
Optimizing Carpool Scheduling Algorithm through
Partition Merging

Yubin Duan, Turash Mosharraf, Jie Wu, and Huanyang Zheng
Center for Networked Computing, Temple University, USA

Email: {yubin.duan, turash.mosharraf, jiewu, huanyang.zheng}@temple.edu

Abstract—The rapidly increasing number of vehicles in roads
leads to numerous problems in metropolitan areas. Several
researchers show that carpooling can be an efficient solution to
relieve the pressures caused by large numbers of cars. Previous
research on carpools introduces several additional constraints
to simplify the problem, but some of them are unreasonable in
reality. In this paper, we focus on removing the static capacity
constraint. Doing so allows a vehicle to carry more passengers
than vehicle’s capacity, which is possible if some people are
dropped off and new passengers take their places during the
journey. A greedy approach based on multi-round matching is
proposed, and it is further improved by taking advantage of
geometry properties. We apply our algorithms to both simulated
and real world datasets, and experiment results show that our
algorithms have better performances than existing approaches.

Index Terms—Carpool problem, hierarchical cluster merging,
graph partitioning.

I. INTRODUCTION

In recent years, the number of private vehicles on streets
has skyrocketed, leading to numerous problems in cities, and
especially in metropolitan areas. According to a study by
Meyer et. al [1], the global car population will grow to 2.8
billion with projection. The rapid increase of vehicles has led
to environmental, economic, and social problems, including
increased carbon emission, travel costs, and congestion [2].
To release the pressure caused by increasing demands for cars
for transportation, carpools were proposed. Non-household
carpools, where two or more commuters from different res-
idences travel together in the same private vehicle reduce the
number of single-occupied vehicles needed per journey [3].
According to research conducted by Roxana J. Javid et. al [4],
under a hypothetical scenario where high-occupancy vehicle
lanes (also known as carpool lanes) that encourage carpool are
increased, the annual reductions in the CO2e emissions of the
50 U.S states and the District of Columbia achieve 1.83 million
metric tons. Cathy Wu et. al [5] has studied carpool algorithms
for 3+ high-occupancy vehicle lanes. In addition to reducing
environmental impact, carpooling also reduces the economic
burdens of users. Driven by the advantages of carpooling, this
paper proposes a carpool scheduling algorithm that could be
used in carpool assignment procedures.

Given starting points, the destination, the vehicle capacity
constraint, the detour limitation, and other user requirements,
our carpool scheduling problem is to select a minimum number
of drivers who can serve all requested users (without breaking
anyone’s requirement) and to calculate the service order (i.e

d2/s3 d3

d1

s2

s1

2

2

2

2

1 1 1

Fig. 1. An illustration of the carpool scheduling problem scenario.

pick up and drop off order) for each driver. Several re-
searchers have addressed carpool problems or the similar taxi-
sharing problems [6]. The carpooling problem with additional
constraints has been classified as an NP-hard problems [7].
Additional constraint here means that when a passenger is
picked up by a driver, the capacity of the driver’s vehicle is
filled by the same people for the whole trip, i.e., even if the
passenger arrives at his destination, the seat assigned to the
passenger will not be released.

Using Fig. 1 as an illustration, {s1, d1}, {s2, d2}, and
{s3, d3} represent the start and destination points of users
p1, p2, and p3, respectively. The numbers on edges show
the distance between vertices. Assume that each of the three
users has a car with a seating capacity of 2, and all of
them are willing to share their cars if it does not involve a
detour of more than 2 units. To demonstrate the additional
constraint in the previous problem, suppose p1 is appointed
as a driver and p2 is in the same carpool with p1. p1 will
start from s1 and pick up p2 at s2. After p1 drops off p2
at d2, there will be one seat available in p1’s car, and in
this situation, p1 could pick up p3 since the starting point
s3 of p3 is the destination point d2 of p2. However, with
the additional constraint, the seat capability will be fulfilled
when p2 gets into the car, and there will be no chance for
p3 to join the carpool. Therefore, under this constraint, users
will be divided into disjoint carpools where the size of each
carpool is at most 2. The minimum number of carpools for the
existing scenario is 2, and 2 possible arrangements of carpools
exists to achieve the minimum number. The first is setting
p1, p2 in the same carpool and letting p3 travel alone with the
service schedule p1: s1 → s2 → d2 → d1, p3: s3 → d3.
The other possible assignment is setting p1, p3 in the same
carpool and let p2 travel alone with the service schedule p1:
s1 → s3 → d3 → d1, p2: s2 → d2.

