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Detecting Movements of a Target Using Face
Tracking in Wireless Sensor Networks
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Abstract—Target tracking is one of the key applications of wireless sensor networks (WSNSs). Existing work mostly requires organizing
groups of sensor nodes with measurements of a target’s movements or accurate distance measurements from the nodes to the target,
and predicting those movements. These are, however, often difficult to accurately achieve in practice, especially in the case of
unpredictable environments, sensor faults, etc. In this paper, we propose a new tracking framework, called FaceTrack, which employs
the nodes of a spatial region surrounding a target, called a face. Instead of predicting the target location separately in a face, we
estimate the target’s moving toward another face. We introduce an edge detection algorithm to generate each face further in such a
way that the nodes can prepare ahead of the target’'s moving, which greatly helps tracking the target in a timely fashion and recovering
from special cases, e.g., sensor fault, loss of tracking. Also, we develop an optimal selection algorithm to select which sensors of faces
to query and to forward the tracking data. Simulation results, compared with existing work, show that FaceTrack achieves better
tracking accuracy and energy efficiency. We also validate its effectiveness via a proof-of-concept system of the Imote2 sensor platform.

Index Terms—Wireless sensor networks, target tracking, sensor selection, edge detection, face tracking, fault tolerance

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have gained a lot of
attention in both the public and the research commu-
nities because they are expected to bring the interaction
between humans, environments, and machines to a new
paradigm. WSNs were originally developed for military
purposes in battlefield surveillance; however, the develop-
ment of such networks has encouraged their use in health-
care, environmental industries, and for monitoring or
tracking targets of interest [1], [2].

Fig. 1 illustrates a typical scenario of an enemy vehicle
tracking application. Sensor nodes are informed when the
vehicle under surveillance is discovered, while some nodes
(such as black nodes) detect the vehicle and send a vigilance
message to the nodes on the vehicle’s expected moving
path, so as to wake them up. Thus, the nodes (such as grey
nodes) in the vehicle’s moving path can prepare in advance
and remain vigilant in front of it as it moves. To be energy
efficient and to accurately track the vehicle, only the nodes
close to the path can participate in tracking and providing
continuous coverage.
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Regardless of various types of targets , there are three
common procedures involved in existing solutions of
target tracking [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]:
1) sensor nodes should be localized with as few errors as
possible, and a distance measurement from the nodes to
a target, or a measurement of the target’s movements is
crucial; 2) nodes should be organized into groups (e.g.,
clusters) to track a mobile target; 3) leader sensors gener-
ally report the target’s movement to a central sink (or a
user)—the sink is a resource-rich node that gathers infor-
mation from the leaders [1].

Regarding these procedures above, if we want to work
with scenarios like that of Fig. 1, achieving high accuracy of
tracking together with energy efficiency in WSNs is a chal-
lenging problem, due to several apparent difficulties:

e Organizing groups of nodes with accurate measure-
ments of a target’s movements is difficult, as WSNs
are dense/sparse, unattended, untethered, and
deployed in usually unpredictable environments.

e Obtaining accurate target localization is impossible
in a real operation field, even when different kinds
of noises/disturbances are added during detection.

e Maintaining operations of nodes in a timely fashion
is difficult, i.e., turning their services off most of the
time, and enabling only a group of nodes to be func-
tional in the target’s moving path, as in Fig. 1.

e Loss of tracking or node failure is often possible,
since WSNs are prone to fault or failure.

Research about target tracking can be roughly divided
into three categories: 1) tree-based schemes [4]; 2) cluster-
based schemes [5]; and 3) prediction-based schemes [11].
In this paper, we propose FaceTrack, a framework to
detect movements of a target using face tracking in a
WSN, which does not fall into existing categories and is,
to the best of our knowledge, the first of its kind. The
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Fig. 1. An example application with a sink showing a vehicle being
tracked through a polygonal-shaped area.

concept of FaceTrack is depicted in Fig. 1, and is inspired
by computational geometry, geographic routing, and face
routing, in particular [12], [13]. FaceTrack mitigates the
discussed difficulties, when satisfying our objectives—
achieving tracking ability with high accuracy and reduc-
ing the energy cost of WSNs.

Main concept. The idea of a planarized graph, such as the
Voronoi diagram and related neighborhood graph (RNG),
is mostly used in the network domain [14]. In such a graph,
a plane with p points is partitioned into spatial non-overlap-
ping regions, known as faces, by using the term in a face
routing strategy [12], [13], such that each face contains some
of the points that are connected. Every two points of a face
share an edge that is also a common edge between two
neighboring faces. A target is assumed to be surrounded by
the perimeter of ith face P, e.g., the target lying inside P,
as shown in Fig. 1, can be detected as it goes across an
edge/link (such as, < C1,C2>) toward P». The two points
(e.g., the black nodes in Fig. 1) become couple nodes chosen
from all of the points (neighboring nodes), through a selec-
tion process to lead the tracking the target from P to P;.

