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Abstract— Mobile CrowdSensing (MCS) has recently become
a powerful paradigm that recruits users to cooperatively perform
various tasks. In many realistic settings, users participate in real
time and we have to recruit them in an online manner. The
existing works usually formulate the online recruitment problem
as a budgeted optimal stopping problem with submodular user
utility, while we first argue that not only the budget but
also the time constraints can jointly influence the recruitment
performance. For example, if we have less budget but plenty
of time, we should recruit users with more patience. Second,
considering the user’s cooperative willingness, its contribution
may be diminishing or even irregular. Hence, we also need to
address not only submodular cases but also their non-submodular
utility. In this paper, we study the online user recruitment
problem with (non-)submodular utility under the budget and
time constraints. To deal with the two constraints, we first
estimate the number of users to be recruited and then recruit
them in segments. Moreover, we extend the segmented strategy
with a non-submodular utility, which has the submodularity
ratio γ and the competitive ratio γ2(1− e−1)/7. Furthermore,
to correct estimation errors and utilize newly obtained informa-
tion, we dynamically re-adjust the segmented strategy and also
prove that the dynamic strategy achieves a competitive ratio of
γ2(1 − e−1)(1 − e−γ/2)/7. Finally, a reverse auction-based
online pricing mechanism is lightly built into the proposed user
recruitment strategy, which achieves truthfulness and individual
rationality. Extensive experiments on three real-world data sets
validate the proposed online user recruitment strategy under the
(non-) submodular utility and two constraints.

Index Terms— Mobile CrowdSensing, online user recruitment,
non-submodular secretary problem, truthful pricing.
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I. INTRODUCTION

W ITH the great popularization of mobile devices
and wireless communications, Mobile CrowdSensing

(MCS) [2] has rapidly become a powerful paradigm, which
recruits a number of mobile users to cooperatively perform
various urban sensing and computing tasks, e.g., traffic estima-
tion, indoor-outdoor localization, and map semantics identifi-
cation. In general, the MCS applications should provide proper
rewards for the recruited users in order to cover their costs
and encourage the participation [3]. However, considering the
limited budget, we usually cannot afford all of the users,
but have to recruit those who can complete the tasks more
effectively, which raises the fundamental user recruitment
problem in MCS [4], [5].

Many existing works on user recruitment are conducted
offline [6], [7], which recruits users with full information at the
beginning of the MCS campaign. However, in many realistic
settings, the users participate in the MCS campaign in real time
and we have to recruit them in an online manner with partial
information. Fig. 1 provides an illustrative example of the
online scenario, where users will participate at any time and
cooperatively perform the tasks with different locations. In this
case, each user’s cost and contribution are invisible before their
participation, which makes the online user recruitment more
challenging.

To deal with such online scenarios, some existing works
formulate the online user recruitment as the optimal stopping
problem and propose some effective algorithms based on
secretary problem [8] or dynamic programming [9], but they
simply use a limited number of recruited users as the budget
constraint. Some researchers further consider the various costs
of users [10]–[12], but they mainly focus on the budget
constraint while ignoring the influence of the remaining time
of the MCS campaign. In this paper, we argue that these two
constraints seem to be independent but jointly affect the online
user recruitment, which should be considered simultaneously.
As an example, if there is less time left, we would better
recruit all of the participating users, in order to use up the
remaining budget as soon as possible. Similarly, when we have
less remaining budget but plenty of time, we should recruit
users with more patience. Therefore, how to deal with the
budget and time constraints is the first challenge in online
user recruitment.

Moreover, most of the existing works characterize the
contribution by submodular utility, e.g., the probability of
performing tasks according to the mobility, as shown in Fig. 1
(upper part), which reflects the diminishing marginal returns.
However, in reality, the contribution of a user set is more com-
plex and sometimes even non-submodular. Fig. 1 (lower part)
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Fig. 1. Online user recruitment with (non-) submodular utility in MCS.

gives an example of the willingness of cooperation to show
the non-submodular utility: the first user is not familiar
with the others, and thus he may be unwilling to cooperate
with them (e.g., because of privacy leaks existed in track-
ing tasks [13]), which leads to the irregular contribution.
Obviously, under the online scenarios with unknown future
information, we can hardly estimate the submodular and
in particular non-submodular utility, which is the second
challenge for online user recruitment.

Furthermore, both the users’ dynamical participation and
their (non-) submodular utility introduce a lot of uncertainty.
As shown in Fig. 1, we can hardly accurately calculate the
user’s contribution (estimated by his mobility and cooperative
willingness) and cost (randomly claimed from an independent
cost distribution) during the online recruiting process. More-
over, even if we assume that users will participate periodically,
the period still needs to be learned from historical data and
may also be inaccurate. All these uncertain factors make
the estimated results not always precise. Therefore, the third
challenge is how we can dynamically re-adjust our recruitment
strategy along with the online recruiting process.

Additionally, as a supplement to the online recruitment
strategy, after deciding whether to recruit one user, we should
also provide proper reward within a payment budget for
covering the user’s sensing cost. Meanwhile, we also need to
encourage user participation and avoid being deceived. There-
fore, we should determine a truthful price for each recruited
user in this online manner, which is the fourth challenge.

In this paper, to address the budget and time constraints,
we test the distribution of users’ participating time according
to the experiments and find a periodic pattern, which can be
learned from the historical data. Thus, we first predict the total
number of participating users according to the time constraint.
Then, taking the budget constraint into account, we further
estimate the number of users to be recruited. In this way,
we formulate the online user recruitment problem under two
constraints as a classic multiple-choice secretary problem [14].
Moreover, considering the (non-) submodular utility, i.e., the
diminishing or even irregular contribution mentioned in the
example of Fig. 1, we extend the multiple-choice secretary
problem with a submodular or non-submodular contribution
function [15]. Then, we approximately divide all participating
users into some equally-sized segments and try to recruit the
best user in each segment. For different segments, we recruit
users according to their submodular or non-submodular

marginal contributions. Especially, for the non-submodular
utility with a submodularity ratio γ, we prove that our
local-optimal selection leads to a global near-optimal solution,
with the competitive ratio γ2(1− e−1)/7.

Furthermore, in order to correct the errors in estimation
and make use of the new information obtained during the
recruitment process, we further present a dynamic user recruit-
ment strategy. The basic idea is to conduct a re-estimation
according to the remaining budget and time after recruiting a
new user, which is actually a dynamic iteration of estimation
and recruitment in the above segmented online process. Also,
we prove that the proposed dynamic online recruitment strat-
egy achieves a competitive ratio of γ2(1− e−1)(1− e−γ/2)/7
under a (non-) submodular utility. Finally, we conduct a
reverse auction-based pricing mechanism, which can be easily
built into our online user recruitment strategies without much
extra computation. This online pricing mechanism is proved
to achieve truthfulness and individual rationality.

In summary, this paper has the following contributions:
• Online User Recruitment: We study the online user

recruitment problem under the budget and time con-
straints. To deal with the two constraints, we first estimate
the number of users to be recruited and then propose
a segmented online user recruitment strategy. Moreover,
considering the users’ diminishing or even irregular con-
tribution, we extend the online user recruitment strategy
from a submodular case to the non-submodular one,
where the competitive ratio is proved to be γ2(1−e−1)/7.

• Dynamic Re-adjust: We dynamically re-adjust the seg-
mented online user recruitment strategy, in order to cor-
rect the estimation errors and utilize the newly obtained
information, where the competitive ratio is proved to be
γ2(1 − e−1)(1− e−γ/2)/7.