However, the additional constraint in the previous problem
is unreasonable in reality since it is possible that drivers could
take extra passengers while maintaining the detour cost. As
shown in Fig. 1, the driver p1 could transport both p2 and p3

to their destination with same detour cost as traveling with
p2 via path s1 → s2 → d2(s3) → d3 → d1. That is to
say, without this constraint, the minimum number of drivers
needed in Fig. 1 is 1. Therefore, the static constraint limits
further optimization of carpool scheduling problems. Without
this additional constraint the carpool problem becomes even
harder since the search space is enlarged. A more formal proof
of the NP-hardness of our problem will be introduced later.

Our main contributions are summarized as follows:
• The carpool problem without the previous additional

constraint is addressed and analyzed, and we prove its
NP-hardness.

• We provide two time-window based greedy approxima-
tion algorithms. The first one can reducing the number
of carpools significantly. We further improve it by taking
advantage of geometry properties.

• Experiments on both simulated and real-world data are
set up thereby validating the superiority of our algorithm
over existing carpool scheduling algorithms in terms of
total carpool numbers.

The remainder of the paper is organized as follows. Section
II surveys related works. Section III describes the model,
formulates and analyzes the problem. Section IV proposes a
greedy algorithm and its improvement. Section V includes the
experiments. Finally, Section VI concludes the paper.

II. RELATED WORK

Several researches have been done on the carpool problem,
including [8–15]. Their work are reviewed in the rest part of
this section.

Baldacci et. al [8] address the carpool problem as a
transportation service organized by a large company which
encourages its employees to pick up colleagues while driving
to/from work to minimize the number of private cars travelling
to/from the company site. Based on two integer programming
formulations of the problem, an exact solution and a heuristic
method is developed.

Buchholz et. al [9] present the Strict Partitioning Algorithm
(SPA) that divides the set of users into several k-partitions. The
number of members in a partition is no more than k, which
represents the capacity constraint. What’s more, they prove
that the problem is NP-hard for k ≥ 3. As long as k = 2, the
solution has a time complexity of O(n2). The limitation of the
SPA is that for the case where k = 2, this approach allows
only one person to share the car with the driver.

Geisberger [10] presents an efficient method for calculating
the detour between the path of any driver-passenger pair in
constant time using a pre-calculated distance table [11] that
stores all pairs’ shortest paths.

Santi et. al [12] and Zhang et. al [13] address taxi-sharing
problems. Santi et. al use a method similar to [9] for taxi
sharing. They build a share-ability network between individual
passenger trips and try to merge the trips based on the spatial
and temporal proximity between them. According to their
algorithm, a taxi with a seat capacity of 2 can combine at
most k (k > 2) trips if there is no overlap between them.

Their algorithm effectively overcomes the limitations of SP.
However, they assumed that a taxi is available anytime and
anywhere. The model considers the start and end time of each
trip along with the coordinates and builds a hyper graph to
express the share-ability of different trips. The complexity
of building such a share-ability network is O(k!) because of
checking all possible k-combinations of trips. Therefore, the
proposed model is not scalable beyond k = 3. In our model,
we consider individual trips as a primitive set of single clusters
and merge them in different rounds. In each round, we consider
all pairs (not k-combination) of clusters and merge them, if
possible. Therefore, we do not need any hyper graphs and the
complexity is significantly lower than [12].

