
1

Information Theoretic and Statistical Drive
Sanitization Models

Jeffrey Medsger, Avinash Srinivasan, and Jie Wu

Abstract—Current enterprise drive sanitization techniques employ little or no intelligence to determine if the area being sanitized,
with data overwriting, actually contains sensitive resident data. All data blocks in the target area are sanitized, utilizing brute-
force sanitization techniques of one to several wipe passes. In reality, a significant number of drives needing sanitization may
contain areas with no sensitive data, or even any data for that matter. Consequently, sanitizing such areas is counter-intuitive
and counter-productive. In this paper, we propose two information-theoretic techniques – ERASE and ERASERS, which utilize
an entropy measurement of data blocks for quick and effective drive sanitization. Our first technique, ERASE, unlike current
brute-force methods, computes the entropy of each data block in the target area. Subsequently, all data blocks, which have
an entropy within the user-specified sensitivity range, are wiped. Our second technique, ERASERS, which is an extension of
ERASE, employs random sampling to enhance the speed performance of ERASE. To achieve this, ERASERS divides the target
area into subpopulations, performs random sampling of blocks from each subpopulation, and computes the entropy of each
sampled block. If the entropy of any sampled block, within a subpopulation, is within the user-specified sensitive entropy range,
the entire subpopulation is wiped. The random sampling component of ERASERS gives organizations an alternative for a faster
wipe, compared to the currently employed brute-force sanitization techniques. We have presented results, which compare the
performance of our proposed techniques against the current brute-force technique. In a test, performed on the HFS+ unallocated
space of an Apple MacBook Pro, used under real-world conditions, ERASERS averaged a speed improvement of 50.47% over
a brute force technique, while retaining an accuracy of 99.84%, when set to a greater than 0 bpB and less than or equal to 8 bpB
entropy range.

Index Terms—Drive Sanitization, Information Security, Information Theory, Random Sampling, Digital Forensics, Privacy,
Entropy, Wiping.

F

1 INTRODUCTION

D ELETED data remains on storage media until it is
purged or overwritten completely. It is important to

note that when a file is deleted, only its name is removed
from the directory structure. Subsequently, the user data
remains in the storage blocks of the drive, where it can
be retrieved using forensic tools. Reformatting a hard disk
drive only clears the file directory and severs the links
between storage blocks. Such remnant data can eventually
be recovered as long as it is not overwritten by new data,
posing significant danger to users’ security and privacy.
Therefore, storage media sanitization is an important aspect
in information security and digital forensics.

Today, security and privacy of consumer data is one
of the biggest concerns for the computing industry. Legal
requirements, mandating the protection of personal data
from unauthorized access and disclosure, are far more
stringent today than ever before. For instance, the enact-
ment of laws, such as the Health Insurance Portability
and Accountability Act (HIPPA) to protect the privacy
of patients’ health records creates extensive compliance

J. Medsger is an independent security and forensics researcher. email:
medsgerj@gmail.com
A. Srinivasan is with the Department of Computer and Informa-
tion Sciences, Temple University, Philadelphia, PA, USA. e-mail:
avinash@temple.edu
J. Wu is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA, USA. email: jiewu@temple.edu

concerns for healthcare information technology profession-
als. Under HIPPA, unauthorized disclosure of protected
information can subject an organization to legal liability,
negative publicity, monetary damages, and even criminal
penalties. There are numerous laws and regulations that
relate to data protection and privacy throughout the world,
including, but not limited to – Data Protection Act of 1998
(UK), Financial Services Modernization Act (USA), and
Personal Information Protection and Electronic Documents
Act (Canada).

In light of the above discussions and from a user security
and privacy perspective, it is extremely vital to protect
the data at the end of its useful life cycle. Hence, data
destruction is both essential and inevitable. However, we
have seen that the amount of time required for sanitization
is often long, and only increases with the ever increasing
drive sizes, coupled with the ever decreasing costs.

1.1 Deleted Files

Studies indicate that simply deleting files and reformatting
a hard drive is not adequate to erase all data such that
it cannot be recovered [1]. In reality, data is rarely truly
lost unless it is intentionally destroyed using one to sev-
eral overwrites by special programs designed to remove
all traces of the data. Data overwriting is a sanitization
technique in which every bit of the target area is overwritten
either using software or a hardware device. From a security

2

perspective, drive sanitization is vital when storage media
leaves the control of its owner. Although encryption of data
can provide a high degree of protection under some circum-
stances, it should not be relied upon in lieu of sanitization.
Particularly, with the recent advances in password cracking
and encryption brute-forcing using massively parallel GPU
and cloud-based resources, sanitization is more critical than
ever before for preserving the confidentiality of sensitive
data on storage drives.

1.2 Types of Sanitization

Data destruction, a.k.a. Sanitization, can be primarily clas-
sified into two categories [2]:

1) Destructive Sanitization: provides user data confiden-
tiality by physically destroying the storage device.

• Physical Destruction: While “physical destruc-
tion” of storage devices offers the highest level
of security, the number of used hard drives
entering the secondary market, as noted in [2],
is substantially large and dictates the use of
non-destructive techniques. Physical destruction
includes techniques, such as - breaking, chemical
alteration, and phase transition of the media to be
sanitized.

2) Non-destructive Sanitization: In this method, the con-
fidentiality of user data is protected without destroy-
ing the storage media, such that the media can be
reused.

• Degaussing: It is the process of decreasing or
eliminating a remnant magnetic field. Conse-
quently, this destroys the data held on magnetic
data storage.

• Data Overwriting/Erasing: It is the process of
overwriting every bit on the drive one to several
times. The bit pattern used in overwriting can be
all zeros, all ones, pseudorandom patterns, etc.
This capability is built into existing command
line utilities, such as dd and dcfldd.

The problem of data remanence is also countered by
encryption, a technique referred to as crypto erase. Though
this is not a sanitization technique, it does provide con-
fidentiality of sensitive information stored on the storage
device. Simply encrypting data before it is stored on the
medium can mitigate inadvertent disclosure, if not eliminate
it. Particularly, if the decryption key is strong and carefully
controlled, it may effectively make any data on the medium
unrecoverable. Even if the encryption key itself is on the
medium, it is simpler to overwrite just the key rather
than the entire disk – a technique currently embraced by
the mobile device manufacturers. However, as previously
mentioned, with current computing resources available,
encryption will eventually be brute-forced if and when the
drive leaves the control of its owner. Hence, encryption is
not a feasible alternative for sanitization.

1.3 Adversarial Model
We assume that the adversary is technically sophisticated
and has the necessary skills and tools to retrieve data from
formatted drives, including from deleted partitions. It is also
reasonable to assume that the adversary has knowledge of
the user/system they are attacking, and can make use of
this knowledge to perform string searches. The focus of
our research, presented in this paper, is data overwriting – a
non-destructive sanitization technique for magnetic storage
media, specifically computer hard drives. Non-destrutive
sanitization techniques, to their best abilities, enable reuse
of the storage media, while seeking to prevent an adversary
from recovering data from a used hard drive. Under this
model, data privacy and security is assured irrespective
of the type of access – logical, raw disk, or physical –
the adversary has to the computer media. The adversary
can make use of any techniques or tools they may have,
post sanitization, to retrieve the data from the sanitized
blocks, ranging from simple keyboard-based techniques
(e.g. [2]) to sophisticated laboratory-based (e.g. [3], [4], [5])
methods/attacks to recover data.

