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Abstract—Ensuring stable and high-quality real-time video an-
alytics for computationally constrained mobile agents is essential.
However, limited computing resources and network bandwidth
present significant challenges in meeting the objective of low
response time and high inference accuracy. In this paper, we
present DiVE, an edge-assisted video analytics system that
utilizes motion vectors calculated by video codec to extract
foregrounds and differentially encode frames. DiVE removes
rotational components from motion vectors by solving over-
determined linear equations and filters noisy motion vectors
based on the observation that motion vectors of static objects
point to the same point when the ego agent purely translates.
To distinguish foregrounds from backgrounds, DiVE estimates
the ground based on observations that all foregrounds stand on
the ground and motion vectors on static objects at the same
height have the same normalized magnitude. DiVE then uses
region-growing-based clustering to identify foreground objects.
An adaptive bitrate allocation method is applied to optimize
accuracy under estimated bandwidth. We conduct extensive
experiments to evaluate the performance of DiVE. The results
demonstrate that DiVE can improve detection accuracy by up
to 39.1% and reduce response time by up to 19.1% compared
with other video analytics schemes on nuScenes and RobotCar
datasets.

Index Terms—mobile agents, motion vector, video streaming,
video analytics, deep learning

I. INTRODUCTION

Recent years have witnessed a rapid increase of various
types of mobile agents, such as autonomous driving agent
on a normal vehicle, embodied AI agent on a robot, and
smart agent on a drone, which may exist as an independent
module and feature their hosts with many appealing intelligent
mobile applications. Among many of the others, live video
streams generated from mobile agents need fast treatment.
For example, autonomous driving requires the system to have
a comprehensive understanding of the scene and all related
objects as quickly as possible in the real world. However,
most mobile agents can only conduct limited computation [1].
Therefore, computer vision tasks such as object detection, clas-
sification and semantic segmentation need to be accomplished
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(a) Foreground can be estimated us-
ing calculated motion vectors

highly compressed background

slightly compressed foreground

(b) Accurate object detection on a
differentially encoded frame

Fig. 1: An illustration of object detection on a DiVE-encoded
video, where (a) the region of foreground objects in each
frame of the video can be well estimated, using motion vectors
obtained from a traditional video codec; and (b) each frame is
differentially encoded with the foreground remaining clear and
sharp yet the background heavily blurred, so that the bitrate
of the live video stream adaptively fits the uplink bandwidth
without affecting the final object detection accuracy.

nearly in real time for fast video analytics by offloading most
computational workload to an edge server.

However, an effective edge-assisted online video analytics
system needs to meet three rigid requirements. First, the
system should achieve high analysis accuracy as inaccurate
results may lead to severe consequences, such as car crashes.
Second, the system should have a low response time even
with a highly unstable wireless communication connection,
especially for fast moving agents. Last but not least, the
system should be lightweight and scalable given the limited
computational power of a mobile agent and the potential huge
number of agents in the system.

In the literature, existing edge-assisted video analytics
schemes can be classed into three categories, i.e., frame
filtering at camera side, video compressing based on server
feedback, and local compressed model assisted video analyt-
ics. The frame filtering methods [2]–[4] adopt simple logic to
recognize key frames and send them to the edge for model
inference. These methods perform poorly in highly dynamic
scenarios due to the detection results of other regular frames
rely heavily on tracking the bounding box of key frame.
Existing compression-based methods [5]–[7] allocate more
bits to regions of a video frame that the edge deems to



significantly impact inference accuracy, while reducing the
transmission bits for the remaining regions. However, these
methods depend on guidance from the edge, leading to huge
latency. The last category of video analytics system rely
on light-weight models [8]–[10] deployed on mobile devices
to handle simple sub-tasks like large object detection or
appearance of target objects. These methods inherently require
significant computing power and demonstrate diminished ac-
curacy when processing complex video content. Other studies
[11], [12] adjust video encoding configurations like resolution
or frame rate to chase maximum inference accuracy based
on current available bandwidth. Nevertheless, such methods
require offline profiling and cannot handle live video streams.

In this paper, we propose DiVE, a novel differential video
encoding scheme for online edge-assisted video analytics on
mobile agents. The core idea of DiVE is to leverage the
low-cost motion vectors generated by video codec to extract
foreground regions of interest so that the best image quality
is reserved for the foreground while the bitrate of the final
encoded video fits the current uplink bandwidth. As a result,
DiVE only conducts limited computation for basic analytics
but can achieve low response time and high video analytics
accuracy at the same time. Figure 1 illustrates an example of
object detection on a DiVE-encoded video where each frame
is differentially encoded with the foreground remaining clear
and sharp yet the background heavily blurred without affecting
the final object detection accuracy.