Normally, the faces can be of different sizes and geometri-
cal polygonal-shaped forms in the WSN. For the sake of sim-
plicity, we call them polygons throughout this paper. Initially,
a complete WSN is generated by using the planarization
algorithm where inter-node edges of polygons are identified
logically. However, when a target moves from P; toward P},
the generated polygons may not be preserved, due to cases
of failure-prone WSNSs, unpredictable environments, the
presence of void regions, etc. Therefore, we need to verify the
nodes and edges of P}, like generating the polygons further.

We introduce an edge detection algorithm to generate jth
polygon P; further, in such a way that the nodes of P; can
wake up and prepare before the target moves to P; , which
greatly helps track the target in a timely fashion. In this
case, the common edge between P, and F; (i.e., the target is
about to cross) is called a brink and the end nodes are the
couple nodes. Detecting a brink is a way of making a rectan-
gular/square space around the target as it moves toward
the brink. The space could be called a ‘follow spot,” much
like a spotlight follows and moves with a musician during a
concert. It is easy to think about the moving spotlight from
the ‘space + time’ point of view. This idea provides natural
support for target information dissemination that exhibits
‘right-place” and ‘right-time” semantics, including the ‘just-
in-time’ requirement [15], [16].

Benefits. Some benefits of FaceTrack are highlighted,
which help us reach our objectives. 1) When an event of

sensor fault occurs, or there is an event of loss of tracking,
FaceTrack mitigates such events without recalibrating the
whole network. 2) Nodes locally detect the presence of the
target and decide whether to continue tracking tasks, i.e.,
they do not need to communicate with the sink frequently.
However, the sink is informed by the couple nodes whether
or not the target enters the surveillance area. 3) Nodes do
not predict or maintain the target’s movement history
completely, but keeps only the most recently reported infor-
mation and time instance. 4) If the number of active nodes
is large, the tracking accuracy is higher, but the energy cost
is higher too. FaceTrack relies on accumulated detection
from a selected number of nodes that are in the polygons.

A preliminary version of this work appeared in [17]. The
four main contributions of this paper are as follows:

e We design FaceTrack, a new tracking framework
that detects the movements of a target using polygon
(face) tracking, inspired by the planarized algorithm,
which does not rely on any global topology.

e We develop a brink detection algorithm that enables
the WSN to be aware of a target entering the polygon
a bit earlier, and to work in a timely fashion.

e We formulate an optimal selection algorithm to
select couple nodes on the target’s moving path to
keep the number of active sensors to a minimum.

e  We evaluate the performance of FaceTrack exten-
sively through simulations and compare with exist-
ing solutions [3], [6], [18]. We also present a proof-of-
concept implementation of this design using the
TinyOS [19] on the Imote2 platform [20] and deploy
it in an outdoor environment. The results show that
FaceTrack has the ability to track a target with high
accuracy and reduces the energy cost of WSNs.

The rest of this paper is organized as follows. Related
work is in Section 2. Section 3 explains preliminaries and
models. Section 4 presents the design of FaceTrack. Target
detection through polygon tracking is in Section 5. The per-
formance is analyzed in Section 6. Simulation and experi-
mental evaluation are in Sections 7 and 8, respectively.
Finally, Section 9 concludes this paper.

2 RELATED WORK

For a comprehensive discussion of the related work, please
refer to Appendix A.'

3 PRELIMINARIES AND MODELS

In this section, we first present the objectives of FaceTrack.
Then, we briefly discuss the preliminaries and introduce the
system models.

3.1 Objectives

The objective of this paper is to design FaceTrack to achieve
an efficient and real-time tracking through detecting the
movement of a target using face tracking. To measure the
performance of FaceTrack, two of the important metrics are

1. Appendices are attached to the supplementary file of this paper,
which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.91.
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TABLE 1
Mathematical Notations
[ Symbol [ Description |

P, Active/current polygon (where a target is now in)
Py Forward/future polygon (where a target is moving to)
P; The number of neighboring polygons (PI) of a node
Py The number of sensor nodes (PNs) in a polygon
Ny The number of neighboring nodes (NNs) in a polygon
On The optimal number of sensor nodes (ONs)
Cn Couple nodes (CNs)
D Brink Length
Cy Localization error covariance
di Distance between two sensor nodes
dij Distance between a sensor node and a target
Ts Sensing range
re Communication range
T Given time window of the whole measurement period
t Time window for an observation or a track

as follows: 1) tracking accuracy: decreasing tracking errors
found (TEF) by nodes that are involved in tracking and
increasing tracking ability rate (TAR), i.e., the degree of
successful tracking; 2) energy cost and energy- efficiency of
the WSN.

3.2 Assumptions and Notations
Some of basic assumptions of FaceTrack are as follows:

e The mobile target (event) that is of interest is sensed
and optionally observed by a WSN, such as tracking
an enemy vehicle, an intruder, or a moving wild ani-
mal [2], [7]. We consider a single target, i.e., a vehicle
is being tracked in the WSN with a maximum off/
on-road speed of around 10 m/s.

e Sensors are assumed to be homogeneous. The sink is
assumed to be a user, where the system is controlled.

e Allnodes are synchronized and follow a state transi-
tion policy to be active/inactive, as detailed in [21].

e The WSN is assumed to have some faulty/damaged
nodes. It is randomly set after initialization.

e If a target is detected by a node after a time window,
a target is detected by another node. It is assumed to
be the same target. This assumption is made because
the target does not carry any form of classification
[3], nor can any different target be distinguished.