1.4 Drive Sanitization and Digital Forensics
Drive sanitization is also an important process for digital
forensics investigation, specifically for evidence acquisi-
tion. A previously-used drive has to be thoroughly sanitized,
prior to acquiring evidence and/or starting a new case.
This is very critical in preventing cross-contamination of
evidence. The evidence could potentially be inadmissible
in legal proceedings. Evidence, supporting sanitization of
the acquisition disk, can and will be asked by the defense
counsel, and has to be provided. Failure to do so, will render
the evidence, and possibly the entire case, inadmissible.
Sanitization evidence can be provided using cryptographic
hash values, which can be verified. Most crime labs, that
conduct digital forensics investigations, have a limited num-
ber of specialized machines, usually made-to-order, with all
the necessary forensics tools, including the very expensive
commercial tools. Consequently, they reuse a handful of
hard drives on the same machine. This further justifies our
attempt to propose more efficient and time-sensitive drive
sanitization techniques.

On a separate note, sanitization can also be an indication
of foul play by the adversary. It could be an antiforensics1

attack by the adversary to eliminate their footprints, destroy
data, or other such malicious intention. This, by far, is the
most detrimental to a forensics investigation, wherein all
evidentiary data is lost irreversibly. A forensics investigator
is often trained, and has an eye for identifying string
patterns – all zeros, random patterns with high entropy
on an entire drive/partition, all ones, etc. – when blocks
are sanitized. This can save precious time, that would
otherwise be spent trying to analyze a sanitized disk with
little evidence for prosecution. Note that an entire drive with
random data, identified by a high entropy value, can also be

1. Antiforensics is an attack that is aimed at making the investigation
extremely hard and frustrating to the investigator.

3

an indication of encrypted drives – BitLocker, TrueCrypt,
etc.

Finally, within digital forensics, there is zero tolerance
for data remanence on acquisition drives to prevent evi-
dence contamination. Hence, for forensics applications, we
can revert to current brute force techniques, a capability
built into our ERASE tool.

1.5 Contributions

This paper is an extended version of [6]. This work was
motivated by a need to optimize the drive sanitization
process, specifically the data overwriting method of non-
destructive drive sanitization. The contributions of this work
can be summarized as follows:

1) To the best of our knowledge, this work is the first
to do the following:

a) Propose an entropy-based wiping method, for
sanitizing a target area. The proposed method
is a non-destructive drive sanitization method.

b) Include random sampling, in tandem with the
above entropy-based technique, for further en-
hancing the efficiency of sanitizing the given
target area.

c) Implement command line tools, with the afore-
mentioned entropy measurement and random
sampling capabilities.

d) Evaluate the accuracy of the proposed
ERASERS technique on a hard drive, used
under real world conditions prior to the
experiments.

e) Evaluate the unallocated space of three hard
drives, to analyze the distribution of the entropy
of blocks over unallocated space.

f) Analyze the common file types encountered
on three real world hard drives, and compute
the average file entropy of the top-50 most
frequently occurring file types.

g) Empirically analyze the minimum possible en-
tropy of any given 4 KB block, for all possible
words in a dictionary (UNIX dictionary). This
result is also helpful in building the entropy
baseline for other empirical studies.

1.6 Road Map

The rest of this paper is organized as follows. We begin
with a discussion of the current state of affairs in drive
sanitization in section 2. Then, in section 3, we present a
brief discussion on the utility of the proposed information
theoretic sanitization techniques – ERASE and ERASERS.
We then provide brief discussions on relevant background
areas in section 4, including random sampling, Shannon’s
entropy, and sanitization, for the purpose of completeness
of this paper. In section 5, we provide details of the
proposed sanitization techniques, ERASE and ERASERS,
including wipe patterns, number of passes, and sampling
parameter choices. In this section, we also discuss the

impact of remnant data in the unallocated space on user-
privacy and security, and the importance of its sanitization.
Section 5 is followed by performance evaluation details and
results, from tests under controlled conditions, in section 6.
In section 7, we discuss the theoretical thoroughness of
the ERASERS technique. In section 8, we discuss tests
performed on three hard drives to better understand the
distribution of data across unallocated space. In section 9,
we discuss the performance and accuracy of ERASERS,
when tested on the unallocated space of a hard drive, used
under real world conditions, prior to the experiments. We
then discuss related works in section 10 and conclude the
paper with directions for future research in section 11.

2 DRIVE SANITIZATION- STATE OF AFFAIRS

Current approaches to remove resident data on hard drives
take a brute force approach of overwriting the target
area, in its entirety, in one to several passes. With drive
sizes increasing to multiple terabyte scale, this brute force
approach is becoming near impossible to accomplish in
a timely manner. According to Seagate, the average size
of hard drives they shipped in the year 2011 was 590
GB [7]. Through empirical analysis, we have determined
that overwriting a 590 GB hard drive – with a single
pass of random data using the command line tool dd,
with /dev/urandom as the random input source – takes
approximately 14.6 hours. Similarly, if a single pass wipe is
performed using the command line tool dd, with /dev/zero
as the input source, it takes approximately 1.584 hours to
sanitize a 590 GB hard drive. Both of these tests were run
on a machine, with the specifications presented in Table 4.

Unfortunately, with the current wiping methods, little
or no intelligence is used to determine if the area being
sanitized, with data overwriting, actually contains sensitive
resident data. Instead, all data blocks in the target area are
blindly sanitized. In reality, a significant number of drives
needing sanitization may contain areas with no sensitive
data or even any data for that matter. Consequently, sanitiz-
ing such areas is counter-intuitive and counter-productive.

Therefore, we propose ERASE, which uses entropy
calculations to identify sensitive data in target areas, and
overwrites only specific areas which are found to have sen-
sitive data. ERASE optimizes the data overwriting process,
allowing a 590 GB hard drive to be sanitized with 1 pass
of a random pattern (/dev/urandom) in 9.5 hours, assuming
50% of the data on the drive is within the sensitive entropy
range, on a machine with similar specifications to the one
in Table 4. Thereby, ERASE achieves an average case
performance improvement of approximately 34.8%.

ERASE can be further enhanced to improve perfor-
mance times by using random sampling to identify data
blocks containing sensitive data, within the specified target
area, that need overwriting. We call the enhanced version
ERASERS. With empirical analysis, we have determined
that ERASERS takes 0.85 hours in its best-case perfor-
mance, and 1.580 hours in its worst-case performance
to sanitize a 590 GB drive using an input source of

4

/dev/zero. In the study we have assumed that 50% of the
data is within the sensitive entropy range, on a machine
with specifications similar to that presented in Table 4.