III. PROBLEM FORMULATION AND ANALYSIS

A. Model and Problem Formulation

In our model, users are defined as a set of people P =
{p1, p2, . . . , pn}, where each person can be either a driver or
a passenger. The driver in carpool should be willing to share
his vehicles, and the passengers should be glad to carpool with
other users. Each user is associated with a maximal acceptable
detour distance σi, a seating capacity for his vehicle λi, a
starting point si and a destination di. The set of si and di is
denoted by S and D, respectively. A carpool c consists of a
group of users who are going to travel in the same vehicle.
Formally, c ∈ P ∗, where P ∗ =

⋃|P |
i=0 P

i = P ∪P 2∪P 3∪. . .∪
P |P |. Let C = {ci} denotes the set of all possible carpools.
The starting points of the users in carpool c construct a sub-set
Sc ⊆ S, and the destinations construct a sub-set Dc ⊆ D.
Each carpool ci will be associated with a driver and a path r,
since our goal is not only minimizing the amount of carpools,
but also providing a possible path with an appointed driver to
achieve this amount. The path ri is defined as an ordered set of
locations (i.e., both starting points and destinations). Formally,
r = (l1, l2, . . . , lm), where ∀ li ∈ r : li ∈ Sc∪Dc. The order
in r represents the visiting sequence of locations. Associated
with two locations li and lj in the path, we use δi,j to record
the detour distance (extra distance compared with travel from
li to lj directly) between location li and lj in path, and δi,j =∑j−1
k=i f(lk, lk+1) − f(li, lj). The function f(li, lj) : r2 7→

R+ is used to calculate the mileages between two locations;
this can be calculated based on actual map information or
simply set to Euclidean distance using coordinates. Besides
the length, we use κr to denote the current occupancy of the
path, which is defined as κr = |r ∩ Sc| − |r ∩Dc|

Considering the constraints in the carpool scheduling prob-
lem, a path r is admissible for a carpool c with user pγ as the
driver if the following constraints are satisfied :

1) Order constraint: the first element in r should be the
starting point of pγ (sγ) and the final element should be
the destination of pγ (dγ). Any other users’ starting points
should appear before their destinations in r. Formally, the
constraint can be expressed as l1 = sγ , lm = dγ , and
∀ pi ∈ c : k < k′, if lk = si and lk′ = di.

2) Detour constraint: the detour limitation of each user in
carpool c should be satisfied. Formally, ∀ pi ∈ c : δk,k′ ≤
σi, if lk = si and lk′ = di.

3) Capacity constraint: at any instant the number of users in
the car may not exceed kd, i.e., ∀r′ ⊆ r : κr′ ≤ λγ .

4) Inclusion constraint: all starting points and destinations
in carpool c should be included in path r to make sure
that the transportation demands of users in c are satisfied.
Formally, |r| = 2|c|, since each user in c has one origin
plus one destination.

Two carpools ci and cj are mergeable if at least one admissible
path can be found for carpool ci ∪ cj .

Based on the definitions given above, our problem can be
formulated as follows:

minimize |C| (1)
subject to pj = pj′ if l1 = sj and l|ri| = dj′ (2)

k < k′ if lk = sj and lk′ = dj (3)
δk,k′ ≤ σj if lk = sj and lk′ = dj (4)
κr′ ≤ λγ for ∀r′ ⊆ ri (5)
|ri| = 2|ci| (6)
for ∀ci ∈ C, ∀pj , pj′ ∈ ci, ∀lk, lk′ ∈ ri

B. Problem Hardness

Under a special case, our Carpool Scheduling Problem
(CSP) is equivalent to the well known traveling salesman
problem (TSP) [16]. The TSP is proven to be NP-hard, and
therefore, we can prove that our problem is also NP-hard.