• Online Pricing: We present a reverse auction-based pric-
ing mechanism, which can be built into the online user
recruitment strategy without much extra computation.
Meanwhile, this mechanism achieves truthfulness and
individual rationality.

• Extensive Evaluation: We conduct extensive evaluations
based on three real-world data sets. The results verify the
effectiveness of our strategy on improving the number of
completed tasks under the (non-) submodular utility and
two constraints.

This paper is organized as follows. After reviewing the
related works in Section II, we introduce the system model
and formulate the research problem in Section III. Then,
the dynamic online user recruitment strategy is proposed in
Section IV, followed by the theoretical analysis in Section V.
In Section VI, we introduce the online pricing mechanism.
Finally, we evaluate the performance in Section VII and
conclude this paper in Section VIII.

II. RELATED WORK

A. User Recruitment

Mobile CrowdSensing is a promising paradigm, which
allows us to recruit users carrying portable devices, in order
to cooperatively perform various sensing tasks. Considering
the sensing costs, Karaliopoulos et al. [4], Zhang et al. [16],
and Song et al. [17] study the user recruitment problem to
achieve the goal of the MCS campaigns and minimize the total
costs. Similarly, Liu et al. [6] and Wang et al. [7] propose
the prediction-based algorithms to recruit the effective users,
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in order to complete more tasks under a budget constraint.
Some researchers further consider the location dependent
tasks [18], social media users [19], the multiple tasks [20] and
diverse users’ factors [21] to measure the completion quality
and overall utility for task allocation, which is very similar
to user recruitment but focuses on assigning tasks to users.
However, most of the existing strategies are conducted offline
and cannot deal with the users’ dynamic participation, which
is actually a more realistic online scenario.

Recently, the user recruitment problem has been studied for
the online scenarios. Wang et al. [22] study the location-aware
and location diversity based online MCS but focus on the task
assignment. Li et al. [23] propose a dynamic user selection
algorithm but divide the online recruiting process into many
time slots and greedily recruit users for each time slot in an
offline manner. Yang et al. [8] present a prediction-based
online user selection framework; however, they only recruit
a pre-determined number of users and ignore the variable
costs of users under the budget constraint. Zhao et al. [10],
Gao et al. [11], and Li et al. [12] further consider the budget
constraint in online incentive mechanisms and user selection.
These methods divide the total budget into some stages and
recruit users until the sub-budget in each stage is exhausted,
but they haven’t dealt with the total budget and ignore the
influence of the remaining time of the MCS campaigns.

B. (Non-) Submodular Utility

The user recruitment problem can be naturally formulated
as the subset selection problem with the (non-) submodular
utility under linear cost constraints [4]. For the submodular
utility, the generalized greedy algorithm is to iteratively select
the user with the largest ratio of the marginal contribution
and cost with the (1− e−1)/2-approximation guarantee [24],
which is further improved to (1 − e−1/2) [25]. Combined
with partial enumeration, this generalized greedy algorithm has
been proved to achieve a (1− e−1) approximation ratio [26].
For the non-submodular utility, by using the submodularity
ratio γ, which reflects how close the utility function is to being
submodular, Qian et al. [27] derive that the generalized greedy
algorithm obtains a γ(1 − e−γ)/2-approximation guarantee
and also propose an anytime randomized iterative approach
to cost more time for better solutions. Bian et al. [28] also
combine the curvature α and submodularity ratio γ to derive a
tight approximation guarantee of (1−e−αγ)/α for cardinality
constrained maximization.

C. Secretary Problem

For the secretary recruitment, the classic secretary problem
is to recruit only one best user from all participating users
in an online manner [29]. As a variant, Preater [14] studies
that more than one user may be recruited in the secre-
tary problem. Considering the submodular utility function,
Bateni et al. [15] propose the submodular k-secretaries prob-
lem, where they divided the participating users into the fixed
k equally-sized segments and select the best user from each
segment. In this paper, we further consider the non-submodular
utility function for online user recruitment problem by using
the submodularity ratio γ.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a practical online scenario of MCS, where a
crowd of rational users move around and participate in the

TABLE I

MAIN NOTATIONS

MCS campaign in real time to perform the sensing tasks. Users
are denoted as U�{u1, u2, . . . , un}, each with active (work-
ing) time slots Ai � {tbi , . . . , tei } and sensing cost ci, which
indicates that user ui will work in Ai with cost ci.1 Tasks are
denoted as S � {s1, s2, . . . , sm} each with a location lj ∈L,
and we consider that a user ui moving to location lj within
his active time slots Ai can perform the task sj . Under the
online scenarios, a user ui participates in real time with a bid
price bi, and we decide whether to recruit him immediately,
with the payment pi under a budget constraint

�n
i=1 pi≤B.

In general, we hope that users will bid truthfully, i.e., bi≈ci,
and we should provide proper rewards to cover their costs and
encourage the participation, i.e., pi ≥ bi. Then, the recruited
users, denoted as μ with the set cardinality k = |μ|, perform
the sensing tasks within the duration time slots of the MCS
campaign T � {tb, . . . , te}.2 The main notations used in this
paper are listed in Table I.

To further reduce the complexity, we assume that all tasks
are equal in quality and only need to be completed once Also,
we consider that the tasks are uniformly distributed and the
active time of users is far less than the total time of the
MCS campaign, otherwise the users participating later have
great disadvantages and we would better recruit the earlier
users. Actually, this setting is reasonable for most practical
purposes, since users won’t work for a long time for the MCS
campaigns. Similarly, in most cases, users won’t wait for the
recruitment decisions for a long time, and thus we need to
decide whether to recruit them immediately, without knowing
the future information. After receiving the decisions, users will
leave and their next participation will be seen as the new ones.

B. Mobility Prediction

For the user recruitment, we would like to select the best
user set that cooperatively contributes the most on MCS
campaign. To reflect the diminishing marginal rewards of the
newly recruited users, most of the existing works characterize

1Resource consumption, risk compensation and other costs.
2Note that we consider a discrete model to deal with the users’ irregular

participation, and the continuous model can be easily modified.
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Fig. 2. An example of mobility prediction model.

the users’ contribution by submodular utility. As a typical
example, we can utilize the users’ uncertain mobilities to
estimate their contributions (the submodular property will
be proved in the next section). From such an opportunistic
perspective, when a recruited user reaches the location of one
task within his active time, we consider that the task can be
completed successfully [30]. In another word, we only use the
mobility prediction to estimate the user’s contribution while
ignoring his skills, device, and quality of sensed data, in order
to reduce the complexity.3

Specifically, as shown in Fig. 2, we divide the full map
into some grids [31]. Tasks are distributed in the grids and
users reaching one grid can complete the tasks in this grid.
Then, we use a modified Semi-Markov Process Model [6]–[8]
to predict the time-dependent transition probabilities between
the grids as the user’s mobility prediction.4 Then, the time-
dependent semi-Markov kernel Qu(li, lj , t), i.e., the probabil-
ity that user u will move from the grid li to lj just at the
t-th time slot, is defined by Eq. (1).