3 UTILITY OF THE PROPOSED TECHNIQUE

3.1 ERASE

ERASE is designed to allow for a more efficient wipe in sit-
uations where pseudorandom data is being used as the wipe
pattern. A pseudorandom source, such as /dev/urandom,
is slow to generate data, and becomes the bottleneck of the
wipe process. ERASE can be more efficient when wiping
with pseudorandom data because it is able to reduce the
number of writes by performing extra reads, allowing it to
make a decision which blocks to overwrite, and overwriting
only those blocks which have sensitive data. Thus, ERASE
can perform a read operation (106.8 MB/s) to possibly
avoid a write operation using data from /dev/urandom
(11.8 MB/s). ERASE is also designed to allow for a
more efficient wipe when multiple overwrites are to be
performed. For multi-pass wipes, ERASE performs a read
(106.8 MB/s) to possibly prevent, for example, 3 overwrites
(each at 105.8 MB/ s), if that area does not contain sensitive
data necessary to be wiped.

3.2 ERASERS
The limitation of ERASE is that if a uniform pattern is used
as the wipe pattern, such as /dev/zero, ERASE will not be
more efficient when only one overwrite pass is desired.
This is because a uniform source is significantly faster to
generate than a pseudorandom source, causing the write
rate to reflect the write speed of the drive, and not the
rate at which pseudorandom data is generated. This causes
the write speed of the drive to be the bottleneck of the
wipe process and not the generation of pseudorandom data.
Consequently, if the read and write speeds of the drive are
the same, the extra reads, which ERASE performs, causes it
to be less efficient than a brute force wipe, regardless of the
amount of the area to be sanitized, which is in the sensitive
entropy range. Therefore, ERASERS was designed to use
random sampling to reduce the number of read operations
that need to be performed in determining if blocks have
sensitive data. ERASERS does not have to read the entire
area, but instead randomly samples from parts (subpopula-
tions) of the area (population) to determine which subpopu-
lations may contain sensitive data. Subsequently, only those
subpopulations are wiped, avoiding wiping of the entire
population. We envision that ERASERS could be used
by organizations to periodically overwrite the unallocated
space of employee computers.

4 BACKGROUND

This section will discuss background topics to provide the
reader with the fundamentals necessary to understand the
overwriting technique described in this paper.

4.1 Sanitization Algorithms
Numerous algorithms are available for overwriting data
on storage media, and several government organizations
have established standards for overwriting, dictating the
number of passes and writing patterns – ones, zeros, or
random patterns. After overwriting, a hard drive is still
physically functional and can accept formatting. According
to Guttman [3], overwriting only prevents previous data
from being read by the operating system; however, he
contends that there are specialized equipment, such as
magnetic microscopes, that can still manage to read the
original data. There has been severe criticism of this idea,
and there has been no practical evidence to support that
this holds true with modern hard drives. However, we
feel obligated to cite this paper and some other related
works [4], [5], and [8] for completeness of our paper.

4.2 Shannon’s Entropy
Shannon’s entropy is a measure of uncertainty of a set of
probabilities and it measures the extent of compressibility
of the given data [9]. The representation of entropy as
defined by Shannon [9], which is described in our paper,
is represented in Equation 1. In Equation 1, i is a given
symbol out of a possible 1 to n different symbols, and p is
the probability of the occurrence of the ith symbol. Given
a set of symbols, the fewer the number of different symbols
and the higher the occurrences of those symbols, the lower
the entropy of that set of symbols will be.

H = −
n∑

i=1

pi log2 pi (1)

Suppose that a 4096-byte block on a hard drive consisted
of a single type of symbol, say the digit zero, which repeats
4096 times to fill up the entire block. This would be a
situation of the lowest possible entropy for the given block
size of 4096 bytes. In contrast, suppose that a 4096-byte
block on a hard drive consists of 256 different symbols,
which is the maximum number of unique symbols that can
possibly be represented in a byte. Now, suppose that each
symbol occurrs 16 times to fill up the entire 4096-byte
block. This would be the scenario of the maximum possible
entropy, for the given block size of 4096 bytes.

4.3 Random Sampling
In ERASERS, random sampling is used to deter-
mine – within a certain Confidence Level (CL) and
Confidence Interval (CI), which are supplied by the
user – when n blocks are sampled, if no blocks are
encountered that have an entropy within a defined entropy
range. When that is true, the subpopulation sampled is not
likely to contain sensitive data, and therefore, is determined
not to be wiped. Equations 2 and 3 below are used for
computing the sample size necessary to reach a desired CI
and CL.

n0 =
Z2p(1− p)

e2
(2)

5

n =
n0

1 + (n0−1)
N

(3)

In Equation 2, n0 is the sample size, Z is the standard
score which represents the standard deviation from the
population mean, e is the precision level derived from
[(confidence interval)/100], and p is the estimated propor-
tion and is set to the maximum variance of 0.5 [10]. In
Equation 3, n is the sample size adjusted using finite popu-
lation correction, n0 is the unadjusted sample size obtained
from Equation 2, and N is the population size [10].

5 ERASE - A NOVEL WIPE TECHNIQUE

In this section, we discuss in detail the ERASE method for
sanitizing a target area. ERASE uses entropy measurements
to identify sensitive data blocks in the target area to be
sanitized, and overwrites only those blocks that contain
data within a specified sensitive entropy range. Before using
ERASE, the following information must be specified by the
user:

1) Number of wipe passes
2) Wipe pattern - e.g., /dev/zero or /dev/urandom
3) Sensitive entropy range for the target area
4) Random sampling confidence level and interval (if

using ERASERS)

5.1 Number of Passes: One vs Multiple
First, the user needs to determine the number of passes to
overwrite the target area if sensitive data is found. Within
the digital forensics and security community, there is con-
siderable debate regarding the minimum number of passes
necessary to completely rid magnetic media of traces of
remnant data. According to NIST SP800-88 [11], “studies
have shown that most of todayś media can be effectively
cleared by one overwrite.” NIST SP800-88 suggests the
single pass wipe should be performed with random data,
rather than zeroing the target area [11]. The original version
of the DoD industrial security manual, DoD 5220.22-M
recommends a 3-pass wipe, consisting of one pass of a
uniform character, one pass of its complement, and one pass
of random characters. The current DoD 5220.22-M does
not specify the number of passes, or the pattern required.
Numerous wipe pass recommendations exist, but a unified
consensus of how many passes are necessary has yet to
be established. Therefore, ERASE has the capability of
providing the user with single or multi-pass wipes.

5.2 Wipe Pattern: Zeros vs. Random Patterns
The second step is for the user to specify the pattern for
overwriting the areas found to contain sensitive data. There
are two common patterns used in wiping hard drives –
uniform sequences of characters and random sequences of
characters. All zeros or another uniform character in the
target area generally indicates one of two things: either
that portion of the disk has not been used, or someone has
sanitized or attempted to sanitize the disk. On the other

hand, wiping with random characters makes it difficult
to determine if the disk contains data with high entropy
values, such as docx, pptx, zip, or pdf file types, as shown
in Figure 1(b), or if the target area was wiped with one
to several passes using random data patterns. Therefore,
ERASE provides both types of patterns to the user as an
option. In our empirical studies, we have used two sources
of data for wiping, both available on UNIX systems–
/dev/zero and /dev/urandom.