Theorem 1: The Carpool Scheduling Problem is NP-hard.
Proof: The proof is done by revealing the equivalence of

a special case of the CSP and the TSP[9]. Given a set of
cities and a home city, the TSP aims to select the minimum
distance path that starts and ends at home to cover all given
cities. We start by converting the input of the TSP to the input
of the CSP. The salesman can be considered the driver of a
car with a seat capacity of 2, and the each city can be seen
as a passenger with the same starting and ending point. Then
set detour of passengers to 0. The minimum cost path (or
the minimum detour path) that can cover all passengers is
the optimal solution of the TSP. Instead of finding an optimal
path by visiting each city, we now try to find any path that
has its length bounded by a given upper limit. This problem is
equivalent to the CSP if the limit of the maximum path length
is set as the maximum allowable detour. This variation remains
NP-hard. Therefore, it is proven that the CSP is NP-hard. �

IV. ALGORITHMIC DESIGN

A. Partition Merging Algorithm

This subsection presents the Partition Merging Algorithm
(PMA). Observe the example shown in Fig. 1. Strict Partition
Algorithm (SPA) applying matching algorithm to construct
carpools, but it only contains one round of matching SPA
can make sure the number of users in each carpool won’t
exceed the capacity limitation of drivers, but it ignores the fact

Algorithm 1 Partition Merging Algorithm (PMA)
Input: A set of users P = {p1} associate with the starting

points set {si}, the destinations set {di}, the detour
limitation set {σi} and the capacity limitation set {λi}

Output: A set of carpools C.
1: Initialize C ←

{
{p1}, {p2}, . . . , {p|P |}

}
.

2: Initialize graph edge set E. Build edge (ci, cj) iff ci and
cj are mergeable, for ∀ci, cj ∈ C. Set G← (G, E)

3: repeat
4: EM ← maximum matching of G.
5: Merge ci and cj if edge (ci, cj) ∈ EM , for ∀ci, cj .

Update C. Reset E ← ∅
6: for ∀ci, cj ∈ C do
7: for ∀pk ∈ ci ∪ cj do
8: Initialize a partial order set S ← Sci ∪Dci ∪Scj ∪

Dcj . Initialize partial order relationship based on
order constraint.

9: R← all topological sort of S
10: if ∃r ∈ R satisfy capacity constraint and detour

constraint then
11: build edge (ci, cj) in E
12: until E = ∅.
13: return C as the final carpool-set.

that seat occupation will be released when users are dropped-
off at their destinations. That is to say, once SPA calculates
a possible arrangement of carpools, it stops and ignores the
merge-ability between these carpools. Simply speaking, SPA
only considers the merge-ability of users (which are one-
user-carpools) instead of the merge-ability of multi-users-
carpools. Therefore, PMA, an algorithm considering multi-
round matching, is proposed.

Specifically, PMA is a greedy algorithm based on carpool
graph G. After initializing the graph G, PMA will try to merge
as many vertices as possible in each round until there are no
edges in G, i.e., no more carpools can merge.

More specifically, as shown in Algorithm 1, PMA will first
initialize the set of carpools C and then set each carpool in
C to a carpool with only one user (line 1). Then, this set
of carpools will be treated as the set of vertices for graph
G. That is to say, |P | vertices in total will be set. Then,
unweighted undirected edges eij will be built if an admissible
path can be found between carpools ci and cj . The existence
of an edge between vertices indicates both users in ci and
cj can travel together within the same carpool (line 2). When
initialization is finished, PMA plans the merge so that maximal
number of merges can be achieved by applying an efficient
maximum matching algorithm [17] (line 4 and 5). It is true
that other efficient maximum matching algorithms like [18]
can used here. After matching and merging, graph G shrinks
and contains fewer vertices, i.e., C can be updated with fewer
carpools. Once a new set of carpools is found, the merge-
ability of the carpools will change and must be recalculated
(from line 6 to line 11). Repeating the steps mentioned above,

Fig. 2. An illustration of the Partition Merging Algorithm.