There are two main challenges in designing DiVE. First,
although motion vectors have distinct features for identifying
different objects, they are very coarse and vulnerable to image
noise and rotation of the camera, which makes it hard to
use. To tackle this challenge, we conduct extensive empirical
studies and have the key observation that when the agent only
translates in space, all motion vectors on static objects point
to the same point, referred to as focus of expansion (FOE),
which be well utilized to filter out noise motion vectors.
Furthermore, when the agent moves forward, its pitch and yaw
angles can be well estimated by solving over-determined linear
equations with carefully selected motion vectors. As a result,
the rotational component can be effectively removed from a
motion vector caused by compound motion.

Second, it is difficult to distinguish the foreground regions
from the background with only motion vectors as foreground
objects may have distinct motion and different image textures.
We have the following two key observations: 1) all foreground
objects stand on the ground and 2) non-rotational motion
vectors on objects of the same height (e.g., the ground) in the
real world have the same normalized magnitude. To deal with
this challenge, we first estimate the ground region based on the
above observations. Then, we propose a region-growing-based
clustering algorithm to identify foreground objects, starting
from those object seeds standing within the ground region.
Finally, convex hulls of similar objects can be generated,
forming multiple foreground regions.

The DiVE agent is lightweight and written in C++. We
conduct extensive experiments on two public driving video

datasets, i.e., RobotCar and nuScenes. Results demonstrate
that DiVE can achieve high inference accuracy under various
bandwidth settings.DiVE can achieve a large accuracy gain
of up to 39.1% and reduce 19.1% response time, compared
with the state-of-the-art edge-assisted video analytics methods.
We highlight the main contributions made in this paper as
follows: 1) a lightweight motion vector based foreground
extraction scheme is proposed 2) an adaptive video encoding
scheme is proposed 3) extensive experiments are conducted,
demonstrating the efficacy of DiVE.

II. PROBLEM DEFINITION AND PRELIMINARIES

A. System Model and Problem Definition

We consider two types of entities in an edge-assisted video
analytics system:

• Mobile Agents: A mobile agent, e.g., a smart dashcam
mounted on the windshield of a vehicle, is capable of
generating live video streams while demanding video
analytics such as object detection in real time. The mobile
agent has constrained computational power but can run
basic video encoding operation such as H.264 or MPEG-
4. In addition, the agent can exchange information with an
edge server via 4G/5G mobile communication networks.
We consider that mobile agents may move in a high
speed, which causes the uplink bandwidth to dramatically
change when uploading encoded video streams to an edge
server for analytics.

• Serverless Edge Computing: Upon receiving video
analytics requests, a unified serverless computing fab-
ric (SCF) for the edge-cloud continuum has sufficient
computational power for video decoding and online deep
neural network (DNN) model inference, and returns the
results to mobile agents with low end-to-end model
inference and communication latency.

Given the dynamic uplink bandwidth, the online edge-
assisted video analytics problem is defined as: how to suc-
cessfully encode and transmit a live video stream at a mobile
agent so that the edge server can successfully decode the
received video and achieve the required analytics accuracy
using existing pre-trained DNN models, while meeting the
end-to-end real-time constraint at the same time.

B. Video Encoding

To compress a video, frames are organized into structures
known as Groups of Pictures (GoPs). Each GoP begins with
an I-frame, which is encoded independently without any ref-
erence to other frames. Following the I-frame are multiple P-
frames and B-frames where only the differences from reference
frames are encoded. Given a new frame and a reference frame,
the encoder processes the new frame in unit of macroblocks
(e.g., the typical size of a macroblock is 16×16 pixels) in
the following three steps. First, for each macroblock in the
current frame, it searches for the most similar macroblock
in the reference frame so that the amount of residual data
needed for encoding is reduced. The displacement from the
current macroblock to the corresponding macroblock in the
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caused by camera translation in z-axis.
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Fig. 4: Examples of calculated motion
vectors.

reference frame is represented by a two-dimensional motion
vector. Second, given the required bitrate and the differential
encoding requirement, represented as a quantizer parameter
(QP) offset map where a macroblock should be compressed
harder would have a positive value, it determines the specific
QP value for each macroblock. Finally, it performs entropy
encoding on the transformed and quantized data [13].