Table 1 gives the mathematical notations that are used

throughout this paper.

3.3 Network Model

We consider a WSN G = (V, E) composed of a set V of N
nodes and a set I of edges in a 2D planar field, and the
nodes are able to tune their range up to radio range r.. Let
N(u) = {v||(u,v)| <r.} be the set of neighbors of node u,
and there is a sink or user in the WSN that requires informa-
tion about a target. Consequently, all ueV and veV
together define a unit disk graph (UDG), which has an edge
(u,v) if, and only if, the Euclidean distance ||(u,v)|| < 1. To
track the target route, extracting planar graphs is needed to
guarantee the information delivery before the target arrives
at a region [12].

Related neighborhood graph is an example algorithm
that creates a planar graph [13], [22], [23]. The main idea
is that two nodes, v and v, from a planar graph, are
within each other’s communication range, if there is no

other neighbor, w, called a witness, within their common
area that is closer to either v or v. We can obtain a con-
nected planar subgraph G’ = (V, E’) that maintains con-
nectivity with fewer edges. The planar subgraph contains
one or more closed polygons (or faces). Such a polygon
contains at least three nodes. A polygonal region is a
topological concept that can be defined abstractly, with-
out use of exact coordinates (a detailed description of this
network model and initial polygon construction and its
limitations is in Appendix B.1, available in the online sup-
plemental material.)

3.3.1 Distributed Measurement Model

Consider a target moving, e.g., a vehicle, in a restricted area
(R), and its movement is detected by a WSN. The target
may accelerate or decelerate at any time. Let s; € R be the
location of the ith node, and L; = {s; : 1 <i < N}. The tar-
get always emits a signal that is unidirectional and can be
detected by the node in its sensing range, .

We model the sensor measurement problem by using a
standard estimation theory [24]. In this framework, all sen-
sors are acoustic, measuring only the amplitude of the
sound signal. Let e,(t) be the time-dependent average signal
energy measurements over ¢, then a sensor can make the fol-
lowing measurement:

es(t) = Si(t) +ei(t) (1)

where S;(t) is the signal and ¢;(¢) is the noise energy, respec-
tively. The background noise has a distribution with the
mean, which is equal to a?, and the variance, which is equal
to 20?/M. M can be larger, for example, 40. In FaceTrack,
the brink detection depends on the target’s location. To esti-
mate the brink, the location information is estimated with an
adjustment on error covariance, ¢,. We adjust the approxi-
mate target location information by using a covariance
bound that is similar to the formulation of the Cramer-Rao
lower bound (CRLB) of the variance [9], [11]. See Appendix
C, available in the online supplemental material, for the
remaining part of explanation of this measurement model
and localization error adjustment.

4 DESIGN OF FACETRACK

We first define how the polygons can be localized in Face-
Track. Then, we present our brink detection algorithm. At
last, we introduce our optimal node selection algorithm and
its features.

4.1 Localized Polygon

In order to describe the problem of detecting the movement
of a target as an unauthorized target traversal problem
through polygon tracking, we see an example of the gener-
ated polygons as shown in Fig. 2. We use polygons to
describe the target moving path. The polygon is not neces-
sarily a convex, but it must not be self-overlapping. Let a
number of nodes in a polygon be Py = (vi,va,...,vp),
where p > 3. Suppose that the target is detected by some
nodes somewhere in the WSN, and it is surrounded by the
nodes in a polygon, e.g., P». Then, P, is called an active poly-
gon (P;), and nodes (e.g., v5) in P, are active nodes. In Fig. 2,
P is a triangle, P> is a pentagon, and P is a tetragon. Node
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Fig. 2. An example of the sensor network, demonstrating polygonal
shaped regions (or faces).

v; in P, is aware of the following information: 1) its own
information; 2) the information of its adjacent (or 1-hop)
neighbors vy, v11, v7, and vg; 3) the information of its active
neighboring nodes vg, v1, v, and vy; 4) the information of
the neighbors in P, P;, Py, and P; through direct communi-
cation or the 1-hop intermediate nodes after deployment.
Thus, v; stores information about four polygons that are
adjacent to it in G—{vs,vs,vi7,v11}, {vs, 011,019, 08,07},
{vs,v7,v6}, and {vs, vg, v1,v3, V4 }.