5.3 Entropy Range and Data Sensitivity
Third, a sensitive entropy range is constructed. The sensi-
tive entropy range or set of sensitive entropy ranges defines
the range of entropy, which the user believes could hold
sensitive data.

The sensitive entropy range could be set to encapsulate:
1) All blocks that have an entropy greater than zero. This

would cause any block that consists of all uniform
zeros or ones to not be wiped, and any block that is
not all uniform ones or zeros to be wiped.

2) All blocks of a certain file type. Figure 1(b) displays
the entropy of 30 common file types on a 6 GB
partition of a Windows 7 machine in use for 2 years
at the time of these experiments. Each data point in
Figure 1(b) represents the entropy of an individual
file on the system. The block size used to calculate
the entropy of each file was equal to the size of
the particular file being processed. Table 2 shows
the entropy of randomly selected files under a user’s
home directory on two Macintosh OS X computers.
Figures 2(a) and 2(f) show the block level entropy
for six common file types.

3) All blocks that have an entropy between a very low
entropy and a very high entropy. For example, a
sensitive entropy range set to encapsulate all blocks
that have an entropy equal to or higher than the lowest
possible entropy that a block containing a certain
length English word could contain. Fig. 1(a) shows,
for each word in the Unix dictionary file, the lowest
possible entropy that a 4096 B block could contain,
if that block contained that word. Resultantly, if that
word exists in a block on the drive, that block must
have at least an entropy of that value.

Additionally, by defining sensitive entropy ranges, blocks
that fall within different sensitive entropy ranges, could be

TABLE 1
Specifications of the four machines used in the
evaluations (shown in Tables 2, 5, and Figure 4)

Machine 1 2 3 4

Type iMac Macbook
Pro

Macbook
Pro

Macbook
Pro

OS Mountain
Lion

Snow
Lepard Lion Mavericks

FS HFS+ HFS+ HFS+ HFS+
Drive HDD HDD SSD HDD
Size 1 TB 300 GB 250 GB 300 GB

Use Life 6 months 30 months 14 months 3 months

6

TABLE 2
Entropy statistics of files encountered under home directories of two machines.

M
ac

hi
ne

Entropy of randomly sampled files under one user’s home directory
(\Users\{username}) of a machine. Sampling performed with

a 99% confidence level and 1% confidence interval. Results are
shown for the top 50 most encountered file types. Averages

for each file type are depicted by the plotted line.

Entropy statistics (mean, median, standard deviation, upper quartile,
lower quartile, lowest, highest) computed for the top-20 most

encountered file types during the test. Data points used
in calculating the statistics were obtained from the

test results shown in the graph to the left.

M
ac

hi
ne

3
,R

ef
er

en
ce

Ta
bl

e
1

 0

 1

 2

 3

 4

 5

 6

 7

 8

htm
l
nib

json
jpg

w
ebhistory

strings

em
lx
png

[no-ext/bin]

gif
i jpeg

plist
ics

icns
apversion

zip
apm

aster

em
lxpart

pdf
appicon

sdef
lockfile

appinfo

apdetected

m
ov

log
data

qtch
abcdp

w
av

crash

vcf
css

js dat
m

aps

db eps
itc helpindex

txt
xm

l
sol

w
flow

localstorage

m
4v

help
tex

c

E
n

tr
o

p
y
 (

b
p

B
)

File Type

 0

 2

 4

 6

 8

 10

 12

htm
l

nib
json

jpg
w
ebhistory

strings

em
lx

png
[no-ext/bin]

gif
i jpeg

plist
ics

icns
apversion

zip
apm

aster

em
lxpart

pdf

E
n

tr
o

p
y
 (

B
p

B
)

File Type

mean
median

std. deviation
lower quartile
upper quartile

lowest
highest

M
ac

hi
ne

2
,R

ef
er

en
ce

Ta
bl

e
1

 0

 1

 2

 3

 4

 5

 6

 7

 8

txt
png

h htm
l
java

xm
l
[no-ext/bin]

rb nib
class

py strings

eps
pdf

m
4a

appinfo

appicon

c pyx
jar

plist
gif

dat
m

4
cpp

log
hpp

jpg
w
ebbookm

ark

index

icns
properties

css
vm

dk

gz pxd
csv

php
x 1 m

k
sh so tex

aux
o crash

pak
cfg

zip

E
n

tr
o

p
y
 (

b
p

B
)

File Type

 0

 2

 4

 6

 8

 10

 12

txt
png

h htm
l

java
xm

l
[no-ext/bin]

rb nib
class

py strings

eps
pdf

m
4a

appinfo

appicon

c pyx
jar

E
n

tr
o

p
y
 (

B
p

B
)

File Type

mean
median

std. deviation
lower quartile
upper quartile

lowest
highest

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

E
n

tr
o

p
y
 (

b
p

B
)

Word Length (Characters)

(a) Entropy of Dictionary Words

 0

 1

 2

 3

 4

 5

 6

 7

 8

docx
zip

vsd
xlsx

w
av

ppt
exe

java
txt

pdf
htm

l
pptx

rtf png
ai jpg

gif
jar

xm
l
w
m

a
m

p3
doc

bm
p
rar

bin
dat

rsa
pem

tif sqlite

E
n

tr
o

p
y
 (

b
p

B
)

File Type

(b) Common File Type Entropy

Fig. 1. (a) Entropy of each word in a dictionary file when placed in a zeroized 4096-byte buffer, (b) Entropy of
30 most occurring file types found on a Windows-7 machine in use for 2 years.

7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

E
n
tr

o
p
y
 (

b
p
B

)

Block Number

(a) DOC file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

E
n
tr

o
p
y
 (

b
p
B

)

Block Number

(b) DOCX file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

E
n
tr

o
p
y
 (

b
p
B

)

Block Number

(c) PDF file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40 45 50

E
n
tr

o
p
y
 (

b
p
B

)

Block Number

(d) ZIP file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200 1400 1600 1800

E
n
tr

o
p
y
 (

b
p
B

)

Block Number

(e) SQLITE file

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800 900 1000

E
n
tr

o
p
y
 (

b
p
B

)

Block Number

(f) MP3 file

Fig. 2. Entropy values of all blocks of a given file computed for six commonly encountered file types.

TABLE 3
Variables used in this paper.