C. Motion Vectors Caused by Camera Translation

We can characterize a general camera with a simple pinhole
camera model. As illustrated in Figure 2, a static point Q in the
physical world with coordinates (XQ, YQ, ZQ) in the world
coordinate system is projected through the pinhole to a point
q on the image plane of the camera with image coordinates
(xtq, y

t
q) at frame t. If the camera coordinate system coincides

with the world coordinate system, (XQ, YQ, ZQ) and (xtq, y
t
q)

satisfies the equations as follows

xtq = f
XQ

ZQ
, ytq = f

YQ
ZQ

, (1)

where f is the focal length represented in the units of pixels.
When the camera translates with a displacement of ∆Z

along z-axis from frame t− 1 to frame t, the projection point
moves from qt−1 to qt with a motion vector of vq , which can
be decomposed to vxq and vyq along the x-axis and y-axis,
respectively, calculated as

vxq =
∆Zxtq
ZQ

, vyq =
∆Zytq
ZQ

. (2)

In general, if the camera translates in an arbitrary direction
in the physical world with the respective displacement of ∆X ,
∆Y and ∆Z along each axis, vxq and vyq can be calculated
as

vxq =
∆Z

ZQ
(xtq −

∆Xf

∆Z
), vyq =

∆Z

ZQ
(ytq −

∆Y f

∆Z
). (3)

We have the following observation:
Observation 1. When the camera translates forward, mo-

tion vectors of static objects point to the same point, referred
as focus of expansion (FOE), which also coincides with the
vanishing point [14]. Moreover, the magnitude of these vectors
are proportional to both the depth of corresponding objects
and the distance between the projected points and FOE on
the image plane.

From Eq.(3), the position of FOE on the image plane
is (∆Xf

∆Z , ∆Y f
∆Z ). Figure 4(a) depicts an example of motion

vectors calculated when a camera mounted on a vehicle moves
forward. It can also be seen that Observation 1 does not
hold for motion vectors calculated on moving objects. On
one hand, these vectors are distinctive and can be utilized for
identifying these moving objects. On the other hand, they are
more complicated caused by the relative movement between
these moving objects and the camera. In addition, motion
vectors in regions with plain textures are hard to calculate
and seem noisy.

D. Motion Vectors Caused by Camera Rotation

When the camera rotates ∆φy around its y-axis as illustrated
in Figure 3, vxq and vyq are calculated as

vxq = −∆φyf −
∆φyx

t
q
2

f
, vyq = −

∆φyx
t
qy

t
q

f
. (4)

Generally, if the camera rotates around each axis with the
respective degrees of ∆φx, ∆φy and ∆φz , vxq and vyq can
be calculated as

vxq = −∆φyf + ∆φzy
t
q +

∆φxx
t
qy

t
q

f
−

∆φyx
t
q
2

f
,

vyq = ∆φxf −∆φzx
t
q −

∆φyx
t
qy

t
q

f
+

∆φxy
t
q
2

f
.

(5)

Figure 4(b) depicts an example of motion vectors calculated
when the vehicle makes a left turn. It can be seen that
rotation also violates the motion vector distribution described
in Observation 1, which makes it hard to identify objects of
interest.

E. Datasets

We consider three public mobile video datasets for study as
follows:

1) KITTI: The KITTI [15] dataset is a widely used bench-
mark in autonomous driving research. The KITTI dataset is
collected by driving in rural areas and on highways around
Karlsruhe. The video data is captured with a frame rate of 10
frames per second (FPS) and image resolution is 1242× 375
pixels. In the KITTI dataset, inertial measurement unit (IMU)
data is sampled at 100Hz, including three-axis linear ac-
celeration and three-axis angular velocity. The IMU data is
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recorded with timestamps to enable precise synchronization
with camera frames, ensuring temporal alignment between
every frame and its corresponding IMU measurements.

2) nuScenes: The nuScenes [16] dataset is a public large-
scale dataset for autonomous driving. The nuScenes dataset is
collected in Singapore and Boston with a frame rate of 12 FPS,
and image resolution is 1600 × 900 pixels. In the nuScenes
dataset, every sixth video frame is sampled as a keyframe
and annotated. The annotations include 3D bounding boxes
i.e., position, dimensions and orientation, and object categories
e.g., vehicles, pedestrians. The nuScenes test set is consisted
of 150 video clips with each length of 20s under various traffic
scenarios.

3) RobotCar: The RobotCar [17] dataset is an autonomous
driving dataset collected in Oxford, UK over one year on a
10km route. The RobotCar dataset consists of approximately
1000km of recorded driving and video data is captured with
a frame rate of 16 FPS under various weather conditions. In
the RobotCar dataset, each video clip is labeled with weather
conditions. The total number of frames is over 20 million and
image resolution is 1280× 960 pixels.