The target may move from P, to any of the adjacent poly-
gons, e.g., P;. The adjacent polygon is called a forward poly-
gon (Py). vs's adjacent neighbors that correspond to P., with
respect to the target detection, are called immediate neighbors.
Thus, node vs5 can have only two immediate neighbors, v,
and v, out of the four adjacent neighbors in G. Either v, or
v becomes active as the target crosses edge (v, v4) or edge
(vs,v6). Suppose the target travels toward polygon P; it
crosses edge (vs,v4), thus, we call vs and v, couple nodes
(CNs). The process of selecting the couple nodes is
described in a later section. All of v5’s neighboring nodes in
P; are denoted by NNs. The working area of v5 covers all of
the edges between the adjacent neighbors and itself. Thus, a
node corresponds to a number of polygons (P;) that
depends on the number of edges or adjacent neighbors. The
size of a polygon is defined by the number of edges sur-
rounding the polygon. The average size of a polygon is
P < 2u;/(v; — e; +2), where v; and e; are the numbers of
nodes and edges of the polygon, respectively. The relation-
ship between nodes, edges, and polygons is given as
P, 4+ v; — e; = 2, where P, is the number of polygons corre-
sponding to a node according to Euler’s formula [25]. This
implies that FaceTrack has cells for a planarized WSN, with
as many edges as possible.

Some observations on underlying issues/advantages
of this localized polygon are discussed in Appendix B.2,
available in the online supplemental material. We pro-
vide a representative example in Appendix D, available
in the online supplemental material, which elaborates
two important concerns: 1) how does the system detect
the target in a polygon in the beginning; 2) which poly-
gon is the target moving toward.

4.2 Brink Detection Algorithm

We introduce an edge detection algorithm, which is used
to reconstruct another conceptual polygon, called a critical
region, by generating an edge, called a brink, to the active
polygon, P.. As the brink is generated on the boundary of

Y
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o—o0 X < »X
Ist node 2nd node Ist node 2nd node
-D2 D2
v
Y Y
A .
Rectangular Crossing
spot spot
X X
1st node 2nd node 1st node 2nd node
D2 D2 D2
v

Fig. 3. Three-phase detection spots, where the X-axis shows the brink
crossing.

P,, the polygonal region problem turns into a critical
region problem. In the algorithm, our objective is to detect
the brink, while the target is moving to a brink between
CNs, that confirms that the target is leaving P. and mov-
ing to P, which could allow for tracking the target in a
timely fashion. As explained in Appendix D, available in
the online supplemental material, after the detection
of the target and the reconstruction of P. around the tar-
get, this algorithm is applied during the target movement
from P, to Py.

In the algorithm, the edges of P. are mapped by the
brinks. As the target moves to a brink, the target is focused
on a spot, called a follow spot. In the follow spot, a brink
between CNs can be similar to an ‘automatic door.” Often
found at supermarket entrances and exits, an automatic
door will swing open when it senses that a person is
approaching the door. The door has a sensor pad in front to
detect the presence of a person about to walk through the
doorway. Therefore, the door can be called an entrance door
or entrance brink.

When a person accesses the entrance sensing area, the
door opens; however, if the person does not pass through
the door and waits in front, the door is closed automatically
after a period of time. Hence, in the case that the waiting
period occurs in the algorithm, the CNs do not need to
broadcast the message to Ps. Suppose that the person/target
passes toward the door/brink from P, to Ps. As the target
moves toward a brink of P, the follow spot is divided into
the following three-phase detection spots (see Fig. 3 for the
three phases and Appendix E, available in the online sup-
plemental material, for more details):

e  Square detection phase. This implies that the target is
preliminarily detected by any two nodes inside P,
but does not guarantee that the target may cross the
brink between them.

e  Rectangular detection phase. This implies that the tar-
get may cross the brink between the nodes.

e  Crossing phase. This implies that the target is about to
cross the brink between the nodes.
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Fig. 4. A simple scenario of the brink detection process.

By using the three-phase detection, each brink in P
has to be identified during the target’s crossing over, as
shown in Fig. 4. To estimate the phases, we consider the
brink to be mapped over the X-axis, as shown in Fig. 3.
Let D be the length of the brink, and let ¢ and & be the
couple nodes, respectively. We assume that D « d;;, and
2 <r,. D is achieved from (—D/2) to (D/2). D <2r, is a
length of both square and rectangular spots. Hence,
A = D? is for the total square spot, and A =2 x D is for
the total rectangular spot.

Suppose that the target is in the square phase. When it
touches the rectangular phase, a joint-message is broadcast
to P;. When the target passes the crossing phase, Py
becomes the new P.. All of the brinks in the previous P, are
removed, and the previous P, becomes inactive and remains
as a neighboring polygon. Variability of different parame-
ters of the brink, i.e., 1) brink length, 2) local mean length,
and 3) local standard deviation, allow the CNs to identify
the brink more eas1ly

Let p, p, and p’ be the detection probability for the three
phases, respectively, by the closest sensor that is one of the
CNs , which are expressed as:

D/2 D/2
/ s(CN, j)dx / dy,
D/2 D/2

D/2 D/A
:—/ s(CN,j d;t/ dy, (2)
D/2 D/4
D/2 D/8
*—/ s(CN,j d:r/ dy.
D/2 D/8

Note that the values of p, p, and p’ completely rely on the
length of the brink. In order to detect the target specifically, a
node should satisfy two conditions: 1) the node must be in an
active polygon; 2) the node must be in the active state when
the target passes through the brink along its sensing range.
The detection probability of the closest sensor to a target
totally depends on the length of the brink and an intersection
of the sensors’ sensing range. As the brink lies along the X-
axis, and has a length of D, the different random values of
intersecting nodes should be in a range of (—D/2) to (D/2).
Thus, the derivation in the above can be justified easily.