Equation 1 Variables Equation 2 Variables Equation 3 Variables
i = a given symbol n0 = sample size n = sample size adjusted
n = total number of symbols Z = standard score (finite population correction)
p = probability of occurrence e = precision level n0 = unadjusted sample size

p = estimated proportion N = population size
Equation 4 Variables Algorithm V.1: ERASE Algorithm Algorithm V.2: ERASERS Algorithm
p = probability bN = block number bL = block list
n = total number of blocks tB = total number of blocks in area bN = block number; [] = empty list
s = number of sensitive blocks buf = disk block read into memory tB = total number of blocks in area
z = sample size e = entropy sS = subpopulation size

LEB = low sensitive entropy bound sZ = sample size; r = random number
HEB = high sensitive entropy bound cL = confidence level; cI = confidence interval

buf = disk block read into memory
LEB = low sensitive entropy bound
HEB = high sensitive entropy bound
e = entropy; % = modulus operator
rSS = regular subpopulation size

wiped with a different number of passes or wipe pattern,
based on how sensitive users believe a block of data within
that entropy range would normally be. For example, if a
user feels that jpeg images, which are encoded causing
them to have a high entropy, are more sensitive than a
text document, which has a mid-range entropy, then higher
entropy data could be overwritten with a more secure wipe
pattern. The lower and upper entropy limits are tunable
parameters in both ERASE and ERASERS and users can
choose both the upper and lower bound values, according
to their requirements.

After the sensitive entropy range is set, the wipe can
be performed using either wipe methods presented in this
paper. Each of the techniques are discussed in the following
sections.

5.3.1 ERASE - Entropy Wipe No Sampling [EWNS]
In the ERASE (Entropy Wipe No Sampling [EWNS])
method, each block in the target area is read into a buffer,
and each block’s entropy is calculated. If a block has an
entropy within the sensitive entropy range, then the block
is wiped by overwriting that block p times, where p is the
number of wipe passes.

5.3.2 ERASERS- Entropy Wipe Sampling [EWS]
The ERASERS (Entropy Wipe Sampling [EWS]) method
uses both entropy calculations and random sampling. With
ERASERS, the area to be sanitized is divided into a set of
subpopulations. For each subpopulation, a sample size is
determined based on the size of the subpopulation and the
CL and CI the user specified. The sample size, n, indicates
the number of blocks necessary to be sampled to meet the

8

CL and CI specified. Now, n blocks are randomly sampled
from the subpopulation. Each sampled block is read into a
buffer and its entropy is calculated. If any of the blocks
sampled from a subpopulation contain data in the sensitive
entropy range, the entire subpopulation is overwritten p
times. This process is repeated for each subpopulation in
the target area.

Algorithm 5.1: ERASE ALGORITHM(void)

for bN ← 0 to tB

do

buf ← READBLOCK(bN)
e← ENTROPY(buf)
if (e >= LEB and e <= HEB)
or (e >= LEB2 and e <= HEB2)
or ...
then

{
OVERWRITEBLOCK(bN)

Algorithm 5.2: ERASERS ALGORITHM(void)

procedure GETSUBPOP(bN, tB, rSS)
bL← []
for i← bN to (bN + rSS)

do

if i < tB
then

{
bL.Add(i)

else { return (bL)
return (bL)

procedure OVERWRITESUBPOP(bL)
sS ← LENGTH(bL)
for i← 0 to sS

do
{

OVERWRITEBLOCK(bL[i])

main
bN ← 0
while LEN(bL← GETSUBPOP(bN, tB, rSS)) > 0

do

sS ← LEN(bL)
sZ ← SAMPLESIZE(sS, cL, cI)
for i← 0 to sZ

do

r ← GETRNDNUM() % sS
buf ← READBLOCK(bL[r])
e← ENTROPY(buf)
if (e >= LEB and e <= HEB)
or (e >= LEB2 and e <= HEB2)
or ...
then

{
OVERWRITESUBPOP(bL)

bN ← bN + sS

6 PERFORMANCE EVALUATION OF TESTS
UNDER CONTROLLED CONDITIONS

In this section, we discuss the performance of ERASE and
ERASERS, when tested under controlled conditions, and
compare them with the traditional brute force method.

TABLE 4
Parameters of the machine used in the performance

tests (shown in Figures 3(a) and 3(b))

Parameters of Machine

Sequential Write (/dev/zero) 105.8 MB/s
Sequential Write (/dev/urandom) 11.8 MB/s

Sequential Read 106.8 MB/s
Avg. Random Seek Time 9.46 ms

Entropy Calc. Speed 5748.77 MB/s

6.1 Performance Tests under Controlled Condi-
tions

We performed the following tests on a desktop computer
running Ubuntu Linux with an Intel(R) Core(TM) 2 Quad
CPU 8300 @2.50GHz, 8 GB of RAM, and a Seagate ATA
2 TB 7200rpm hard drive. Table 4 summarizes the system’s
baseline read and write speeds, seek time, and entropy
calculation speed. The partition used for the tests was 32
GB in size.

1) Brute Force (BF)– In the BF test, the entire partition
was overwritten using dd, a Unix command line tool,
with a block size of 4096 bytes.

2) ERASE (EWNS)– In the EWNS test, x% of the
blocks in the partition were filled with data within the
sensitive entropy range, and the rest were initialized
with data outside the sensitive entropy range. Then,
the tool executed in ERASE/EWNS mode using a
block size of 4096 bytes.

3) ERASERS Best Case (EWSBC)– In the EWSBC
test, x% of the blocks in the partition were sequen-
tially filled with data within the sensitive entropy
range, and the rest were initialized with data outside
the sensitive entropy range. Then, the tool executed
in ERASERS/EWS mode using a block size of 4096
B. A confidence level of 95% and a confidence
interval of 5% were used in the random sampling
by the tool. The number of subpopulations was set
to z = 8 with each subpopulation being 4 GB in
size. The EWSBC tests the best-case scenario for
the ERASERS/EWS mode because random sam-
pling is performed; however, only d((x%/100) ∗ z)e
subpopulations are overwritten, due to the sensitive
data being clustered compactly and sequentially. For
example, in the best-case test, if 50% of the drive is
within the sensitive entropy range, then half of the
subpopulations contain sensitive data and half of the
subpopulations do not. Therefore, only half of the
subpopulations need to be wiped.

4) ERASERS Worst Case (EWSWC)– In the EWSWC
test, x% of the blocks in the partition were filled with
data; however, as opposed to being sequentially filled
as they were in the EWSBC test, they were spread out
equally to fill the drive. For example, for the EWSWC
test with 50% of blocks in the sensitive entropy range,
every other block was filled with data in the sensitive
entropy range; as opposed to the EWSBC test for

9

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

 3500

 3750

 4000

 0 20 40 60 80 100

W
ip

e
 D

u
ra

ti
o

n
 (

s
e

c
o

n
d

s
)

Amount of Drive in the
Sensitive Entropy Range (%)

BF (Brute Force - dd)
ERASE/EWNS (No Sampling)

(a)

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 375

 400

 0 20 40 60 80 100

W
ip

e
 D

u
ra

ti
o

n
 (

s
e

c
o

n
d

s
)

Amount of Drive in the
Sensitive Entropy Range (%)

BF (Brute Force - dd)
ERASERS/EWSBC (Sampling)
ERASERS/EWSWC (Sampling)

(b)

Fig. 3. (a) Comparison in performance between the Unix dd tool and the ERASE/Entropy Wipe No Sampling
(EWNS) method. The wipe pattern used was 1 pass using /dev/urandom as the source for each test using
a 32 GB partition, (b) Comparison in performance between the Unix dd tool and the best and worst case
performance of the ERASERS/Entropy Wipe Sampling (EWS) method. The wipe pattern used was 1 pass
using /dev/zero as the source for each test using a 32 GB partition. For the sampling method (EWS), the
drive was divided into 8 sequential subpopulations of 4 GB each. A 95% confidence level and a 5% confidence
interval were used in the sampling.