Qu(li, lj, t)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ΣLlkΣtt�=1(Zu(li, lk, t
�)− Zu(li, lk, t� − 1))·

Qu(lk, lj , t− t�), li �= lj
1− ΣLlk,lk �=li(Zu(li, lk, t)−
Σtt�=1(Zu(li, lk, t

�)− Zu(li, lk, t� − 1))·
Qu(lk, li, t− t�)), li = lj

(1)

where Zu(li, lj , t) denotes the probability that user u will
move from his current grid li to his next grid lj within t
time slots and can be derived from the statistical records.
Specifically, we consider the relay state transitions as li →
lk → lj when li �= lj , and also calculate the probability that
users stay at the same grid when li = lj . In order to further
reduce the great amount of calculation, as shown in Fig. 2,
we only calculate the transitions between the nearby grids,
i.e., up, down, left, right and itself. Based on the Q function,
we obtain the probability that user ui can complete task sj ,
and finally calculate the expected contribution of the recruited
user set for each task, as follows:

P (ui, sj , T ) = 1−Πt∈Ai∧t∈T
�
1−Qui(lui , lsj , t)

�
, (2)

E(sj , μ, T ) = 1−Πui∈μ
�
1− P (ui, sj , T )

�
. (3)

C. Cooperative Willingness

Besides the mobilities, in reality, there are also many factors
that may influence the users’ contribution on MCS campaign,
such as the users’ abilities, preferences, and willingness. These
factors make the users’ contribution more complex that the
utility function may even be non-submodular. We offer a real
and specific application scenario, which exploits the relays of

3Actually, such assumptions or conditions can be regarded as the proba-
bilistic effects on completing tasks, which can be simply modified and added
into the probabilistic utility function.

4Other existing mobility prediction models can be easily modified in our
utility function.

mobile users to help transport package, without influencing
their daily routes too much.5 Under this scenario, a user has
to meet the next user to transport packages at a pre-determined
time and location. Thus, their privacy information has to be
exposed to each other. Obviously, due to the privacy concerns,
users may not want to cooperate with unfamiliar people but
prefer to cooperate with their friends, which leads to a more
complex utility function (i.e., a non-submodular function).

Specifically, we define the pairwise willingness to cooperate
between users ui and uj as wij , where 0 < wij < 1
denotes the probability that they would like to perform tasks.
Then, we simply calculate the average cooperative willingness
W (ui, μ) among ui and other users in μ\ui:

W (ui, μ) =

�
uj∈μ\ui

wij

|μ| − 1
. (4)

Note that the average willingness W is actually a discrete
and time-varying function in our online user recruitment
problem, since the recruited (and active) users are changed
in an online manner. In other words, for the t-th time slot,
the users’ cooperative willingness should be calculated accord-
ing to the current μ, denoted as W (ui, μt). Combined with
the Q function in mobility prediction, we then obtain the
new probability that user ui can complete task sj under the
cooperative willingness, and get the new contribution:

P̂ (ui, sj , μ, T ) = 1−Πt∈Ai∧t∈T
× �

1−W (ui, μt)Qui(lui , lsj , t)
�
, (5)

Ê(sj , μ, T ) = 1−Πui∈μ
�
1− P̂ (ui, sj, μ, T )

�
. (6)

D. Problem Formulation

To summarise, in this paper, we consider a practical online
MCS with dynamically participating users. There is a bud-
get B for the whole MCS campaign rather than per task,
which is used to recruit users and pay for their participation.
Note that tasks are weighted equally and only need to be
completed once. We also assume that users entering a grid
can complete the tasks in it, ignoring the differentiation of
users’ skills, devices, and task completion qualities. Moreover,
we further consider the cooperative willingness attributed to
each user depending on which users are recruited together.
Then, we describe our research problem formally.

Problem [Online User Recruitment under the Budget and
Time Constraints]: Given a set of MCS tasks, with a limited
budget and the duration time of the MCS campaign, we recruit
a set of sequential participating users who move around to
cooperatively perform tasks, with (non-) submodular utility
and the objective of maximizing the number of completed
tasks:

maximize Σsj∈SÊ(sj , μ, T ) (7)

subject to μ ⊆ U, Σui∈μpi ≤ B (8)

A running example shown in Fig. 3 provides an intuitive
interpretation of our online user recruitment problem. Consider
that there are three users moving around the 5×4 grids. They
will participate in the MCS campaign in real time, and we can
only recruit two of them under the budget and time constraints.
At 8:00, user 1 participates and we predict that he will reach
the location of tasks 2 and 3 within his active time. However,
user 1 is not familiar with others and she doesn’t want to

5It is a more general application scenario from CrowdDeliver [32].
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Fig. 3. An example of online user recruitment in MCS.
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0.1 0.7 /

w23=0.7

w12=0.1 w13=0.1

w23=0.7

User 1/2/3
w12 Willingness

Fig. 4. An example of non-submodular utility.

cooperatively perform these tasks. Hence, her contribution
seems relatively less and we decide to keep waiting since we
have enough time. When user 2 connects to server, we find
that she would like to cooperate with user 3 to perform tasks
2 and 3, which contributes a lot and thus we recruit her. When
user 3 connects to server, although she may perform only one
task but we have less remaining time, and hence, we recruit
her. Finally, we recruit users 2 and 3 in an online manner to
cooperatively complete the most tasks under the budget and
time constraints.

IV. ONLINE USER RECRUITMENT UNDER

BUDGET AND TIME CONSTRAINTS

A. Problem Hardness and (Non-) Submodular Utility

Before prescribing the online strategies, we first prove that
the online user recruitment problem is NP-hard.

Theorem 1: The online user recruitment problem under the
budget and time constraints is NP-hard.
proof. Without loss of generality, we ignore the constraints and
the online process, but consider a simple MCS scenario that
we can recruit k users to complete tasks, which is indeed a
classic NP problem, Max k-cover [33]: given a collection of
task sets {Su1 , Su2 , . . . , Sun}, each of which covers several
tasks Sui = {si1 , si2 , . . .} completed by the user ui, then
the objective is to select k sub-collections to cover the most
tasks. Thus, the special case is NP-hard. Consequently, further
considering the constraints and the online process, our problem
is NP-hard.

Moreover, considering the users’ diminishing and even
irregular contribution, in this paper, we use a submodular
function f() and a non-submodular function g() to measure
the recruited users’ utility. Specifically, we define f(μ) =
Σsj∈SE(sj , μ) according to Eq. 3, as the submodular pre-
dicted contribution of the recruited user set μ. Similarly,
we have g(μ) = Σsj∈SÊ(sj , μ) according to Eq. 6, as the
non-submodular utility of μ with the following property:

Proposition 1: 1) g(∅) = 0; 2) g(μ) is non-submodular.
proof. 1) If we haven’t recruited any users, then no tasks will
be performed. Hence, we have g(∅) = Σsj∈SÊ(sj , ∅) = 0
according to Eq. 6. 2) As shown in Fig. 4, we provide
an intuitive example to prove the non-submodular property

Observe_k

EsƟmate k=2

Observe Select

k1 k2

Observe Select

(1) EsƟmaƟon (2) User Recruitment

Historical
data

Fig. 5. Segmented online user recruitment strategy.

of g(μ). Without loss of generality, we consider that all of
the three users have the pre-determined traces that each of
them can cover 2 tasks without overlapping. The willingness
between two of them are listed on the left part, where w12 =
w13 = 0.1 and w23 = 0.7. According to Eq. 6, we obtain
�
g({u2, u3})− g({u3})

�− �
g({u2, u1, u3})− g({u1, u3})

�

= Σsj∈SÊ(sj , μ23 = {u2, u3})− . . .
= 2 ·W (u2, μ23)Qu2 + 2 ·W (u3, μ23)Qu3 − . . .
= (2.8− 2)− (1.8− 0.4) = 0.8− 1.4 < 0. (9)

Moreover, assume that we already have recruited users u2

and u3 and then add u1 to them. Then we have g({u1} ∪
{u2, u3}) = 1.8 < 2.8 = g({u2, u3}). Thus, g() is
non-submodular and non-monotonic.