4.3 Optimal Node Selection Algorithm (Oy)

Generally, tracking a target requires an optimal number of
sensors in the network to aggregate data among the sensors.
With FaceTrack, among the available sensors in a polygon,
not all of the sensors provide useful information that
improves accuracy. Particularly, if the number of sensors in
a polygon is large, we need to minimize the number of

active sensors. Furthermore, some information might be
useful, but redundant.

We offer an optimal selection mechanism to choose the
appropriate sensors, which can result in having the best
detection and a low energy cost for transmitting data across
the polygon; this also saves both power and bandwidth
costs. We have already described a localized polygon mech-
anism, and the idea of routing without knowing global
knowledge about sensor locations. A selection function is
utilized to select the appropriate sensors on the target’s
moving path, and is based on the local decisions of all of the
sensors in a polygon.

After the brink is formed between the CNs, the nodes
query and send a message to all of the neighbors (NNs) that
correspond to the forward polygon. The message contains
the estimation of the target and sender information. While
receiving the message, each NN combines its own measure-
ments of the target with the CNs’ estimation. Each NN com-
putes its weight and checks whether it is about to be a CN
by using a selection function; then, the NN responds to the
previous CNs via a bid (e.g., ID, d;;, etc.). When a node
detects the target, it sends the bid to its immediate neigh-
bors. It also receives a similar bid from the neighbors if both
of its immediate neighbors detect the target, which then
evaluates the received bids and ranks them according to the
weight of the bids. Then, the node compares the weight of
the bids with its own bid, and ranks them. It locally decides
whether it should join in tracking, or withdraw itself from
the tracking. If it has the “best” weight, it can easily deter-
mine its CNs from the rank. In this way, we can select the
best nodes on the target’s target moving path as the CNs.
We use the selection function as a mixture of both detection
information and the energy cost [11]. Suppose that the num-
ber of optimal nodes is On(< Py), the selection function is
stated as:

w(5(5|NN, Ov)) = o * )\use(ﬁ(f‘NN, CN))
- (1 - Ol) * ycost(NN)'

We describe the function as follows:

3)

e 3(ZT|Ny,Cy) is the estimate of the target, formed by
each node and NNs.

o  Ause(8(Z| Ny, Cy)) is the information usefulness mea-
surement function given as:

)\u%(a(f|NNa CN)) = )\USG(‘Tla j)

= (zi — )" ¢,

(4)

where x; is the location vector of the ith sensor node
and 7 is the location vector of the target that is esti-
mated by the ith sensor node and one of the CNs.
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o Vou(Nn,Cy) is a function that refers to the energy
cost of communications between NNs and previous
CNs; thus, the geometric measure of the function is
given as:

Veost (N, On) = (i — z0)" (i — ), ()

where z. is the location of a CN and (z; — z.) is the
distance between the neighbors and one of the CNs.
e «is the relative weight of the usefulness and cost.
Finally, the selection function, (3), can be reduced by
substituting (4) and (5) as follows:

Y(8(ze, 20, T)) = o (2, — ) ¢y — (1 — @)

s (27 — )" (25 — 2,). ©

This function only relates with CNs, NNs, and the
target’s locations: z., z;, and Z. The number of NNs in a
polygon that will become the optimal nodes is based on a
parameter, i.e., a threshold denoted by Nth of the selection
function. The threshold is defined by a value in which the
number of optimal nodes chosen should be no more than
Nth. If Nth < 1, all of the bids are chosen. However, we
accept Oy =2 for this tracking framework, where
Oy = mod(Nth), i.e., selecting CNs. The benefits, and more
details of this algorithm, can be found in Appendix F, avail-
able in the online supplemental material.

The optimal number of sensors can be many, which
depends on the system demand (Oy < Py). It is expected
that the chosen optimal node number should be no more
than the number of Py. According to different tracking
tasks, Ox can be changed by the sink broadcasting a mes-
sage containing Oy to the network. Nevertheless, the opti-
mal selection is very important, which not only impacts the
tracking accuracy, but also the energy efficiency of the
WSN. The overall system can exceptionally benefit from
using network resources by using this algorithm. When the
number of Py in a polygon is large, the normal tracking
goes on to only select CNs. If Py = 3, i.e., the polygon is a
triangle, one of the nodes of the polygon serves two terms
asa CN.

5 MOVEMENT DETECTION THROUGH POLYGON
TRACKING

In this section, we provide an overview of target detection
through the polygon tracking process. We also discuss the
fault tolerance in the WSN during tracking.