s2

s3

s1

d2

d3

d1

2

2

4

1 1

3
3

3 5
5

1

4 0

3 1

(a) Graph of locations and dis-
tances

s2

s3

s1

d2

d3

d1

2

2

4

1 1

3
3

3 5
5

1

4 0

3 1

(b) An admissible path

Fig. 3. Example of finding an admissible path.

the number of vertices in G decreases until no edge can be
created; this means that the carpools cannot be merged any
further, and a local optimal is reached. Finally, PMA return C
as the final result (line 13). Fig. 2 shows the merging situation
in each round of PMA based on the scenario shown in Fig.
1. At the beginning of PMA, there are 3 one-user-carpools
and {p1} and {p2} are mergeable. In the second round, even
if carpool {p1, p2} already contains 2 users (which is the
capacity limitation of all users), it is still mergeable with {p3}.
They are mergeable because an admissible path can be found
for carpool {p1, p2} ∪ {p3} as shown in Fig. 3(b).

The merge-ability check process tries to find at least one
admissible path to indicate merge-ability. Roughly speaking,
it is a search algorithm that checks each possible path using
the origins and destinations of users in carpool ci ∪ cj until
an admissible one is found. However, checking all possible
sequences with n nodes will cost O(n!) time, which is not
acceptable. Therefore, we use the order constraint of the
problem to reduce the search space. Considering that the order
constraint requires that the origins of users appear before the
corresponding destinations in an admissible path, we apply the
topological sorting algorithm to eliminate paths that violate the
order constraint. Considering that the driver’s starting point
must be the first location in the admissible path and his
destination must be the last, we describe this constraint as an
order constraint. Any other locations in the admissible path
must appear after the driver’s starting point and before his
destination. This constraint can also be satisfied by applying
the topological sorting algorithm. Line 7 in Algorithm 1 selects
user pk as a potential driver. After the driver is selected, a
partial order set S is built in line 8. The partial order set
should contain both origins and destinations of users in ci∪cj
because of the inclusion constraint, and the partial order will
be initialized based on the order constraint. After passing the
capacity and detour constraint checks in line 10, an edge
(ci, cj) is added in E to show that ci, and cj are mergeable.

Algorithm 2 Improved Partition Merging Algorithm (IPMA)
Input: A set of users P = {p1} associate with the starting

points set {si}, the destinations set {di}, the detour
limitation set {σi} and the capacity limitation set {λi}

Output: A set of carpools C.
1: Same as Algorithm 1, except add a line after line 7:
2: if ∃pk′ ∈ ci∪ cj , f(sk, sk′)+f(sk′ , dk)−f(sk, dk) > σk

or f(sk, dk′) + f(dk′ , dk)− f(sk, dk) > σk then
Skip this round.

B. Improving the PMA with geometry properties

The time efficiency of PMA can be further improved by
taking advantage of geometry properties. In PMA, the detour
constraint is checked after paths are constructed by topological
sorting. However, if the origins and destinations of users
are too far from each other, we can conclude that these
users cannot merge directly without constructing any paths.
That is to say, the detour constraint can be pre-checked by
calculating the total mileages starting from driver’s origin then
pass passenger’s origin or destination to driver’s destination.
In this way, the time used to calculate the topological order
of these nodes is saved. More formally, when checking the
merge-ability of ci and cj for each user pk, if ∃pk′ such
that f(sk, sk′) + f(sk′ , dk)− f(sk, dk) > σk or f(sk, dk′) +
f(dk′ , dk) − f(sk, dk) > σk, then pk cannot be the driver in
the new carpool ci ∪ cj .

The Improved Partition Merging Algorithm (IPMA) is
shown in Algorithm 2. To illustrate the improvement, an
example is shown in Fig. 3(a), for user p2, the distance
between the origin of p2 and the destination of p3 already
exceeds the detour tolerant limitation of p2. Therefore, there
is no way to set p2 as the driver. We do not have to waste time
to find the admissible path. More intuitively, after plotting out
all locations within the detour distance limitation of a user,
we find that these locations form an ellipse. Any user whose
origin or destination is located outside of the ellipse cannot
travel with him or her. We can save running time in IPMA by
skipping these users.