In addition, in real recruitment, we always recruit users if
and only if they have the positive gains, i.e., g(ui ∪ {μ}) −
g({μ}) > 0. Hence, we actually consider the non-decreasing
functions and not additions that decrease the overall utility.

B. Segmented Online User Recruitment Strategy

In online scenarios, to deal with the budget and time
constraints, we present a segmented user recruitment strategy,
which first estimates the number of users to be recruited and
then segmentally recruits them in an online manner, as shown
in Fig. 5.

1) Estimation via (Non-) Submodular Maximization With
Knapsack Constraint: In the online user recruitment problem,
the biggest difficulty is the unknown future information, espe-
cially when we need to deal with the constraints and (non-)
submodular utilities simultaneously. To reduce the difficulty,
we first consider the payments are equal to users’ bids and
costs, i.e., pi = bi = ci, and also make an assumption to
deal with the budget and time constraints before the online
recruiting:

Assumption 1: The distribution of user participating
time is periodical and the users have an independent cost
distribution.
In many scenarios where humans are involved, Assumption 1
is common and reasonable, such as people’s check-in records
of Gowalla, Brightkite, and GeoLife6 in Fig. 6, the counts of
which within the same periods in weekdays are roughly the
same and independent from people. Under this assumption,
we can explore the historical data to estimate the number of
all participating users and the number of users to be recruited,
in order to satisfy the budget and time constraints in the online
user recruitment. The basic idea is to learn the periodical distri-
bution to estimate the number of participating users, according
to the remaining time of the MCS campaign. Then, we can

6Gowalla and Brightkite [34] are two famous location-based social network-
ing service providers where users share their locations by checking-in, and
GeoLife [35], used in our evaluation section, can be seen as a MCS application.
The user activities in these apps have a lot in common, e.g, the users have to
reach some location to check-in or perform sensing tasks. Thus, we use them
to verify Assumption 1.
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Algorithm 1 Greedy Offline Estimation()

Input: S, B, T = {ts, . . . , te}, Uh
1: Estimate n� and construct U � = {u�1, u�2, . . . , u�n} from Uh

according to the time T ;
2: Initialize μ = ∅, find v∗ = arg maxui∈U � f({ui});
3: while U � �= ∅ do
4: Calculate δui = f(μ∪{ui})−f(μ)

pi
, ∀ui ∈ U � (f � g);

5: Find u∗ = argmaxui∈U � δui ;
6: if

�
uj∈μ pj + pi ≤ B then μ← μ ∪ ui;

7: U � ← U � \ u∗;

8: Set μ∗ = argmaxμ∗∈{{v∗},μ} f(μ∗);
9: return n�, k = |μ∗|

Fig. 6. Check-in records of Gowalla, Brightkite, and GeoLife.

construct a simulated user set from historical data, which can
actually be seen as a replacement of real participating users.
With the simulated user set, we consider the user recruitment
problem under the budget constraint as the (non-) submodular
maximization with knapsack constraint [24]–[27], and propose
a greedy offline algorithm to estimate the number of users to
be recruited, which is summarized in Algorithm 1.

We first estimate the number of participating users n�
and construct a simulated user set U � from historical data
Uh, according to the time T (line 1). From the simulated
user set, according to the (non-) submodular utility function,
we greedily select the users who have the largest ratio of
marginal revenues and payments in an offline manner and
recruit them under the budget constraint (lines 4-5). Finally,
we obtain the estimated n� and k, which actually represents the
budget and time constraints with the (non-) submodular utility.
In this way, with the help of Assumption 1, we estimate the
number of participating users and the number of users to be
recruited from historical data before the real online recruiting
process, in order to approximately deal with the budget and
time constraints first.

2) Segmented User Recruitment via Submodular k-
Secretaries Problem: With the estimated numbers n� and k,
we formulate the online user recruitment problem as a variant
of the famous secretary problem, i.e., the (non-) submodular
k-secretaries problem [15], not considering the budget and
time constraints but focusing on the online recruiting process.

The classic secretary problem is to recruit the best one out of
n participating users, where users are participating in sequence
and the recruitment decisions should be made immediately.
As a variant, the submodular k-secretaries problem presented
by Bateni et al. [15] further considers the multiple recruited
users with submodular utility functions. Similarly, we further
extend the k-secretaries problem with a non-submodular utility
function, which also provides an appropriate solution for
our online user recruitment problem with non-submodular
contribution functions.

Algorithm 2 Online User Recruitment Segmented()

Input: S, B, U = {u1, u2, . . . , un}, n�, k, μ = ∅
1: Initialize l = n�/k�, lob = l/e� and ε = 0;
2: while U �= ∅ do
3: Wait for the next user ui’s coming, U ← U \ ui;
4: if i > n� and

�
uj∈μ pj + pi ≤ B then μ← μ ∪ {ui};

5: else
6: Initialize segmentID = i/l;
7: Calculate δui = (f(μ ∪ {ui})− f(μ))/pi (f � g);
8: if i ≤ segmentID ∗ l+ lob then
9: ε = max{ε, δui}; � Observe

10: else if i > segmentID ∗ l + lob and δui ≥ ε then
11: if

�
uj∈μ pj + pi ≤ B then

12: μ← μ ∪ {ui}; � Recruit
13: i = segmentID ∗ l + 1 and ε = 0;
14: Continue; � Break at Algorithm 3

return μ

Without considering the budget and time constraints, our
online user recruitment can be naturally formulated as a (non-)
submodular k-secretaries problem, interpreted as ‘recruit k out
of n users to maximize the expected number of completed
tasks according to a (non-) submodular utility function’. Then,
we propose a k-segments online user recruitment algorithm,
as summarized in Algorithm 2. With the estimated n� and k,
we first approximately partition the real participating users into
k equally-sized segments and select the best user from each
segment according to the (non-) submodular utility functions.
If the real number of participating users n is larger than our
estimated n�, we will continue to recruit them until the budget
is exhausted (line 4). For each segment, under the budget
constraint, with the natural constant e, we observe the first
lob = 1/e · l� users, record the largest contribution/payment
ratio as a threshold ε (line 9) and select the next one who has
a larger δui than ε (line 10). Finally, we obtain the recruited
user set μ in an online manner from the real users.

Note that users are split into segments according to arrival
order. Actually, from the view of unknown future users and
their arrival time, the users can be seen as being assigned
to segments randomly, which can be dealt with well by the
secretary problem. As shown in Fig. 7, we provide some
intuitive examples and conduct some experiments to explain
the segmented strategy, especially on the indexing order.
Specifically, we index the users in descending, ascending,
random, and original orders respectively, divide them into
segments in order, and compare their performances in terms
of completed tasks. Since the secretary problem observes
the first some users and then select the next larger one,
the descending case can recruit no users and thus completes no
tasks. Similarly, the ascending case will recruit the first user
after observing, thus the recruited users can complete relatively
few tasks, while the random and original cases can achieve
higher and similar performances. Therefore, our segmented
strategy can deal with the online user recruitment well.