5.1 Overview of the Polygon Tracking Process

The framework of the tracking in FaceTrack is shown in
Fig. 5. There are five steps in the framework. The Step 1 is
about the system initialization, including initial polygon
construction in the plane. A node has all of the correspond-
ing polygons’ information after the WSN planarization. Ini-
tially, all nodes in the WSN are in a low-power mode [21]
and wake up at a predefined period to carry out the sensing
for a short time. As described in Appendix G, available in
the online supplemental material, we presume that a sensor
node has three different states of operation, namely, active
(when a node is in a vigilant manner and participates in

— Polygon construction

. — Target discovery message S
Step 1: > ' 3=
— Taking observation g
1 E
- - - g
Step 2: —DI Brink detection algorithm (between CN's ) =
— Keep taking observation
Step 3: — Creating critical region
(rectangular, square, and crossing spot)
=
(Target moves * (Target moves ‘g
toward CNs) { <> } away ) 3
Step 4: | Py | | P. 2
]
o]
Reinitialize PNs s
(Polygon reconstruction) g
X g
- - - =
Step 5: Brink detection algorithm <
-
* =
f et
| |  Implement the sensor ('"fz?ls\frg) N

node selection algorithm
Cy<On<Py Polygonal area

(The target location is realized extension
using the ensemble average overa T’ —

Fig. 5. lllustration of polygon-based tracking framework.

tracking the target), awakening (when a node awakes for a
short period of time), and inactive (when a node is in a sleep-
ing state). We consider that a sensor should be kept awake
so long as its participation is needed for a given task.

In the beginning, when a target is detected by some
nodes, as shown in Appendix D, available in the online sup-
plemental material, the nodes communicate to all of its adja-
cent neighbors with their detection information, and
reconstruct the polygon (Step 2). Once the target is sur-
rounded by the perimeter of a polygon, it becomes P.. Steps
3 to 5 (including brink detection through the three-phase
detection, optimal sensor selection, and polygonal area
extension in the case of faults in the WSN or loss of tracking)
are continued during the target tracking.

Whenever the CNs are selected by the optimal selection
algorithm, the detection probability o' or p', confirms that
the target is about to cross the rectangular phase and then
the crossing phase (Step 3). A joint-request message is sent
to P; at the moment the target touches the rectangular
phase, saying that the target is approaching (Step 4). All
NNs in Py receive the request, change their state to an awak-
ening, and then start sensing. When the target crosses the
brink, another joint-request message is sent to the nodes in
Py, saying that the target is crossing the brink. After the tar-
get crosses over the brink (i.e., it is now in the new P,
another message is sent to the NNs in the previous P,. After
receiving the message, all NNs, except the previous CNs,
return to the inactive state.

The target may move in any way toward any brink.
When the target speed is lower or the target moves away, it
does not influence the tracking. We think of the target’s
faster speed. When it is faster, the movements may be
abrupt. The CNs keep sensing continuously until the target
leaves/enters the square phase. The CNs use the difference
in distance d;; between two consecutive sensing results. The
results are measured by reducing CRLB covariance to
obtain fewer errors in three-phase detection. Since the target
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Fig. 6. Detecting target's movements through polygons.

travels across the square phase, and then the rectangular
phase, d;; decreases accordingly. The CNs are aware of it (as
detailed in Observation E.2). If the target leaves the square
phase for the same F, (as detailed in Observation E.3), the
CNs send a message instantly to the NNs in F.. The NNs
remain active and are ready to receive the message. If they
receive the message, shortly there-after, they start sensing
further. The next procedures go on in the aforementioned
way. However, if any rectangular phase is not generated,
there is no P selected.

According to the framework in Fig. 5, Fig. 6 illustrates
the target movement detection through the polygons. The
target is initially detected by sensors v; and v (shaded
black to indicate the CNs) in the polygon P;5, and the rest
of the corresponding nodes (shaded grey) in Pj5 are in
the vigilant manner, and the rest of the nodes in the sen-
sor network are in the inactive state when the target is in
Pi5. As shown in Fig. 6, the target travels through the pol-
ygons. The tracking of the polygons represents the target
tracks. A tracking sequence can be P — P — P —
Py — P, and so on.

5.2 Fault Tolerance and Tackling Loss of Tracking
Generally, the WSN planarization does not have any fault
tolerance support. Thus, initially constructed polygons may
not be preserved during tracking. While the target is mov-
ing to P%, if a node cannot execute itself (i.e., it is out of ser-
vice because of an internal error such as battery depletion,
failing to detect itself, or missing from its location) or there
is a link failure due to inter-node wireless channel fluctua-
tions, tracking can be interrupted. These result in the event
of loss of tracking. There are several ways that we mitigate
these situations: by using the outside area of F,, by extend-
ing the polygon area coverage, or merging two or more pol-
ygons into one. A detailed elaboration on the fault tolerant
detection and tracking, and its associated cost analysis, can
be found in Appendix H and Appendix 1.2, available in the
online supplemental material, respectively.