III. DESIGN OF DIVE
A. Overview

The core idea of DiVE is for a resource-constrained mobile
agent to leverage motion vectors output by the video codec
to identify foreground objects in each frame, and adaptively
choose different compression ratios between the foreground
and the rest of a frame, according to the current uplink
bandwidth. As a result, the encoded video can best fit the
dynamic uplink condition while maintaining supreme image
quality for these regions of interest, achieving high model
inference accuracy at the edge server and low end-to-end
response time. Figure 5 depicts the architecture of DiVE,
where a mobile agent uploads differentially encoded video to
an edge server for analytics and the server returns detection
results back to the agent for various downstream tasks. To this
end, one mobile agent integrates four effective components:

Preprocessing: For each frame, given the raw motion
vectors generated by the video codec, the motion status of
the agent is estimated according to the distribution of motion
vectors. The motion vectors are corrected by eliminating
corresponding rotation components.

Foreground Extraction (FE): Given the fact that fore-
ground objects stand on the ground and similar motion vectors
can be observed on the same object, FE first utilizes a unique
feature of motion vectors to neatly estimate the ground region
in each frame. Then, objects are identified by clustering similar
motion vectors starting from the ground region. Based on the
detected motion status, if the agent comes to a stop when no
motion vectors can be used for ground estimation, FE reuses
the latest estimated foreground.

Adaptive Video Encoding (AVE): Given the identified
foreground regions in each frame, AVE first measures the up-
link bandwidth and then assigns different compression ratios,
referred to as QP values, for the foreground regions and for
the rest of the frame, respectively, resulting in an encoded
video with detailed foregrounds that best fits the current uplink
condition.

Motion-vector-based Offline Tracking (MOT): When an
encoded frame cannot be transmitted to the edge server in time
due to a severely impaired uplink, MOT conducts local object
tracking based on motion vectors to derive the detection result
of the frame.

B. Preprocessing

As analyzed in Section II, utilizing raw motion vectors has
the potential to distinguish objects of interest in the foreground
but they are susceptible to disturbance such as camera rotation
and plain image texture.

1) Motion Vector Calculation: When a new frame F t is
captured, existing block-matching motion estimation algo-
rithms [18] can be used to calculate the set of motion vectors
Mt for F t using previous frame F t−1 as a reference frame.

2) Ego Motion Judgement: It is necessary to judge whether
the mobile agent is in motion as Observation 1 stands only
when the agent translates in space. To this end, we analyze
the non-zero motion vector ratio of a frame, denoted as η,
defined as the ratio of the number of macroblocks with non-
zero motion vector to the number of total macroblocks. We
randomly select 50 video clips from the nuScenes test set and
manually divide video frames into two categories, i.e., ego
agent is moving and ego agent is static. We calculate η of
each frame and perform a categorized analysis based on the
motion state of ego agent. Figure 6(a) plots the cumulative
distribution functions (CDFs) of η. It can be seen that, with
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high probability (over 98%), whether the agent is in motion
can be judged by simply comparing whether η is larger than
a threshold (e.g, η > 0.15). Figure 6(b) depicts the η as
a function of time in an example driving video clip where
the ego agent comes to a stop for a while and then starts to
accelerate. It can be seen that motion judged by η is highly
consistent with the ground truth.

3) Rotational Component Elimination: If the mobile agent,
such as a vehicle, can only translate along its z-axis (i.e.,
∆X = 0 and ∆Y = 0) and rotate around its x- and y-axis
(i.e., ∆φz = 0), motion vectors combining Eq.(3) and Eq.(5)
can be simplified as

vxq =
∆Zxtq
ZQ

−∆φyf +
∆φxx

t
qy

t
q

f
−

∆φyx
t
q
2

f
,

vyq =
∆Zytq
ZQ

+ ∆φxf −
∆φyx

t
qy

t
q

f
+

∆φxy
t
q
2

f
.

(6)

In Eq.(6), ∆Z
Z can be eliminated and we have

xtqf∆φx + ytqf∆φy = ytqvxq − xtqvyq, (7)

where ∆φx and ∆φy can be obtained by solving over-
determined linear equations with a set of more than two motion
vectors.

As noisy motion vectors present, how to select such a set
of motion vectors that can lead to accurate ∆φx and ∆φy is
non-trivial. We propose a simple yet effective method, called
R-sampling, where k motion vectors that have the shortest
distance to the fixed FOE, calibrated when the agent moves
forward, are selected. The rationale of R-sampling lies in the
fact that these vectors have small translation components and
are more sensitive to rotations. We then adopt RANSAC [19]
to solve the over-determined linear equations.

We conduct experiments on KITTI to evaluate the perfor-
mance of R-sampling. We randomly select 6 video clips, 6332
frames in the KITTI dataset to conduct our experiments and
utilize IMU data to calculate the ground truth of rotation speed
of ego agent at each frame. We set k = 30 in R-sampling
and k = 30, 500 in random sampling, respectively. Figure
7(a) and (b) plot the CDFs of estimated errors of rotational
speed around x- and y-axis of the camera, denoted as ωx

and ωy , respectively. It can be seen from the results that
R-sampling with 30 samples can achieve higher rotational
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speed estimation accuracy, compared with random sampling
with 500 points. Figure 7(c) also illustrates an instance of the
estimated rotational speed ωy .

