDI, USENIX, 2013, pp. 459–471.

[20] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
H. Balakrishnan, Mahimahi: Accurate record-and-replay for http, in:
2015 USENIX ATC, USENIX, 2015, pp. 417–429.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, Policy gra-
dient methods for reinforcement learning with function approximation,
in: NIPS, 2000, pp. 1057–1063.

[22] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,
MIT press, 2018.

[23] Shanghai taxi trajectory traces, http://wirelesslab.sjtu.edu.cn/

taxitracedata.html.

[24] W. Zhang, Z. Zhang, H.-C. Chao, Cooperative fog computing for dealing
with big data in the internet of vehicles: Architecture and hierarchical
resource management, IEEE Communications Magazine 55 (12) (2017)
60–67.

[25] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, Efficient task scheduling
with stochastic delay cost in mobile edge computing, IEEE Communi-
cations Letters 23 (1) (2018) 4–7.

[26] S. Bi, Y. J. Zhang, Computation rate maximization for wireless powered
mobile-edge computing with binary computation offloading, IEEE TWC
17 (6) (2018) 4177–4190.

[27] J. Du, L. Zhao, J. Feng, X. Chu, Computation offloading and resource
allocation in mixed fog/cloud computing systems with min-max fairness
guarantee, IEEE TCOM 66 (4) (2018) 1594–1608.

[28] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
D. I. Kim, Applications of deep reinforcement learning in communi-
cations and networking: A survey, IEEE Communications Surveys &
Tutorials.

30

[29] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, W. Zhuang, Learning-
based computation offloading for iot devices with energy harvesting,
IEEE Transactions on Vehicular Technology 68 (2) (2019) 1930–1941.

[30] M. G. R. Alam, M. M. Hassan, M. Z. Uddin, A. Almogren, G. Fortino,
Autonomic computation offloading in mobile edge for iot applications,
FGCS 90 (2019) 149–157.

[31] J. Li, H. Gao, T. Lv, Y. Lu, Deep reinforcement learning based com-
putation offloading and resource allocation for mec, in: IEEE WCNC,
IEEE, 2018, pp. 1–6.

[32] Y. He, F. R. Yu, N. Zhao, V. C. Leung, H. Yin, Software-defined net-
works with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach, IEEE Communications
Magazine 55 (12) (2017) 31–37.

[33] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis, Optimized com-
putation offloading performance in virtual edge computing systems via
deep reinforcement learning, IEEE Internet of Things Journal 6 (3)
(2019) 4005–4018.

[34] C. Zhang, Z. Liu, B. Gu, K. Yamori, Y. Tanaka, A deep reinforcement
learning based approach for cost-and energy-aware multi-flow mobile
data offloading, IEEE TCOM E101.B (7) (2018) 1625–1634.

[35] H. Mao, R. Netravali, M. Alizadeh, Neural adaptive video streaming
with pensieve, in: ACM SIGCOMM, ACM, 2017, pp. 197–210.

[36] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, D. Yang,
Experience-driven networking: A deep reinforcement learning based ap-
proach, in: IEEE INFOCOM, IEEE, 2018, pp. 1871–1879.

[37] H. Zhang, W. Li, S. Gao, X. Wang, B. Ye, Reles: A neural adaptive
multipath scheduler based on deep reinforcement learning, in: IEEE
INFOCOM, IEEE, 2019, pp. 1648–1656.

31