6 PERFORMANCE ANALYSIS AND ISSUES

In this section, we briefly analyze some performance issues,
such as complexity of the algorithm, the energy costs, and
the energy-efficiency of the WSN in FaceTrack. We com-
pare our sensor selection algorithm with the autonomous
node selection (ANS) and global node selection (GNS) algo-
rithms for target tracking proposed in [6], [18] (reviewed in

the related work in Appendix A, available in the online sup-
plemental material). For each iteration, the computational
complexity of GNS and ANS algorithms are O(Py)* and
O(Py — ON)Q, respectively, while it is O(Py — Oy) in Face-
Track. Thus, the computational complexity for all iterations
can be given as: Y% (Py — i) in FaceTrack, Y% (Py)? in
GNS, and %% (Py — i)” in ANS.

An important goal of FaceTrack is to reduce the total
energy cost required by nodes in polygons. Regarding the
localized polygon mechanism, we try to minimize the
energy cost for message transmissions in each tracking
event, and for the optimal node selection. As explained in
Appendix 1.4, available in the online supplemental material,
let E,(Py) be the energy cost for nodes in a polygon at time
t. Thus, the total energy cost in the WSN during a whole
simulation run is given by:

Er(N) = Z E;(Py). (7)

Py< N

Effective energy cost percentage (EECP). Besides the energy
cost analysis above, we use a concept of EECP as a metric to
better evaluate the energy-efficiency of the WSN. Usually,
in many existing schemes (including GNS and ANS), a large
number of nodes are proactively woken up to become pre-
pared for an approaching target. All of these nodes are kept
active for a long time. At one time, some of the nodes may
participate in tracking for a very short period of time and
are active (stay idle) for the rest of the time. On the other
hand, some other nodes basically do not actively participate
in the tracking operation at all, and they are also active (stay
idle). As a result, the network unnecessarily wastes a signifi-
cant amount of energy. In FaceTrack, a number of nodes
outside of P. may be able to detect the target; we reduce this
number of nodes by focusing on the nodes of P.. The back-
ground behind EECP is usually the sensor state transition
model [21] that handles the nodes” duty cycles, and the
number of neighbors in Py that are woken up by the CNs by
using three-phase detection spots

EECP = Ethc nodes that can detect ) (8)

E(Lll the nodes that are in the active state

We define EECP in (8), where EECP is the percentage of
the energy used by those nodes that can detect the target to
the energy used by all of the nodes that are in the active
state. In FaceTrack, the active nodes are the nodes of P. and
then the nodes of Py. In a scheme, the higher the EECP gain
is, the higher the energy-efficiency would be. An extensive
performance analysis of the computation complexity and
energy-cost model is carried out in Appendix I, available in
the online supplemental material.

7 SIMULATION STUDIES

7.1 Methods and Objectives

We evaluate the performance of the FaceTrack framework
via simulation. We implement it on the OMNet++ v3.3pl
simulation environment using the Castalia simulator
(http:/ /castalia.npc.nicta.com.au/index.php). Here, our
focus in conducting the simulations is on two aspects.
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Fig. 7. (a) The effect of noise on tracking errors; (c) the effect of the number of nodes on tracking errors.

1) Tracking accuracy—to observe tracking accuracy, we
analyze tracking error found (TEF) and tracking ability rate.
TEF is defined as an averaged error found in meters by all
of the nodes that are involved in tracking. TAR is the metric
that can show the degree of successful tracking in a system
against all the difficulties, such as the presence of high TEF,
or faults in the WSN. TAR also includes sensors’ duty
cycles. Suppose that the target is moving in a trajectory cor-
responding to e events of the sensors’ duty cycles. The num-
ber of successful tracking events divided by e is called the
TAR, which reflects the tracking accuracy. 2) Energy cost
and energy-efficiency—we mainly evaluate the total energy
cost required by the number of sensors per tracking event,
and energy-efficiency through the EECP. We compared the
performance of FaceTrack with existing protocols (PM [3],
ANS [18], and GNS [6]).

7.2 Simulation Settings

The simulation is performed within a 400m x 400m 2D
square planar field in an area of interest. For simplicity, N
(200) sensors are randomly and uniformly distributed.
Throughout the simulation, any two sensors can directly
communicate via bi-directional wireless links. Their Euclid-
ean distance is not greater than the communication range
(dir. < r¢). The target’s location in the plane can be perfectly
monitored by the nodes if (d;; < r,). Instead of considering
all of the possible combinations of r. and r,, we focus on the
case of r, > 2r, in the simulation. All nodes within Face-
Track synchronize with the sink within 1-10 ms, as
described in [7].

The plane is partitioned into p polygons, such that each
polygon contains at least three nodes. Initially, a period of
10 s is set aside for generating polygons. We use localization
for a single vehicle situation. Then, the tracking simulation
begins where the target shows up at a random location on
the plane with a maximum acceleration of ap;, =2 m/s,
and a maximum velocity of vy,x = 10 m/s. We consider the
speed of the target (vehicle) from 2 to 10 m/s.

We use (C.5) and (C.8) to generate the acoustic energy
readings. The target energy is set at 5,000 mv, and the back-
ground noise level is set up to 1 for all sensors. The SNR at
different sensors depends very much on the distance
between the CNs and the target locations. The energy varia-
tion, ;(t), is modeled as a Gaussian random variable with
M =100. We use Intel Imote2’s power settings where
each sensor is with discrete power levels in the interval
{—10 dBm, 0 dBm} [20].