Given the estimated ∆φx and ∆φy , rotational components
in Eq.(6) can be effectively removed.

C. Foreground Extraction

1) Ground Estimation: When motion vectors only contain
translational component, we have one key observation as
follows:

Observation 2. Motion vectors of objects of the same height
in the physical world have the same normalized magnitude.

Let Rqt =
√

(xtq −
∆Xf
∆Z )2 + (ytq −

∆Y f
∆Z )2 denote the

distance between an image point q on frame F t and the FOE.
Then, motion vector vtq can be normalized by Rqty,

vtq
Rqty

=
∆Z

fYQ
. (8)

It can be seen that the normalized vector is only related to
YQ as ∆Z, f are the same for all points, which supports
Observation 2.

As ground can be treated with the same and smallest height
in the scene, to estimate ground, we need to identify these
vectors with the smallest normalized magnitude. However,
motion vectors in regions with plain texture can be rather
noisy. Moreover, these motion vectors on the ground can
hardly be absolutely equal. To tackle these issues, we first
filter out those random vectors that do not point to the FOE and
then adopt the Triangle method [20] to statistically establish
a magnitude threshold. If a motion vector has a normalized
magnitude that is less than the threshold, the corresponding
macroblock is considered a ground macroblock.

After obtaining a set of ground macroblocks, we then utilize
a convex hull generation algorithm, e.g., Sklansky’s algorithm
[21] to generate the convex hull of the ground region. Non-
ground macroblocks locate within the ground region in frame
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F t constitute a set of foreground seed macroblocks, denoted
as St. Figure 8(a) illustrates the result of ground estimation
where red and blue cells represent ground and foreground
macroblocks, and green polygon represents the ground convex.

2) Region-growing-based Foreground Clustering: Given
St, we utilize region-growing-based clustering algorithm to
obtain foreground objects of interest. Specifically, for each
macroblock bi ∈ St, a breadth first search (BFS) is conducted
around the four neighboring macroblock of bi. If the motion
vector of a neighboring block bj is similar to that of bi
and the average motion vector of the current cluster that bi
belongs to, bj is appended to the cluster and the average
motion vector of the current cluster is also updated. The latter
condition is to avoid over-growing of an object. Figure 8(b)
illustrates the object clustering result of the previous example,
where different colors represent different foreground objects.
As shown in Figure 8(b), many identified foreground objects
may have holes as motion vectors are sparse and coarse. To
obtain more complete foreground, as illustrated in Figure 8(c),
we further iteratively merge clusters with similar directions of
their average motion vectors until no more clusters can be
merged. Finally, we use the Sklansky’s algorithm to generate
the convex contour for each merged cluster and obtain the
foreground regions, as shown in Figure 8(d).

D. Adaptive Video Encoding

1) Uplink Bandwidth Estimation: The quality of wireless
uplink varies as the mobile agent moves. To best encode the
video, the agent needs to continuously estimate the uplink
bandwidth over time. Specifically, the uplink bandwidth is
estimated with the amount of encoded data that has been
successfully transmitted to the edge server within a sliding
time window of 2ms.

2) Optimal QP Assignment: Given the estimated fore-
ground regions and the current uplink bandwidth, as intro-
duced in Subsection II-B, the optimal QP assignment for each
macroblock is equivalent to assign the optimal QP offset map
to the foreground and the background macroblocks. We denote
the optimal delta QP value between the foreground and the
background macroblocks as δ. Based on the observation that
larger extracted foregrounds are more likely to cover more real
foregrounds, we design an adaptive δ which is proportional to
the size of extracted foregrounds. More specifically, δ equals
to current foreground size multiplying a constant coefficient.
Then we fix the QP offset of foreground macroblocks to 0
and assign background macroblocks with a QP offset value

Name # FPS # videos # frames # cars # peds.
nuScenes 12 50 9605 45605 10221
RobotCar 16 8 8150 19365 25423

TABLE I: Summary of datasets

equal to δ. After the frame F t is encoded, it is put into the
transmitting queue waiting to be sent to the edge server.