50%, which filled the first half of the drive with
data in the sensitive entropy range, then the second
half with data outside the sensitive entropy range.
The EWSWC tests the worst-case scenario for the
ERASERS/EWS mode because random sampling is
performed; however, z subpopulations are overwritten
because each subpopulation has some sensitive data
in it.

We would like to draw the attention of the reader to the
fact that entropy computation has a very minimum impact
on performance, as can be seen from Table 4. Hence, using
entropy computation for determining areas of sensitive data
during sanitization is a justifiable approach, as it adds
minimal overhead.

6.2 Performance Analysis of Tests under Con-
trolled Conditions

Fig. 3(a) shows the performance of the ERASE/EWNS
method compared to the performance of Unix tool,
dd, when performing 1 pass using /dev/urandom as
the source. Fig. 3(b) shows the performance of the
ERASERS/EWS method in its best and worst case sce-
narios compared to dd, when performing 1 pass us-
ing /dev/zero as the source. The performance of the
ERASE/EWNS method is more efficient than dd when
82% or less of the target area to be sanitized is within
the sensitive entropy range. The performance of the
ERASERS/EWS method is more efficient in its best-case
scenario when 92% or less of the target area to be sanitized
is within the sensitive entropy range. In its worst-case
scenario, ERASERS/EWS is similar to the performance
of dd.

Some key observations of the performance results shown
in Figures 3(a) and 3(b) are as follows:

1) With no sensitive blocks in the specified
entropy range, EWSBC (/dev/zero) is 14x
faster compared to the brute force technique
(/dev/zero), while EWNS (/dev/urandom) is
approximately 9.5x faster than the brute force
technique (/dev/urandom).

2) With 30% of the target drive containing data in the
specified sensitive entropy range, EWSBC (/dev/zero)
is approximately 2.3x faster than the brute force
technique (/dev/zero) and EWNS (/dev/urandom)
is approximately 2.2x faster than the brute force
technique (/dev/urandom).

3) With 50% of the target drive containing data
in the specified sensitive entropy range, EWSBC
(/dev/zero) is approximately 1.9x faster than the
brute force technique (/dev/zero), and EWNS
(/dev/urandom) is approximately 1.6x faster than
the brute force technique (/dev/urandom).

4) These results are independent of the actual entropy
range chosen by the user.

Of the above three factors, the density of block distri-
bution is perhaps the most critical factor. For example, if
10% of a drive’s unallocated blocks are within the sensitive
entropy range, but those blocks are evenly distributed across
the unallocated space, ERASERS will have close to worst-
case performance. In that instance, all the subpopulations
will contain one or more sensitive blocks, thereby neces-
sitating all subpopulations to be overwritten. Under this
scenario, performance of ERASERS will be similar to
current brute force techniques. In contrast, if 10% of a
drive’s unallocated blocks are within the sensitive entropy

10

TABLE 5
Distribution of entropy of data blocks in the unallocated space of three machines.

Entropy
Range Machine 1, Reference Table 1 Machine 3, Reference Table 1 Machine 4, Reference Table 1

0− 8

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

 E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[0.000:8.000]

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

Subpopulation Number

[0.000:8.000]

 0

 20

 40

 60

 80

 100

 0 5 10
 15

 20
 25

 30
 35

 40

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[0.000:8.000]

1− 8

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

 E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[1.000:8.000]

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

Subpopulation Number

[1.000:8.000]

 0

 20

 40

 60

 80

 100

 0 5 10
 15

 20
 25

 30
 35

 40

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[1.000:8.000]

3− 6

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

 E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[3.000:6.000]

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

Subpopulation Number

[3.000:6.000]

 0

 20

 40

 0 5 10
 15

 20
 25

 30
 35

 40
P

e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[3.000:6.000]

3− 7

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

 E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[3.000:7.000]

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

Subpopulation Number

[3.000:7.000]

 0

 20

 40

 60

 0 5 10
 15

 20
 25

 30
 35

 40

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[3.000:7.000]

6− 8

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

 E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[6.000:8.000]

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

Subpopulation Number

[6.000:8.000]

 0

 20

 40

 60

 80

 100

 0 5 10
 15

 20
 25

 30
 35

 40

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[6.000:8.000]

7− 8

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

 E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[7.000:8.000]

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

Subpopulation Number

[7.000:8.000]

 0

 20

 40

 60

 80

 100

 0 5 10
 15

 20
 25

 30
 35

 40

P
e
rc

e
n
ta

g
e
 o

f
B

lo
c
k
s
 w

it
h

a
n
 E

n
tr

o
p
y
 w

it
h
in

 t
h
e

E
n
tr

o
p
y
 R

a
n
g
e
 (

%
)

Subpopulation Number

[7.000:8.000]

11

TABLE 6
Thoroughness of technique evaluated using

probability on a target area of 1, 048, 576 blocks.

Number of sensitive
(4096-byte) Blocks 10 100 1000 10000

Probability of not
sampling a
sensitive block 99.63% 96.40% 69.32% 2.52%
Percentage of
population, that
are sensitive blocks 0.00095% 0.0095% 0.095% 0.95%

range, but those sensitive blocks are tightly clustered (con-
centrated) in certain areas, then only a small number of
subpopulations will have blocks within the specified sen-
sitive entropy range. Consequently, ERASERS will have
near best-case performance since only a small number of
subpopulations will have to be overwritten. This is also
more realistic because blocks of data, that belong to the
same file, tend to have similar entropy values and often
occur in continuity.

The performance of our proposed sanitization technique
with random sampling – ERASERS – is strongly depen-
dent on the following three factors:

1) number of data blocks in the target area
2) number of data blocks within the specified sensitive

entropy range in the target area
3) density of distribution of sensitive data blocks within

the target area

7 THEORETICAL THOROUGHNESS OF
ERASERS
Table 6 shows the probability of not sampling (missing)
a sensitive block, when 384 blocks are randomly sampled
from a population of 1, 048, 576 blocks. The results pre-
sented in Table 6 are for scenarios when there are 10,
100, 1000, and 10000 sensitive blocks in a population of
1048576 blocks and 384 blocks are randomly sampled.
Here, we choose 384 sampled blocks and a population of
1, 048, 576 blocks to keep evaluations meaningful and con-
sistent with the settings used by the tool in the performance
tests presented in section 6.2 and in Fig. 3(b). Equation 4
was used to calculate the probabilities.

p = 100.0 ∗

(
n− s

z

)
(
n

z

) (4)

8 ANALYSIS OF UNALLOCATED SPACE

We conducted tests to understand the distribution of data
in the unallocated space of three different HDDs, formatted
with the HFS+ filesystem. In the tests, each drive’s unallo-
cated space was divided into 4 GB subpopulations, with
each subpopulation consisting of sequential unallocated
disk blocks. For example, Subpopulation-0 consisted of the

first 1, 048, 576 unallocated blocks (blocksize = 4096B),
as sequentially encountered when reading the HFS+ allo-
cation bitmap file. Subpopulation-2 consisted of the next
1, 048, 576 unallocated blocks encountered in the allocation
bitmap file, and the same repeated for the other subpopu-
lations. The entropy of each block, in each subpopulation,
was calculated. Subsequently, for each subpopulation, the
percentage of blocks within a given entropy range was
calculated for six different sensitive entropy ranges. The
results, depicting the distribution, are shown in Table 5.