C. Dynamic Online User Recruitment Strategy

By exploiting the historical data, our proposed segmented
strategy can deal with the online user recruitment problem
under the budget and time constraints well. However, due
to the users’ dynamical participation and (non-) submodular
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Algorithm 3 Dynamic Online User Recruitment

Input: S, B, T = {ts, . . . , te}, U{u1, u2, . . . , un}
1: μ = ∅, Srest = S, Brest = B, Trest = T , Urest = U ;
2: while Brest > 0 and U �= ∅ do
3: n�, k ← Estimation(Srest, Brest, Trest);
4: � If k = 0 or n > n�, recruit users under Brest
5: μ← Segmented(Srest, Brest, Urest, n�, k, μ);
6: � Break after a new user has been recruited
7: Update Srest, Brest, Trest, Urest;

return μ

Fig. 7. Segmented online user recruitment strategy with different indexing
orders.

Fig. 8. Dynamic online user recruitment strategy.

utilities, we could not accurately calculate a user’s contribution
and cost. Moreover, although the participation is assumed to be
periodical, its period still needs to be learned through historical
data. All these uncertain factors make the estimated numbers
not always precise. In order to correct the errors in estimation
and make use of the new information obtained during the
online recruiting process, we further propose a dynamic user
recruitment strategy extended from the Algorithms 1 and 2,
i.e., the Estimation() and Segmented() mentioned above.

The basic idea of the dynamic user recruitment strategy is
to conduct a re-estimation after recruiting a new user, which
actually can be seen as a dynamic iteration of Estimation()
and Segmented(). Fig. 8 illustrates a straightforward exam-
ple, where the dynamic strategy first estimates the numbers
n� = 6 and k = 2 from historical data, and partitions the
online users into 2 equal-sized segments for online recruiting
(Round 1). After one user has been recruited, the dynamic
strategy then re-estimates the remaining numbers of partici-
pating users n� = 4 and recruited users k = 2, according
to the currently obtained information, i.e., the remaining
tasks, users, budget and time. The formal dynamic strategy
is provided in Algorithm 3. We iteratively run Estimation()
and Segmented() for each recruitment (lines 3-6), until the

budget is exhausted or the MCS campaign is finished (line 2).
Specifically, Segmented() will break after one user has been
recruited (line 5 in Algorithm 3 and line 12 in Algorithm 2),
and then we update the current information for re-estimation.
For the special case, e.g., k = 0 or n > n�, we will recruit
the remaining users who can satisfy the budget constraint.
In this way, our proposed dynamic strategy can make use of the
newly obtained information and correct the estimation errors
constantly, and better solve the online user recruitment under
the budget and time constraints.

V. THEORETICAL ANALYSIS

A. Analysis on Estimation() Algorithm

Before analyzing the online user recruitment strategies,
we first analyze the Algorithms 1, i.e., the Estimation().
We relax the online user recruitment to an offline scenario,
where all of the users and tasks are pre-determined and we
select a user set in a totally offline manner. As mentioned
above, our objective function f(μ) is non-decreasing and
submodular. Then, the user recruitment problem is formulated
as a variant of submodular maximization problem with linear
costs, which is NP-hard and our offline greedy algorithm can
achieve a (1−e−1/2) approximation [25] of the optimal value,
denoted as f(μ) ≥ (1− e−1/2) · f(OPT ), where OPT is the
optimal user set and μ is the greedily selected user set with
cardinality k = |μ|.

For the Estimation() with non-submodular utility, we intro-
duce the submodularity ratio in Definition 1, which character-
izes how close a non-submodular utility function g(μ) is to
being submodular.

Definition 1: The submodularity ratio γ ∈ (0, 1) of a
non-negative and non-submodular set function g() is defined
as

[g(μ1 ∪ u)− g(μ1)] ≥ γ · [g(μ2 ∪ u)− g(μ2)], (10)

where ∀μ1 ⊆ μ2, u /∈ μ2.
Same with the above analysis for submodular utility, the Esti-
mation() can be formulated as a variant of non-submodular
maximization problem with a knapsack constraint. By using
the submodularity ratio γ of g(), our offline greedy algo-
rithm with non-submodular utility can achieve the (1−e−γ/2)
approximation ratio,7 i.e., g(μ)≥(1−e−γ/2)·g(OPT ). Before
starting the proof, we first present some useful properties of
the non-submodular functions.8

Lemma 1: Given the submodularity ratio γ of g(), we have
g(μ2)− g(μ1) ≤ 1

γ

�
u∈μ2\μ1

[g(μ1 ∪u)− g(μ1)], ∀μ1 ⊆ μ2.
Then, we prove that there is an improvement towards to the

optimal solution in each selection.
Lemma 2: For each selection ui, we have g(μi+1) −

g(μi) ≥ cui

B (g(OPT )− g(μi)).
Theorem 2: The offline greedy selection with

non-submodular utility can achieve an approximation
ratio of (1− e−γ/2).
proof. When k = 1, the theorem is true since we will
automatically select the best one. When k > 1, according to

7Combined with partial enumeration, a modified greedy algorithm can
achieve a (1 − 1/e) approximation ratio [26]. However, it is too computa-
tionally expensive for real world applications (the computation cost is O(n5)
in general).

8The proofs of Lemmas 1, 2, and 3 are standard, which are included in the
appendix for the sake of completeness.
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Lemma 2, we have

g(μ) = g(μk−1) + [g(μ)− g(μk−1)]

≥ g(μk−1) + γ · cuk

B
· [g(OPT )− g(μk−1)]

= (1 − γ · cuk

B
)g(μk−1) + γ · cuk

B
· g(OPT )

≥ [1−
k	
i=1

(1− γ · cui

B
)]g(OPT ). (11)

Similar with the Theorem 1 in [25], we consider three cases:
Case 1: If g(v∗) > 1/2 · g(OPT ), we achieve g(μ∗) ≥
g(v∗) > 1/2 · g(OPT ) according to line 8 in Algo-
rithm 1, where v∗ = argmaxui∈U � f({ui})

pi
and μ∗ =

arg maxμ∗∈{{v∗},μ} f(μ∗).
Case 2: If g(v∗) ≤ 1/2 · g(OPT ) and

�
u∈μ cu ≤ 1/2 · B,

we have cu� > 1/2 · B, ∀u� ∈ U \ μ and |OPT \ μ| ≤ 1.
Thus, we have g(OPT \ μ) ≤ 1/2 · g(OPT ). Due to the
non-submodularity of g(), we have g(OPT ∩ μ) − g(∅) ≥
γ[g(OPT )− g(OPT \ μ)]. Thus, we have g(μ) ≥ g(OPT ∩
μ) ≥ γ/2 · g(OPT ).
Case 3: If g(v∗) ≤ 1/2 · g(OPT ) and

�
u∈μ cu > 1/2 · B,

according to Eq. 11, we have

g(μ) ≥ [1−
k	
i=1

(1− γ · cui

2
�
u∈μ cu

)]g(OPT )

≥ [1− (1− γ

2k
)k]g(OPT ) ≥ (1− e−γ/2)g(OPT ),

(12)

where the second inequality uses the fact that 1−
n
i=1(1 −

ci�n
i=1 ci

) achieves the minimum value when c1 = . . .=cn.

In all cases, we have g(μ∗)≥min{1/2, γ/2, 1−e−γ/2}. For
0<γ<1, we have 1/2>γ/2>1−e−γ/2, and thus we obtain
g(μ∗)≥(1−e−γ/2) ·g(OPT ). In fact, as shown in Eq. 10, g()
becomes submodular when γ = 1 and its approximation ratio
is equal to the one of f().