V. EXPERIMENT

A. Simulated and NYC taxi datasets

This subsection introduces the datasets used in our ex-
periment. Both a simulated dataset and a real-world dataset
are used. For the simulated dataset, we randomly create a
user’s request locations, including starting points and desti-
nations. To fully test the performance of our algorithm, 2
different kinds of distributions are used: uniform distribution
and normal distribution. In our uniform distribution dataset,
the horizontal and vertical coordinates of each location are
individual and range from 0-30 miles. What’s more, the
origin and destination of each user is also individual. In our
normal distribution dataset, the independence of horizontal
and vertical coordinates remains, so as the independence of
origins and destinations. The mean of the normal distribution
is set to 15 and the standard deviation is set to 5 to make

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

10

20

30

40

50

60

70

80

90
SPA
IPMA-1000
IPMA-1

(a) Carpool number with 5% detour

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

10

20

30

40

50

60

70

80

90
SPA
IPMA-1000
IPMA-1

(b) Carpool number with 10% detour

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

10

20

30

40

50

60

70

80

90
SPA
IPMA-1000
IPMA-1

(c) Carpool number with 15% detour

Fig. 4. Performance comparison between SPA, IPMA-1000, and IPMA-1 using uniform distribution.

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

5

10

15

20

25

30

35

40

45

50

55
SPA
IPMA-1000
IPMA-1

(a) Carpool number with 5% detour

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

5

10

15

20

25

30

35

40

45

50

55
SPA
IPMA-1000
IPMA-1

(b) Carpool number with 10% detour

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

5

10

15

20

25

30

35

40

45

50

55
SPA
IPMA-1000
IPMA-1

(c) Carpool number with 15% detour

Fig. 5. Performance comparison between SPA, IPMA-1000, and IPMA-1 using normal distribution.

sure that more than 99.73 % of coordinates are located in the
same range of locations in the uniform distribution dataset.
Under these parameter settings, 10000 request locations are
separately generated for the uniform distribution and normal
distribution dataset.

The NYC dataset is extracted from yellow cab trace data in
NYC. The yellow cab trace data in NYC contains each taxi
service’s start time, end time, the GPS coordinates of pickup
and drop-off locations, travel distances. We analyze the trace
data of a day, and find that there are 743.9 requests per minute
on average in the NYC area. We extract 500 items from trace
data where start times differ by is less than 2 minutes to build
our NYC dataset. The average user travel distance in our NYC
dataset is 3.155 miles.

B. Experimental Settings
IPMA and SPA are evaluated in our first series of experi-

ments. Considering the number of possible topological order
fluctuates in different partial order set, the time it takes to apply
IPMA may vary intensely in different datasets. To control time
consumption, we use the variant IPMA in our experiment.
Instead of using all the topological orders in IPMA, we only
use the top k topological orders. The modified version is
referred to as IPMA-k in the following experiment. What’s
more, choosing small k may lead to less optimal results,
and therefore, we plot different outcomes when k varies to
visualize this effect.

In the first series of experiments, both the uniform distri-
bution dataset and the normal distribution dataset are used to
compare the performances of IPMA-1, IPMA-1000, and the
previous Strict Partitioning Algorithm (SPA). To maximize the
difference of IPMA and SPA as much as possible, we set each
user’s capacity to 2. The detour distance of each user is set
to relative distance, i.e., the percentage of the distance that
a user travels. We use 5%, 10%, and 15% to imply small,

middle and large detour distance respectively. The results are
averaged over 50 times for smoothness.

We also test the performance of IPMA with different detour
distances. In this situation, we apply IPMA-1000 to our
simulated data set. The capacity of each user is set to 4, since
a capacity of 4 is more similar to a real-world scenario. The
results are averaged over 50 times per simulation.