9 EVALUATIONS UNDER REAL WORLD
CONDITIONS
We evaluated the performance of the ERASERS tool on a
Apple Macbook Pro with a 2.3 GHz Intel Core i5 processor,
4 GB of DDR3 RAM, and a 300 GB SATA hard disk
drive. This computer is listed as Machine 4 in Table 1. A
depiction of the distribution of the data in its unallocated
space is shown in Table 5, Machine 4. An initial image of
the main HFS+ partition of the hard drive was copied to an
external 3TB hard drive with a Thunderbolt connection. The
initial image was not modified in any of the tests. Before
each test was performed, a second image was created of
the first image, creating an exact bit-for-bit copy of the
first image. Each test of the tool was performed on the
second images. This ensured that each test was run on an
image that had the exact same state as the initial image
of the main partition. The main partition of the hard drive
was 292.94 GB. 140.86 GB of the hard drive consisted
of allocated space and 152.08 GB was unallocated. The
goal of the tests was to evaluate the performance and
accuracy of the ERASERS tool against a brute force tool
(UBLKW) on the unallocated space of a HFS+ partition.
The ERASERS tool was modified to parse HFS+ data
structures to read the unallocated space of a HFS+ parti-
tion. A second tool was created, called UBLKW, which
overwrites each unallocated block of a HFS+ partition
with zeros, in a sequential order, according to the HFS+
allocation bitmap. The UBLKW represents the brute-force
method of sanitization. The ERASERS tool was tested with
a [0:8] bpB entropy range, which considered any block with
an entropy greater than 0 bpB and less than or equal to 8
bpB as sensitive data. A [0:8] bpB entropy range is the
most conservative setting of ERASERS, which considers
all blocks, that do not contain completely uniform data (e.g.
all zeros), as sensitive. The ERASERS tool was also tested
with a [7:8] bpB entropy range. The results of the tests, in
comparison to the UBLKW tool, are shown in Figures 4(a)
and 4(b).

9.1 Performance and Accruacy
The ERASERS tool, when set to an entropy range of
[0:8] bpB, averaged a 50.473% speed improvement over
the brute-force UBLKW tool, over 12 iterations. The
ERASERS tool averaged an accuracy of 99.845%, in the
[0:8] bpB entropy range setting – meaning that 99.845%
of the blocks, within the set entropy range, were sanitized.

12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10

T
im

e
 (

s
)

Test Number

UBLKW
ERASERS[0:8]
ERASERS[7:8]

(a)

 99.7

 99.75

 99.8

 99.85

 99.9

 99.95

 100

 0 2 4 6 8 10

A
c
c
u

ra
c
y
 (

%
)

Test Number

UBLKW
ERASERS[0:8]
ERASERS[7:8]

(b)

Fig. 4. (a) Performance of the UBLKW tool, ERASERS configured to an entropy range of greater than 0 bpB
and less than or equal to 8 bpB, and ERASERS configured to an entropy range of greater than 7 bpB and
less than or equal to 8 bpB. Uniform zeros were used as the wipe pattern in all of the tests. (b) Accuracy of
the UBLKW tool, ERASERS configured to an entropy range of greater than 0 bpB and less than or equal to
8 bpB, and ERASERS configured to an entropy range of greater than 7 bpB and less than or equal to 8 bpB.

10 RELATED WORK

The study in [2] indicates that the secondary hard-disk
market is almost certainly awash in information that is both
sensitive and confidential. With several months of work
and relatively little financial expenditure, the authors of
the study [2] were able to retrieve, from previously owned
hard drives, thousands of credit card numbers and other
personal information of many individuals. Garfinkel [2]
believes few people are currently looking nefariously to sec-
ondary market hard drives for confidential data. However,
Garfinkel recognizes that if sanitization practices are not
significantly improved, it is only a matter of time before
the confidential information on such hard drives will be
targeted and exploited.

The authors in [12], note that when a computer is lost
or disposed, active and discarded data typically remains
stored on its hard disk drive. Even if users “delete” all
their files, they can be easily recovered from “Recycling”
and “Trash” folders, or by special utility programs, such
as Norton Unerase or other forensics tools. The authors
in [13] note that, for all but the most sensitive information,
users will turn to efficient erasure methods that take minutes
rather than hours or days. The selection of a wiping method
will predominantly be driven by a tradeoff between an
acceptable level of security risk and the time necessary
to perform the overwriting. This is one of the strong
motivating factors for the research presented in this paper.

The following related works present uses of random
sampling to accelerate processes in computer security and
forensics. Mora and Kloet, in [14], propose randomly sam-
pling image (picture) files in a directory to allow a forensic
analyst to identify a representative sample of the contents of
the directory without having to manually review all images
in the directory. Young et. al., in [15], propose randomly
sampling sectors from computer media and calculating

cryptographic hashes of the sampled sectors. The hashes
of the sampled sectors are compared to a database, which
contains sector-level hashes of known, illegal or malicious
files. The method in [15] allows for a quick search to
be performed using random sampling at the sector level
to determine if a computer media contains files from a
database of know, illegal files.

The following are related works in the area of computer
media data sanitization. In [16], Reardon et. al. provide a
survey of current secure data deletion methods. [17], [18],
and [19] present works relating to secure deletion of
individual files on computer media. In [17], Botelho et. al.
provide a method for sanitizing deduplicated storage sys-
tems using perfect hashing. Joukov et. al., in [18], present
a method of wiping individual files and their associated
metadata on ext3 filesystems. In [19], Wei et. al. present
a method of erasing individual files from flash-based solid
state drives using flash translation layer extensions. In [20],
Nisbet et. al. present an analysis of the effect of the TRIM
command on the retention of residual data on solid state
drives. In [21], Savoldi et. al. present statistical methods
for detecting wiped areas on computer media. One method
tested in [21] is the use of an entropy-based classifier to
determine whether disk fragments were wiped with random
data. In addition to the entropy classifier tested in [21], the
authors in [21] implemented a classifier for detecting wiped
areas on computer media using a statistical package from
the National Institute of Standards and Technology (NIST).
The NIST statistical package consists of 15 tests, which
evaluate the randomness of data.