B. Analysis on Segmented() Strategy

Then, we analyze the Algorithms 2, i.e., the Segmented().
For the submodular utility, we consider the online user
recruitment problem as a submodular k-secretaries problem,
where f(μ) is proved as a non-decreasing submodular func-
tion and the users are participating in real time. Under the
online scenario, with the determined k, our segmented user
recruitment strategy can be proved to achieve an expected
competitive ratio of (1−e−1)/7 [15], denoted as E{f(μ)} ≥
(1−e−1)/7 · f(OPT _k), where OPT _k is the optimal set
under the cardinality k.

Similarly, we use the submodularity ratio γ in Definition 1
to deal with the non-submodular utility function g(), where
the competitive ratio of our Segmented() is presented in the
following theorem.

Theorem 3: With the determined k, the Segmented()
algorithm achieves an expected competitive ratio of
γ2(1− e−1)/7.

The basic idea of the following analysis is to use the
submodularity ratio to approximate the non-submodular g()
to a submodular function, and then further calculate its com-
petitive ratio. Recall that the optimal user set is OPT with the
cardinality k. Considering that the user set of the i-th segment

is Ui, 1 ≤ i ≤ k, we define that ν =
�k
i=1{Ui ∩ OPT }. We

first show that selecting one user from each segment means
that we can really select many optimal users, as follows:

Lemma 3: The expected |ν| is at least k(1− e−1).
Then, we show that partial optimal users can ensure a good

approximation of the optimal solution:
Lemma 4: For a random subset ν of OPT , the expected

value of g(ν) is at least γ · |ν|k · g(OPT ).
proof. Let OPT = {u1, u2, . . . , uk}, Gi =

g({u1, u2, . . . , ui}), G0 = 0. Define Di = Gi − Gi−1 =
g({u1, u2, . . . , ui}) − g({u1, u2, . . . , ui−1}). Let
(u∗1, u

∗
2, u

∗
3, . . . , u

∗
i ) denote the cyclic permutation of

(u1, u2, u3, . . . , ui), where u∗1 = ui, u
∗
2 = u1, u

∗
3 =

u2, . . . , u
∗
i = ui−1. Note that Gi is equal to the

expectation of g({u∗2, u∗3, . . . , u∗i+1}) since {u∗2, u∗3, . . . , u∗i+1}
is equal to {u1, u2, . . . , ui}. What’s more, Gi is
also equal to the expectation of g({u∗1, u∗2, . . . , u∗i })
because the sequence (u∗1, u

∗
2, . . . , u

∗
i ) has the same

distribution as that of (u1, u2, . . . , ui). Therefore,
Di = g({u∗1, u∗2, . . . , u∗i }) − g({u∗2, u∗3, . . . , u∗i }). Similarly,
Di+1 = g({u∗1, u∗2, . . . , u∗i+1}) − g({u∗2, u∗3, . . . , u∗i+1}).
According to Definition 1, we can get Di ≥ γ ·Dj , ∀j > i.

Afterwards, we have g(OPT ) = Gk = D1 +D2 + . . .+Dk

and g(ν) = G|ν| = D1 + D2 + . . . + D|ν|. Considering the
submodularity ratio γ, we can get

k · g(ν) = k(D1 +D2 + . . .+D|ν|)
≥ γ(D1 +D2 + . . .+D|ν|)

+ γ(D2 +D3 + . . .+D|ν|+1)
+ . . .+ γ(Dk +D1 + . . .+D|ν|−1)

= γ · |ν| · (D1 +D2 + . . .+Dk)
= γ · |ν| · g(OPT ). (13)

Therefore, g(ν) ≥ γ · |ν|k · g(OPT ).
Define μk as the selected user set after k segments, we then

prove that the local non-submodular optimization in each
segment can lead to a global approximation.

Lemma 5: The expected g(μk) is at least γ2 · |ν|7k ·g(OPT ).
proof. Recall ν = {u1, u2, . . . , u|ν|} and ui ∈ Uhi ∩OPT for
1 ≤ i ≤ |ν| and 1 ≤ hi ≤ k. Define �j := g(μj) − g(μj−1)
as the gain of the j-th segment. With probability 1/e, we can
choose the best uj for the j-th segment, which maximizes
g(μj) with the fixed μj−1, thus

E(�hi) ≥ E[g(μhi−1 ∪ ui)− g(μhi−1)]/e. (14)

In order to prove Lemma 5 by contradiction, we first
assume that E[g(μk)] < γ2 · |μk|

7k · g(OPT ). Define ψ =
{ui, ui+1, . . . , u|ν|}. By Lemma 1 and monotonicity of g(μ),9

g(ψ) ≤ g(ψ ∪ μhi−1) ≤ g(μhi−1)

+
1
γ

|ν|�
j=i

[g(μhi−1∪uj)− g(μhi−1)],

E[g(ψ)] ≤ E[g(μhi−1)]

+
1
γ

|ν|�
j=i

E[g(μhi−1∪uj)− g(μhi−1)]. (15)

Note that users are coming in random order with uniform
distribution of utilities, we consider that ∀ui ∈ ψ is the same

9We won’t recruit the users with no marginal revenue. Thus, g(µ) can
actually be seen as non-decreasing.
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in expectation, thus

E[g(ψ)] ≤ E[g(μhi−1)]

+
1
γ

(|ν| − i+ 1)E[g(μhi−1 ∪ ui)− g(μhi−1)]. (16)

Considering Eqs. 14 and 16, we have

E(�hi) ≥ E[g(μhi−1 ∪ ui)− g(μhi−1)]/e

≥ γ
E[g(ψ)]− E[g(μhi−1)]

e(|ν| − i+ 1)
. (17)

According to Lemma 4, we have E[g(ψ)] ≥ γ · |ψ|
k ·

f(OPT ) = γ · |ν|−i+1
k · f(OPT ). Since we assume that

E[g(μk)] < γ2 · |ν|7k · g(OPT ), and g() is monotone, we have

E(�hi) ≥ γ
E[g(ψ)]− E[g(μhi−1)]

e(|ν| − i+ 1)

≥ γ2

ek
g(OPT )− |ν|γ3

7ek(|ν| − i+ 1)
g(OPT ). (18)

To eliminate i, we add Eq. 18 for 1 ≤ i ≤ �|ν|/2� and
obtain
�|ν|/2	�
i=1

E(�hi)≥�
|ν|
2
�γ

2

ek
g(OPT )

− |ν|γ
3

7ek
g(OPT )

�|ν|/2	�
i=1

1
|ν| − i+ 1

. (19)

Since
�b
j=a 1/j ≤ ln b/(a+ 1), 1 < a ≤ b, we have

�|ν|/2	�
i=1

E(�hi)≥�
|ν|
2
�γ

2

ek
g(OPT )

− |ν|γ
3

7ek
g(OPT ) ln

|ν|
|ν|/2� . (20)

Similarly, we add Eq. 18 for 1≤ i≤|ν|/2�, and then obtain

|ν|/2��
i=1

E(�hi) ≥ 
|ν|
2
�γ

2

ek
g(OPT )

− |ν|γ
3

7ek
g(OPT ) ln

|ν|
�|ν|/2� . (21)

Add Eqs. 20 and 21, since |ν|2

|ν|/2��|ν|/2	 < 4.5, we have

2E[g(μk)] ≥
�|ν|/2	�

1

E(�hi) +

|ν|/2��

1

E(�hi)

≥ |ν|γ
2

ek
g(OPT )− |ν|γ

2

7ek
g(OPT ) ln

|ν|2
|ν|/2��|ν|/2�

≥ |ν|γ
2

ek
g(OPT )− |ν|γ

3

7ek
g(OPT ) · ln 4.5

=
|ν|γ2

k
g(OPT )(

1
e
− ln 4.5

7e
γ) ≥ |ν|γ

2

k
g(OPT ) · 2

7
,

(22)

which contradicts E[g(μk)] < γ2 · |ν|7k · g(OPT ), hence we
obtain E[g(μk)] ≥ γ2 · |ν|7k · g(OPT ).