E. Motion-vector-based Offline Tracking

When encountering link outages, such as hard handovers
between base stations or multipath fading, the agent should be
able to detect this situation and act accordingly. Specifically, a
timer is set up when an encoded frame becomes the first frame
in the transmitting queue. If the timer times up before the
frame is sent out, the agent considers that a link outage occurs.
In this case, local motion vector based tracking is conducted
for this and after frames until the link is recovered. More
specifically, the mean of those motion vectors that reside in
a detected bounding box in the previous frame is calculated,
which is used to move the detected bounding box from the
previous location in frame F t−1 to the corresponding new
location in frame F t.

IV. PERFORMANCE EVALUATION

A. Methodology

We conduct our experiments on RobotCar and nuScenes
to evaluate the performance of DiVE. For nuScenes, we
remove video clips collected at night in test set as almost
all motion vectors are calculated to be zero at night and
randomly select 50 video clips from the rest video clips. For
RobotCar, we randomly select 8 video clips, each consisting
of approximately 1000 frames. The details of datasets are
presented in Table I.

We compare DiVE with the following video analytics
schemes:

• O3 [4]: a mobile object detection system that uploads
key frames to the cloud server for object detection and
uses key frame detection results to correct object tracking
results for other frames.

• EAAR [3]: an object detection system designed for
mobile AR devices to conduct parallel streaming and
inference on key frames. It utilizes the cached detection
results of key frames for ROI encoding and conducts
object tracking on other frames. The default QP is 30
and 40 for high-quality and low-quality encoding.



(a) mAP and time cost on RobotCar (b) mAP and time cost on nuScenes

Fig. 9: Effect of different motion estimation methods.
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Fig. 10: Effect of different number of sampled points k.

• DDS [5]: a video analytics system for deep learning
inference, which first uploads low-quality videos to the
cloud server for detection and utilizes the feedback de-
tected regions to guide the edge device to re-upload the
corresponding high-quality videos of the corresponding
part to the cloud server for more accurate detection.

For fair comparison, we utilize x264 for video/key frame
encoding in all schemes. For O3 and EAAR, we utilize the
same motion vector based tracking methods. For DDS, we
use the frame-level transmission which is the same as DiVE
instead of raw segment-level transmission which will lead to
high latency.

We consider the following two metrics to evaluate the
performance of different schemes:

• Precision: we utilize Average Precision (AP), a popular
metric for the object detection task, to represent the
precision of DNN inference results. We utilize the object
detection results of raw frames at the edge server as the
ground truth to calculate AP.

• Response Time: we define Response Time as the average
duration from the moment a frame is captured by the
camera until the mobile agent receives the final inference
result.

B. Parameter Configuration

1) Effect of Motion Estimation Method: We execute a
set of experiments to evaluate the performance of different
motion estimation methods. In the x264 encoder, there are
five motion estimation methods, i.e., diamond search algorithm

(a) mAP on RobotCar (b) mAP on nuScenes

Fig. 11: Effectiveness of Optimal QP Assignment.

(DIA), hexagon-based search algorithm (HEX), uneven multi-
hexagon search algorithm (UMH), transformed exhaustive
search algorithm (TESA) and exhaustive search algorithm
(ESA), ranked in ascending order of computational complex-
ity. We set the bandwidth to 2Mbps and use each motion
estimation method to extract motion vectors when encoding
each frame on RobotCar and nuScenes. Figure 9 plots the
mAP and time cost of each motion estimation method on
two datasets. The result shows that HEX and UMH achieve
almost the same mAP and higher than that of DIA, ESA
and TESA while HEX has lower time cost than UMH on
both datasets. The reason is that simple motion estimation
method like DIA will lead to low quality of motion vectors
while overcomplicated motion estimation methods like ESA
and TESA will also lead to more noise in motion vectors as
motion estimation methods are designed for obtaining minimal
residual data but not real object matching. Therefore, we
choose HEX for motion estimation in DiVE to achieve a good
trade-off between time cost and quality of calculated motion
vectors.

2) Effect of the Number of Sampled points in R-sampling:
In this experiment, we explore the effect of number of R-
sampling points k in Rotational Component Elimination. We
conduct rotation estimation on KITTI and vary the number
of sampled points k from 10 to 100 with an interval of 5.
We utilize the same video clips as experiments in III-B. We
calculate the estimation error of rotational speed and time cost
of RANSAC under each setting. Figure 10 plots the results. It
can be seen from the result that the estimation error decreases
when k increases and the time cost is linear to k. Moreover,
the estimation error converges when k reaches 70. The reason
is that R-sampling is efficient and a few accurate motion
vectors will lead to high motion estimation accuracy, more
coarse motion vectors will not increase the motion estimation
accuracy any more. As a result, we choose k = 70 in R-
sampling to achieve good rotation estimation accuracy while
maintaining as low time cost as possible.