The last experiment aims to test the effect of k, i.e. the
number of topological orders used in IPMA. This experiment
runs based on the NYC dataset since we are trying to reflect
a real-world situation. In all, there are 500 users’ request
involved. The capacity of each user is set to 5, and the middle
detour distance is used, i.e., 10% detour distance.

C. Evaluation Results
The evaluation results of the performances of SPA, IPMA-1,

IPMA-1000 on simulated datasets are shown in Fig. 4 and Fig.
5. Fig. 4 corresponds to the uniform distribution dataset and
Fig. 5 corresponds to the normal distribution dataset. Compar-
ing the outcomes within Fig. 4 and Fig. 5, we see that in both
distributions and for all different detour distances, IPMA-1000
and IPMA-1 has better performances than SPA. The difference
between IPMA-1000 and IPMA-1 becomes larger along as the
detour distance increases. Comparing the outcomes in Fig.
4 and Fig. 5, we conclude that the performance differences
between IPMA and SPA are smaller in the normal distribution
dataset than in the uniform distribution dataset. This is not
because of the under-performance of IPMA, but rather due
to the over-performance of SPA. Observing the values of the
Y-axis, the numbers of carpools in IPMA-1000 and IPMA-
1 decreases slightly when changing the uniform distribution
dataset to the normal distribution. The number of carpools
in SPA decreases around 35%, which indicates that SPA
has a better performance in centralized location distributions
while IPMA has relatively stable performance. To sum up,

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

5

10

15

20

25

30
Detour = 5%
Detour = 10%
Detour = 15%

(a) Using uniform distribution dataset

Number of users
20 30 40 50 60 70 80 90 100

N
um

be
r

of
 c

ar
po

ol
s

5

10

15

20

25

30
Detour = 5%
Detour = 10%
Detour = 15%

(b) Using normal distribution dataset

Fig. 6. Comparing outcomes of IPMA-1000 under different detour.

TABLE I
IPMA-k OUTCOMES WITH DIFFERENT k

k 100 101 102 103 104

Number of carpools 249 162 126 125 125

IPMA always boasts better outcomes than SPA and IPMA’s
performance is more stable.

The evaluation results that show the performance of IPMA
with different detour distance are presented in Fig. 6. Although
the number of carpools decrease with a larger detour, the
variant is very slight. What’s more, when the number of
users increases, there is nearly no difference in the number
of carpools found that IPMA find under either distribution.

Finally, we present the results on the NYC taxi dataset in
Table I. We can see that k greatly influences the performance
of IPMA-k. This makes sense since with a smaller k, fewer
possible topological orders will be checked and the admissible
path may be missed. For instance, when k = 1, IPMA
will only choose one possible topological order to check its
admissibility. If k → +∞, all possible topological orders
are checked and no possible path can be lost. Although the
outcome of IPMA-k is closer to optimal when k is larger,
more running time is consumed. From the experiment result,
we can see that k = 100 is large enough to give good results
because when k kept increasing, the number of carpools is
nearly unchanged. Therefore, using hundreds of topological
orders in IPMA will likely produce a relatively good result
when applying IPMA to a real world dataset.

VI. CONCLUSION

This paper discusses the carpool problems in which a user
shares his/her car with others in order to reduce the number of
cars on the road. We discuss existing methods based on strict
partitioning and provide evidence that strict partitioning cannot
give an optimal result for a large number of real-life scenarios.
Then, we propose a greedy algorithm, PMA, to calculate the
local optimal result of out carpool problem. We then use
geometry properties to further reduce the time consumption
of PMA, and we propose IPMA accordingly. To evaluate the
performance of our approaches, we execute our algorithm
on both simulated and real world datasets. The results from
both datasets show that our approaches outperform the SPA
in a number of cases. Users’ maximum waiting time is not
considered in our paper, which can be studied as future work.

VII. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, CNS 1439672, CNS 1301774, and ECCS 1231461.