Finally, we prove Theorem 3, i.e., Segmented() algorithm
achieves an expected competitive ratio of γ2(1− e−1)/7.
proof.

Recall ν =
�k
i=1{Ui ∩ OPT }. According to Lemma 3,

the expected value of |ν| ≥ (1 − e−1)k, i.e.,
�k

i=1 Pr[|ν| =
i] · |ν| ≥ (1 − e−1)k. According to Lemma 5, we also know
that g(μk) ≥ γ2 · |ν|7k ·g(OPT ), i.e.,

�
v∈V Pr[g(μ) = v||μ| =

|ν|] · v ≥ γ2 · m7k · g(OPT ), where V denotes the set of values
that our algorithm can get. Therefore, we obtain

E[g(μk)] =
k�
i=1

E[g(μk)||ν| = i]Pr[|ν| = i]

≥
k�
i=1

γ2 · i
7k
· g(OPT ) · Pr[|ν| = i]

=
γ2

7k
· g(OPT ) ·E[|ν|] ≥ γ2(1− e−1)

7
· g(OPT ).

(23)

Actually, when the submodularity ratio γ= 1, the compet-
itive ratio becomes 1− e−1/7, which is the same as the one
of submodular function f().

C. Analysis on Online User Recruitment Strategies

With the analysis on Estimation() and Segmented(), we then
give the competitive ratio of the segmented online user recruit-
ment strategy with (non-) submodular utility:

Theorem 4: The segmented online user recruitment
strategy achieves an approximation ratio of
γ2(1− e−1)(1− e−γ/2)/7.
Proof.

1) As discussed above, OPT _k is the optimal set under
the cardinality k, and OPT is the global optimal set without
cardinality constraints. Since μ is the greedy recruited user
set with the same cardinality k, we obtain the following
inequality:

E{g(μ)} ≥ γ2(1− e−1)
7

g(OPT _k)

≥ γ2(1− e−1)
7

g(μ)

≥ γ2(1−e−1)(1−e−γ/2)
7

g(OPT ). (24)

2) In the online scenario, we cannot exactly obtain the
users who will participate in the MCS campaign in advance.
Under Assumption 1, we construct the simulated user set
U � as a replacement of the real user set U , and greedily
select μ_U � from U � to estimate μ. Therefore, we have
g(μ_U �)≈g(μ) and E{g(μ)} achieves an approximation ratio
of γ2(1−e−1)(1−e−γ/2)/7.

Actually, the dynamic online user recruitment is an exten-
sion of the above segmented strategy, which can correct the
errors and make use of new information during the online
recruiting process. Thus, the dynamic strategy can outperform
the segmented strategy in expectation. The proof is simple that
we provide some intuitive examples in Fig. 9: after one user
has been recruited, if the estimated k in the dynamic strategy is
the same as in the segmented strategy, the dynamic strategy has
more participating users than the segmented strategy, since it
needs to skip over some users to the next segment and thus the
dynamic strategy will expectedly outperform the segmented
strategy. Similarly, if the estimated ks are different, it means
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Fig. 9. Different dynamic and segmented cases.

that the previously recruited users cost too much/little, and the
segmented strategy cannot correct the errors and make use of
new information in time, which leads to a worse performance.

Finally, we give a brief analysis on the computation com-
plexity. In Estimation(), the total number of users is n, thus the
loop in lines 3-7 of Algorithm 1 is performed at most n times.
Considering that the complexity of the main step in line 4 is
O(n), we obtain that the complexity of Estimation() is O(n2).
Similarly, the loops in Segmented() can be performed at most
n times, thus it achieves a complexity O(n). Consequently,
as the dynamic iterations of Estimation() and Segmented() for
at most n times, the computation complexity of our dynamic
strategy is O(n3).

VI. REVERSE AUCTION-BASED TRUTHFUL PRICING

FOR ONLINE USER RECRUITMENT

In general, the organizers and users in MCS are rational and
selfish. From the user side, the organizer should provide proper
rewards for the recruited users to cover the sensing costs
and encourage user participation. From the organizer side,
the pricing mechanism also needs to ensure that users bid their
costs truthfully, in order to pay less and earn more. Recently,
the reverse auction has been used for pricing10 in MCS to
simultaneously satisfy the truthfulness and individual rational-
ity [3], [36], [37], where users bid first according to their costs
and then the organizers determine the true payments. However,
the existing mechanisms determine the prices for the users by
ordering them according to their contributions and costs in an
offline manner, which can hardly be used in online recruitment,
especially considering the budget constraint.

In our proposed dynamic and segmented strategies, the user
recruitment in segments can actually be seen as the ordering
of users, and thus a reverse auction-based pricing mechanism
can be easily modified, as summarized in Algorithm 4. The
basic idea is to pay a recruited user according to the other
users’ bids, and the payment equals the weighted cost bid
by the second “best” user. Specifically, we first deal with the
special case, i.e., the real number of participating users is
larger than our estimated n�, where we will recruit the first
extra user who we can afford and pay him all of the remaining
budget11 (line 1-2), in order to ensure the truthfulness. For the
user recruitment in each segment, we use the bids observed
from the first lob users and determine a price for the recruited
user (line 3-4), denoted as pi = bi · δui/ε. Note that the
total payments (instead of bids or costs) of recruited users
are constrained by B, and thus we only recruit the users we
can afford (line 5-6). In this way, the pricing mechanism has
been skillfully added into the online user recruitment strategy

10Note that the pricing is almost the same as the existing incentive
mechanisms, while it pays more attention on determining the rewards but
not encouraging the user participation.

11The remaining budget is usually very small, since our proposed dynamic
strategy will re-adjust after recruiting a new user.

Algorithm 4 Reverse Auction-Based Pricing

Input: S, B, U = {u1, u2, . . . , un}, n�, k, μ = ∅
In Segmented(), ui is coming:
1: if i > n� and

�
uj∈μ pj + bi ≤ B then

2: Recruit ui with pricing B −�
uj∈μ pj ;

3: else if i > segmentID ∗ l + lob and δui ≥ ε then
4: pi = bi · δui/ε;
5: if

�
uj∈μ pj + pi ≤ B then

6: Recruit ui with pricing pi;

Fig. 10. An example of trajectories and grids.

without much extra computation, and the truthfulness and
individual rationality will be proved in the appendix.

VII. PERFORMANCE EVALUATION

A. Data Sets & Settings

The three real-world data sets are used for the evaluation:
• Feeder [39] contains four kinds of data, i.e., the cellphone

CDR data, smartcard data, taxicab GPS data, and bus
GPS data collected from Shenzhen, China. We select
300 taxi traces as the participating users, each of whom
has continuous GPS records collected from the same
periods of time, 8:00-18:00.

• Shanghai contains the GPS data collected from taxis and
trucks in Shanghai, China. Similar to Feeder, we select
310 traces as users. Note that nearly half of them were
collected from trucks, which have the more regular
mobilities.