C. Effectiveness of Optimal QP Assignment

We conduct experiments on RobotCar and nuScenes to
evaluate the effectiveness of Optimal QP Assignment. We vary
δ from 5 to 25 with an interval of 10 along with adaptive δ
in our design and bandwidth from 1Mbps to 5Mbps with an



(a) AP on RobotCar (b) AP on nuScenes

Fig. 12: Effectiveness of Foreground Extraction.

(a) mAP on RobotCar (b) mAP on nuScenes

Fig. 13: Effectiveness of Motion-vector-based Offline Track-
ing.

interval of 1Mbps. Figure 11 plots the mAP with different
δ under each bandwidth on both two datasets. It can be seen
from the result that adaptive δ achieves the highest mAP under
most bandwidth settings. Moreover, adaptive δ achieves much
better performance than δ = 5 when the bandwidth is 1Mbps
and the reason is that higher bitrate for foregrounds can lead to
more inference accuracy benefits when the bandwidth is low.
The experiment results demonstrate the efficiency of Optimal
QP Assignment.

D. Effectiveness of Foreground Extraction

In this experiment, we set x264 encoder to Constant Rate
Factor (CRF) mode which can fix the macroblock encoding
quality with fixed QP value and fix the QP value of fore-
grounds to 0 to achieve almost the same quality with raw
frames. The QP value of background macroblocks varies from
4 to 36 with an interval of 8. Figure 12 plots the AP of varying
QP value of backgrounds on RobotCar and nuScenes. The
result shows that the AP decreases slowly with the increase of
the QP value of backgrounds. When the QP value increases
to 20, the AP of the pedestrian and car is 0.985, 0.993 on
RobotCar, and 0.974, 0.979 on nuScenes, which shows nearly
no loss on the accuracy of detection. Even when the QP
value of backgrounds increases to 36 which leads to severe
quality loss of video frames, the AP of pedestrian and car can
still be up to 0.926, 0.970 on RobotCar, and 0.852, 0.911
on nuScenes. The result demonstrates the effectiveness of
Foreground Extraction in DiVE.

E. Effectiveness of Motion-vector-based Offline Tracking

We conduct experiments on RobotCar and nuScenes to eval-
uate the effectiveness of Motion-vector-based Offline Tracking

Fig. 14: Impact of different motion states.

(a) Extracted foregrounds when vehicle is moving straight.

(b) Extracted foregrounds when vehicle is turning.

(c) Extracted foregrounds when vehicle is static.

Fig. 15: Illustration of extracted foreground under different
motion states.

in DiVE. We set the bandwidth to 2Mbps and add 1s link
interruptions, i.e., bandwidth drops to 0Mbps to the network.
The interval between two interruptions is set from 5s to 20s
with an interval of 5s to simulate different mobile wireless
network scenarios. Figure 13 plots the mAP of detection
results with and without offline tracking in different network
scenarios on two datasets. It can be seen from the results
that when offline tracking is enabled, the mAP increases
on all network scenarios. Specifically, the mAP increases
by 12.8% and 8.6% in detection accuracy on RobotCar and
nuScenes with link interruption interval of 5s when Motion-
vector-based Offline Tracking is enabled. The result shows
that when Motion-vector-based Offline Tracking is enabled,
DiVE can still maintain high inference accuracy when wireless
link interrupts in a short time, while accuracy decrease occurs
without offline tracking, which demonstrates the effectiveness
of Motion-vector-based Offline Tracking.

F. Impact of Different Motion State

We manually divide RobotCar and nuScenes into three
different motion states, i.e., static, moving straight, turning,
and record the AP of pedestrian and car detection results under
different motion states in Figure 14. In these experiments,



(a) mAP on RobotCar (b) Response Time on RobotCar

Fig. 16: Comparison of different schemes under different
bandwidth on RobotCar.

video bitrate is set to 2Mbps. The result shows that DiVE
consistently achieves pedestrian detection AP exceeding 0.6
across all datasets, with an average pedestrian detection AP
of 0.847, 0.750 and 0.777 when the ego vehicle is stationary,
moving straight and turning. The car detection AP is higher
than 0.8 in all datasets and the average car detection AP is
0.901, 0.898 and 0.874 when the ego vehicle is static, moving
straight and turning. Moreover, the highest car detection AP
is achieved when the ego vehicle is static. The reason is that
the ego vehicle stops in most cases due to a red light and
other moving vehicles can be captured as foreground more
accurately. Figure 15 illustrates some samples of extracted
foregrounds when the ego vehicle is moving straight, turning
and static.