REFERENCES

[1] I. Meyer, S. Kaniovski, and J. Scheffran, “Scenarios for regional
passenger car fleets and their co 2 emissions,” Energy Policy,
vol. 41, pp. 66–74, 2012.

[2] T. Gärling and L. Steg, Threats from car traffic to the quality
of urban life: problems, causes and solutions. Emerald Group
Publishing Limited, 2007.

[3] J. G. Neoh, M. Chipulu, and A. Marshall, “What encourages
people to carpool? an evaluation of factors with meta-analysis,”
Transportation, vol. 44, no. 2, pp. 423–447, 2017.

[4] R. J. Javid, A. Nejat, and K. Hayhoe, “Quantifying the environ-
mental impacts of increasing high occupancy vehicle lanes in
the united states,” Transp. Res. D, vol. 56, pp. 155–174, 2017.

[5] C. Wu, K. Shankari, E. Kamar, R. Katz, D. Culler, C. Papadim-
itriou, E. Horvitz, and A. Bayen, “Optimizing the diamond
lane: A more tractable carpool problem and algorithms,” in
Proceedings of the IEEE ITSC 2016, pp. 1389–1396.

[6] E. Silva, Z. Kokkinogenis, Á. Câmara, J. Ulisses, J. Urbano,
D. C. Silva, E. Oliveira, and R. J. Rossetti, “An exploratory
study of taxi sharing schemas,” in Proceedings of the IEEE
ITSC 2016, pp. 247–252.

[7] I. B.-A. Hartman, D. Keren, A. A. Dbai, E. Cohen, L. Knapen,
D. Janssens et al., “Theory and practice in large carpooling
problems,” Procedia Computer Science, vol. 32, pp. 339–347,
2014.

[8] R. Baldacci, V. Maniezzo, and A. Mingozzi, “An exact method
for the car pooling problem based on lagrangean column
generation,” Oper. Res., vol. 52, no. 3, pp. 422–439, 2004.

[9] F. Buchholz, “The carpool problem,” Citeseer, Tech. Rep., 1997.
[10] R. Geisberger, D. Luxen, S. Neubauer, P. Sanders, and

L. Völker, “Fast detour computation for ride sharing.” OpenAc-
cess Series in Informatics, vol. 14, pp. 88–99, 01 2010.

[11] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner,
“Computing many-to-many shortest paths using highway hier-
archies,” in Proceedings of the ACM-SIAM ALENEX 2007, pp.
36–45.

[12] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz,
and C. Ratti, “Quantifying the benefits of vehicle pooling with
shareability networks,” Proceedings of the National Academy of
Sciences, vol. 111, no. 37, pp. 13 290–13 294, 2014.

[13] S. Zhang, Q. Ma, Y. Zhang, K. Liu, T. Zhu, and Y. Liu, “Qa-
share: Towards efficient qos-aware dispatching approach for
urban taxi-sharing,” in Proceedings of the IEEE SECON 2015,
pp. 533–541.

[14] W. Chang, H. Zheng, and J. Wu, “On the RSU-based secure
distinguishability among vehicular flows,” in Proceedings of the
IEEE/ACM IWQoS, 2017, pp. 1–6.

[15] N. Wang, J. Wu, and P. Ostovari, “Coverage and workload cost
balancing in spatial crowdsourcing,” in Proceedings of the IEEE
UIC 2017.

[16] J. K. Lenstra and A. Kan, “Complexity of vehicle routing and
scheduling problems,” Networks, vol. 11, no. 2, pp. 221–227,
1981.

[17] Z. Galil, “Efficient algorithms for finding maximum matching
in graphs,” ACM Computing Surveys, vol. 18, no. 1, pp. 23–38,
Mar. 1986.

[18] A. Bernstein and C. Stein, “Faster fully dynamic matchings with
small approximation ratios,” in Proceedings of the ACM-SIAM
SODA 2016, pp. 692–711.