• GeoLife [35] was collected from phones carried by
182 users, which recorded a broad range of users’ outdoor
movements. It contains 17000+ trajectories and has a
total duration of 50000+ hours, from which we select
727 traces. Compared with Feeder and Shanghai, GeoLife
has the fine-grained trajectories but users may stay at the
same place for a long time.

For mobility prediction, we split the urban area of Feeder,
Shanghai and GeoLife into 15*10 grids, each with the size
of 2km*2km, as shown in Fig. 10. For the selected traces,
we use the first 5-hour data to train the mobility prediction
model and construct the historical data for user recruitment
strategies. Then, the MCS campaign begins at 13:00 and
participating users move according to the traces. For the
cooperative willingness, we randomly generate the matrices of
relations between users. The tasks will be generated in grids
with the uniform duration time. The users will participate in
the MCS campaign in real time, with the uniform costs and
active time (working time). If we recruit one user, he will
perform the tasks in the grids he will pass by during his active
time (working time).
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Fig. 11. Main results of Feeder with submodular utility.

Fig. 12. Main results of Shanghai with submodular utility.

B. Comparison Algorithms & Metrics

We mainly compare our proposed online user strategies
(referred to as “ON-SEG” for segmented strategy and “ON-
DYN” for dynamic strategy) with the following algorithms:

• RANDOM, which randomly recruits users from all par-
ticipating users until the budget is exhausted.

• OFF, which greedily recruits the users who
have the largest contribution/cost ratio, i.e.,
argmaxui∈U

f(μ∪{ui})−f(μ)
ci

, in an offline manner.
• OPT, which exhaustively recruits the optimal user set

under budget constraints.
Obviously, OPT costs a lot in the submodular user recruit-
ment problem, and we implement it to verify our bound in
Section IV.D. In most cases, OFF and RANDOM can be seen
as the upper and lower bound of our proposed strategies.

We use the following metrics to evaluate the compared
algorithms:1) Number of completed tasks, which is the main
metric to evaluate our user recruitment strategy. 2) Consumed
budget, which limits the number of recruited users and reflects
the effectiveness. 3) Overpayment ratio, which shows the
effectiveness of our online pricing mechanism, defined as the
total payment/cost ratio, i.e.,

�
ui∈μ(pi − ci)/

�
ui∈μ ci.

C. Evaluation Results

Completed tasks: We first illustrate the results in terms
of the main metric, i.e., the number of completed tasks,
as shown in Figs. 11, 12, and 13 with submodular utility, and

Fig. 13. Main results of GeoLife with submodular utility.

Fig. 14. Main results of Feeder with non-submodular utility.

Fig. 15. Main results of Shanghai with non-submodular utility.

Figs. 14, 15, and 16 with non-submodular utility. In order to
provide a comprehensive evaluation, we change the number
of participating users, the number of tasks, the average active
time of users, and the average duration time of tasks respec-
tively, while keeping the others fixed (i.e., the number of users
and tasks is 200, and the average active time and duration time
is 120). We set the budget to 200 units and the average cost
of users is 20. The results over three data sets have the similar
tendencies and show that our proposed online user recruitment
strategies can achieve a good performance.

Specifically, ON-SEG and ON-DYN outperform RAN-
DOM and achieve high competitive ratios of OFF. Note that
ON-DYN always complete more tasks than ON-SEG, since
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TABLE II

COMPLETED TASKS AND COMPETITIVE RATIO

Fig. 16. Main results of GeoLife with non-submodular utility.

Fig. 17. Recruited users of Feeder, Shanghai, and GeoLife.

ON-DYN can correct the estimation errors and make use
of the newly obtained information. Moreover, comparing the
subfigure (a) and (b) of Figs. 9-14, we find that the growth
rates over users are lower than tasks. The reason is that we
have already recruited the effective users to perform tasks, and
thus more users cannot improve the performances significantly.
In addition, compared with Feeder and GeoLife, our strategies
perform better in Shanghai, since the traces are collected from
trucks in Shanghai City, which has a stronger regularity so that
our dynamic strategies can achieve more accurate predictions
and make the timely adjustments.

Moreover, the algorithms with submodular function com-
plete more tasks than the ones with non-submodular func-
tion, since the non-submodular case further considers the
cooperative willingness, which leads to the decline of the
probability of completing tasks. We also compare the numbers
of recruited users in SEG and DYN in two cases. As shown
in Fig. 17, the numbers are very close, which shows that

Fig. 18. Budget and cost of Feeder, Shanghai, and GeoLife.

Fig. 19. Consumed budget of Feeder, Shanghai, and GeoLife.

the worse performances are not caused by users but the
non-submodular function. Actually, the trends of the sub-
modular and non-submodular results are very similar, which
also shows that our proposed algorithms work well with the
non-submodular utility.

Budget: We then consider the main constraints in this paper,
i.e., the budget and cost. We set other variables fixed, then
change the budget from 100 to 300 and change the average cost
of users from 10 to 30. As shown in Fig. 18, the lower budget
and cost lead to a smaller number of completed tasks, since we
have to recruit fewer users, and vice versa. Furthermore, we set
the average cost to 20 and illustrate the consumed budget over
three data sets, as shown in Fig. 19. Obviously, the OFF and
RANDOM consume more budget, since they recruit users in
the offline manner, until their budget is exhausted. Note that
ON-DYN always consumes more budget than ON-SEG, which
shows that our dynamic strategy can make better use of the
limited budget and conduct timely adjustments.

We also illustrate the competitive ratio of our pro-
posed strategies in Table II with (non-) submodular utility.
Under different budget constraints, our ON-DYN can achieve
a 30%-50% competitive ratio of the optimal results, which
is far much higher than γ2(1 − e−1)(1 − e−γ/2)/7 proved in
Section IV.D. With the increase in budget, our ON-DYN even
achieves a better competitive ratio, since we can recruit more
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TABLE III

OVERPAYMENT RATIO

effective users and the results are close to OPT. Moreover,
Table II also shows the trends that more users can complete
more tasks, but the ratio of task completion is relatively low
due to the large ranges of movements.

Pricing: Finally, we evaluate the performance of the
online pricing mechanism embedded into our online strategy.
We illustrate the overpayment ratio of the pricing mecha-
nism in Table III. With the increase of budget, we find that
the pricing mechanism achieves a higher overpayment ratio.
On the one hand, the larger budget allows us to pay more.
On the other hand, under the larger budget, we will recruit
more users, which means that the number of users in each
segment decreases and we may use some worse observed
threshold (ε in Algorithm 2) to set the payment (pi = ci ·δui/ε
in Algorithm 4).

VIII. CONCLUSION

In this paper, we investigate the online user recruitment
problem under the budget and time constraints in MCS, where
users participate in real time and we decide whether to recruit
them immediately when they are arriving. To deal with the two
constraints jointly, we first estimate the number of recruited
users and then recruit users in segments. Moreover, using the
mobility prediction and cooperative willingness as examples,
we extend the segmented strategy with a general (non-)
submodular utility function, and prove that the competitive
ratio is γ2(1 − e−1)/7 (where γ is the submodularity ratio).
In order to correct estimation errors and utilize newly obtained
information, we further present a dynamic re-estimation after
recruiting every new user, which achieves a competitive ratio
of γ2(1 − e−1)(1 − e−γ/2)/7. Finally, we conduct a truth-
ful pricing mechanism embedded into the dynamic strategy.
Extensive evaluations on three real-world data sets have veri-
fied the effectiveness of our proposed strategies.
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