G. End-to-end Performance Evaluation

We evaluate the end-to-end performance of different video
analytics schemes on accuracy and response time across vary-
ing network scenarios on RobotCar and nuScenes. Figure 16
and Figure 17 plot the AP and response time of different
schemes across varying netwok bandwidth from 1Mbps to
5Mbps with an interval of 1Mbps. It can be seen from the
result that DiVE achieves the highest mAP under each network
scenario on both RobotCar and nuScenes. When compared to
DDS, which exhibits the most similar performance with DiVE,
DiVE improves mAP by 2.8%-39.1% on RobotCar and by
4.7%-17.6% on nuScenes. Notably, DiVE outperforms other
schemes especially when bandwidth is low.

Figure 16(b) and Figure 17(b) show that DiVE can achieve
lower than 134ms/156ms response time under different band-
width, which is 1.7%-8.4% and 14.0%-19.1% lower than DDS
on RobotCar and nuScenes, respectively. Although EAAR
can achieve lower response time than DiVE, its detection
mAP is significantly lower than DiVE. We explain the above
results as follows: O3 and EAAR achieve poor precision under
different bandwidth because they do not utilize the temporary
redundancy in the video. Instead, DiVE captures this redun-
dant information and utilizes them to aid in differential video
encoding. Although local tracking has a very low time cost,
prolonged tracking will lead to a severe accuracy decrease.
The DDS scheme requires two times of uploading for final
detection results, which leads to high response time. The end-
to-end experiment results demonstrate the superiority of DiVE
compared with other schemes.

(a) mAP on nuScenes (b) Response Time on nuScenes

Fig. 17: Comparison of different schemes under different
bandwidth on nuScenes.

V. RELATED WORK

Traditional Video Streaming: Plenty of research is done
to increase the Quality of Experience (QoE) of users for
watching video under fluctuated bandwidth [22]–[27]. Sun et
al. [22] proposed a bandwidth prediction system called CS2P
which clusters current network bandwidth to a pre-learned
cluster and utilizes a HMM model to predict the evolution
of bandwidth for proper bitrate selection of video. Mao et al.
[23] proposed a reinforcement learning based video streaming
system called Pensieve which utilizes a neural network to
select bitrates for future video chunks based on observations of
history bandwidth. Yeo et al. [24] proposed a video streaming
system called NAS which utilizes a super-resolution model at
client side to up-scale received low-resolution video frames for
better QoE. Yeo et al. [26] designed a system called NEMO
which applies neural super-resolution to a few selected frames
and utilizes the outputs to benefit other frames. These video
streaming schemes are designed to improve QoE of humans
under various bandwidth and do not consider about how to
keep high accuracy of DNN inference on mobile agents.

Video Analytics Systems: Differing from traditional video
streaming system designed for humans. A large number of
studies focus on maintaining high accuracy of DNN inference
at edge device by uploading video to the cloud server for
inference [2], [4]–[12], [28]–[32]. Some studies try to reconfig-
ure video encoding parameters like resolution, frame rate and
QP value during streaming to meet the bandwidth variation.
Zhang et al. [11] designed a system called AWStream which
combines offline and online profiling to choose encoding
parameters. Li et al. [12] designed Reducto, an on-camera
filtering system which filters out frames based on per frame
difference. However, such schemes do not consider the impor-
tance difference inner frame and usually need offline profiling
which can not be utilized for real-time video analytics.

Another direction is to choose key frames for uploading and
inference based on difference between frames and conduct
optical flow/motion vector based tracking with cached key
frame detection results locally [2]–[4]. Such methods do
not fully utilize the temporary redundancy between video
frames and simple object tracking will lead to severe accuracy
degradation on long frame sequences.

Besides, running small models on edge device for assistance
like large object detection [10], estimation of importance of
macroblocks [9] is also proposed in previous studies. Such



methods require for high computility at edge device and can
not adapt to various mobile scenarios due to poor performance
of cheap model.

Some studies also focus on foreground extraction and utilize
differential encoding to reduce bandwidth consumption. Wang
et al. [32] designed a system called VaBUS which constructs
the background region of the surveillance camera and uploads
differentially encoded frames. Wang et al. [31] proposed an
algorithm called Orchestra, which divides video into different
zones and assigns different qualities for encoding. However,
these methods can only work with static backgrounds like
video captured by surveillance camera and can not copy with
highly dynamic mobile scenarios.

VI. CONCLUSION

In this paper, a video analytics system designed for mobile
agents called DiVE is proposed. In DiVE, mobile agent
determines its motion state and extracts interested foregrounds
based on low-cost motion vectors calculated by video codec
for differential encoding. Multiple observations and results of
empirical studies are utilized to correct motion vectors and
cluster foregrounds. As a result, DiVE can copy with coarse
motion vectors and extract foregrounds accurately. Extensive
experiment results demonstrate that DiVE can achieve high
inference accuracy with low response time under various
network scenarios.
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