11 CONCLUSION

In this paper, we have presented two novel informa-
tion theoretic drive sanitization techniques – ERASE and

13

ERASERS. The first proposed technique, ERASE, com-
putes the entropy of blocks in the target area to be san-
itized. Then, based on the computed entropy, a decision
is made whether the blocks need to be sanitized. The
second proposed technique, ERASERS, is an extension of
ERASE, and uses random sampling to further enhance the
performance of drive sanitization. It optimizes the ERASE
wiping process using random sampling for a user-specified
CL and CI .

As part of our future research, we intend to build
an entropy baseline for data blocks of various file types
encountered on mainstream desktop and server operating
systems. This, we believe will help further enhance the
performance of ERASE and ERASERS.

REFERENCES
[1] M. Caltabiano, “Sanitization of computers and electronic storage me-

dia a.k.a. - disk sanitization,” in Office of Environmental Information,
Office of Technology Operations and Planning.

[2] S. Garfinkel and A. Shelat, “Remembrance of data passed: A study
of disk sanitization practices,” IEEE Security and Privacy, vol. 1,
pp. 17–27, 2003.

[3] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proceedings of the 6th USENIX Security Symposium,
1996, pp. 77–89.

[4] R. Gomez, A. Adly, I. Mayergoyz, and E. Burke, “Magnetic force
scanning tunnelling microscope imaging of overwritten data.” in
IEEE Transactions on Magnetics, vol. 28, no. 5, 1992.

[5] R. Gomez, E. Burke, A. Adly, I. Mayergoyz, and J. Gorczyca,
“Microscopic investigations of overwritten data,” in Journal of
Applied Physics, vol. 73, no. 10, 1993, pp. 6001–6003.

[6] J. Medsger and A. Srinivasan, “Erase- entropy-based sanitization
of sensitive data for privacy preservation,” in Proceedings of The
7th International Conference for Internet Technology and Secured
Transactions, 2012, pp. 427–432.

[7] Seagate-Technology-LLC, “Seagate technology reports fiscal fourth
quarter and year-end 2011 financial results,” About Seagate News
Room, Jul. 2011.

[8] C. Wright, D. Kleinman, and S. Sundhar, “Overwriting hard drive
data: The great wiping controversy.” in Proceedings of the 4th
International Conference on Information Systems Security, 2008, pp.
244–257.

[9] C. E. Shannon, “A mathematical theory of communication,” in Bell
System Technical Journal, vol. 27, 1948, pp. 379–423 and 623–656.

[10] G. Israel, “Determining sample size.” in University of Florida IFAS
Extension, PEOD6, 1992.

[11] R. Kissel, M. Scholl, S. Skolochenko, and X. Li, “Guidelines for
media sanitization: Recommendations of the national institute of
standards and technology,” in NIST SP 800-88 Report, 2006.

[12] G. Hughes, T. Coughlin, and D. Commins, “Disposal of disk
and tape data by secure sanitization,” IEEE Security and Privacy,
vol. 7, no. 4, pp. 29–34, Jul. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2009.89

[13] G. Hughes and T. Coughlin, “Tutorial on disk drive data sanitiza-
tion,” in UCSD CMRR Report, 2007.

[14] R.-J. Mora and K. Bas, “Digital forensic sampling,” Sans Institute
Publication, 2010.

[15] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks, “Distinct sector
hashes for target file detection,” Computer, 2012.

[16] J. Reardon, D. Basin, and S. Capkun, “Sok: Secure data deletion,”
in SP ’13 Proceedings of the 2013 IEEE Symposium on Security and
Privacy, 2013.

[17] F. C. Botelho, P. Shilane, N. Garg, and W. Hsu, “Memory efficient
sanitization of a deduplicated storage system,” in Proceedings of the
11th USENIX Conference on File and Storage Technologies (FAST
’13), 2013.

[18] N. Joukov, H. Papaxenopoulos, and E. Zadok, “Secure deletion
myths, issues, and solutions,” in Proceedings of the ACM Workshop
on Storage Security and Survivability, 2006.

[19] M. Wei, L. Grupp, F. Spada, and S. Swanson, “Reliably erasing data
from flash-based solid state drives,” in FAST’11 Proceedings of the
9th USENIX conference on File and stroage technologies, 2011.

[20] A. Nisbet, S. Lawrence, and M. Ruff, “A forensic analysis and
comparison of solid state drive data retention with trim enabled
file systems,” in Proceedings of the Australian Digital Forensics
Conferences, 2013.

[21] A. Savoldi, M. Piccinelli, and P. Gubian, “A statistical method for
detecting on-disk wiped areas,” Digital Investigation, 2011.

Jeffrey Medsger received Bachelor of Science in Information Tech-
nology from George Mason University, Voglenau School of Engineer-
ing, in May 2011, and Master of Science in Information Security
and Assurance from George Mason University, Voglenau School
of Engineering, in May 2012. He has published two papers in the
proceedings of international technology conferences, and received
a best paper award at the 7th International Conference for Internet
Technology and Secured Transactions (ICITST-2012).

Avinash Srinivasan is a faculty member in the Department of
Computer and Information Sciences at Temple University. Dr. Srini-
vasan earned his B.E. (Industrial Production, 1999) from University
of Mysore with Honors and M.S. (Computer Science, 2003) from
Pace University, New York with Distinguished Achievement Award
for Academic Excellence. He received Ph.D. in Computer Science
from Florida Atlantic University in Aug. 2008, and Prof. Jie Wu (IEEE
Fellow) was his advisor. He was a recipient of the two prestigious
and competitive University-wide fellowships– Dr. Daniel B. & Aural
B. Newell Doctoral Fellowship for the academic year 2005 - 2006
and Graduate Fellowship for Academic Excellence for the academic
year 2006 - 2007. His research interests include network security and
forensics, forensic analysis of file systems, forensic file carving, and
security in WSNs & MANETs. He has published 34 refereed papers
in scholarly conferences and journals, including IEEE INFOCOM,
ACM SAC, IEEE MALWARE, IEEE ICDCS, and IEEE ICC. Dr.
Srinivasan is a member of the NIST Cloud Computing Forensics
Science and NIST Cloud Computing Security Working Groups.

Jie Wu is the chair and a Laura H. Carnell Professor in the Depart-
ment of Computer and Information Sciences at Temple University.
Prior to joining Temple University, he was a program director at
the National Science Foundation and Distinguished Professor at
Florida Atlantic University. His current research interests include
mobile computing and wireless networks, routing protocols, cloud
and green computing, network trust and security, and social net-
work applications. Dr. Wu regularly publishes in scholarly journals,
conference proceedings, and books. He serves on several editorial
boards, including IEEE Transactions on Computers, IEEE Transac-
tions on Service Computing, and Journal of Parallel and Distributed
Computing. Dr. Wu was general co-chair/chair for IEEE MASS 2006
and IEEE IPDPS 2008 and program co-chair for IEEE INFOCOM
2011. Currently, he is serving as general chair for IEEE ICDCS
2013 and ACM MobiHoc 2014, and program chair for CCF CNCC
2013. He was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical Committee
on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished
Speaker and a Fellow of the IEEE. He is the recipient of the 2011
China Computer Federation (CCF) Overseas Outstanding Achieve-
ment Award.