7.3 Simulation Results

Study of the tracking accuracy. We compare the tracking per-
formance in terms of accuracy, based on the dynamic mov-
ing path, with the optimal path matching (PM), GNS, and
ANS. We analyze the mean and maximum tracking error
found, which is revealed from the performance results gath-
ered by all of the nodes that involve in tracking over 100
simulation runs. Fig. 7a depicts the performance of different
o; for the background noise (see (1)). It indicates that the
noise brings in some tracking errors. However, FaceTrack
shows relatively minimum errors compared to others, i.e.,
20 to 50 percent lower in the case of mean errors, and 30 to
50 percent lower in the case of maximum errors.

Fig. 7b shows that the tracking error decreases (i.e., the
accuracy of tracking increases) with an increasing Py, and
the polygon-based tracking in FaceTrack clearly achieves a
superior performance compared to all PM, ANS, and GNS.
Here, Py is the number of nodes that are involved in track-
ing in other schemes, while it is the number of nodes in a
polygon in FaceTrack. Oy < Py, where the optimal number
of nodes (Oy) should be taken into account in this discus-
sion so as to know how many optimal nodes (which become
the CNs) are used. Considering the target’s speed up to
10 m/s and Oy, we compare our results with real data sets
collected from PM, ANS, and GNS schemes. We set o = 0.5.
The tracking results are averaged over all 100 simulation
runs for FaceTrack and when the localization error is aver-
aged over in the square spot and rectangular spot. The PM
is better for large Py and Oy , but not for small Oy. In Face-
Track, the node selection appears to be robust against some
mismatch between the estimated and actual errors. Overall,
FaceTrack achieves a clear advantage when 2 < Oy <3
and 4 < Py < 8. We think that the choice of Oy is actually
better in FaceTrack, where the results are opposite in both
ANS and GNS.

An interesting observation on tracking accuracy can be
seen in Fig. 8. We analyze tracking ability rate based on the
overall simulation results, considering the underlying tech-
niques such as a sensor’s duty cycle and all the difficulties,
such as the presence of high TEF, faults in the network, etc.
Fig. 8a shows that the TAR varies according to the target’s
speed. We observe that when Py is very small or large
(sparse or dense), the TAR is slightly lower. The TAR is
fairly close to 100 percent when 6 < Py < 9 and when the
target’s speed is 4-6 m/s. Fig. 8b depicts that ANS has
slightly higher tracking ability than GNS, although ANS
shows slightly more tracking errors. Although PM has
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Fig. 8. Tracking ability rate (TAR): (a) at different speed of the target in
FaceTrack; (b) in different schemes.

higher TAR (about 30 percent) than both ANS and GNS,
FaceTrack largely outperforms the PM, achieving higher
TAR (about 40 to 70 percent) than other schemes. This also
hints that the tracking ability of FaceTrack in the presence of
high TEF (see Fig. 7b) is significantly higher than others.

Study of energy cost and energy-efficiency. Fig. 9a shows the
performance of FaceTrack in terms of energy cost versus
Py. In FaceTrack, nodes in a polygon select Oy, in which
2 < Oy and 4 < Py. The total energy cost (E7(N)) gradually
increases as Py or Oy increases. Simulation results show
that the optimal sensor selection algorithm in FaceTrack
outperforms ANS and GNS. On the contrary, the tracking
error decreases as Oy increases and 4 < Py < 7. FaceTrack
shows a tradeoff between the performance and Py that is
needed to save energy because of the value of Py and Oy in
the algorithm, and the geographic routing structure. ANS
needs 4 < Oy, and GNS needs 4 < Oy at a time window,
which makes them energy cost-ineffective. As expected,
when Oy =2 and 4 < Py < 7 in the algorithm, FaceTrack
performs better, even when Oy =1 3 < Py <4 in some
occasions, such as node failure. If (D/2) < r,, CNs commu-
nicate over a long distance; D becomes longer, thus, the
energy cost increases slightly. When there is a failure, Py
increases by almost double.

The relationship between EECP and the target speed is
shown in Fig. 9b. We can observe that FaceTrack achieves
superior EECP gain. Here, the higher EECP gain in a
scheme means that the scheme gains higher energy-effi-
ciency than others. FaceTrack achieves energy-efficiency by
50-90 percent compared to GNS and ANS. In addition, it
shows the advantage of FaceTrack under varying speeds of
the target as an example. We can say that when the target

w s
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Fig. 9. (a) Energy cost of the optimal node selection algorithms, and (b)
EECP versus target speed.
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Fig. 10. Experimental tracking performance: (a) mean TEF; (b) mean
TAR achieved.

moves at a high speed (6 m/s or more), FaceTrack behaves
better than GNS and ANS. It is obvious that we reduce the
unnecessary energy cost by reducing the number of sensors
involved in tracking that are not actually needed (they may
become idle) during tracking. However, considering the
delays of sensor state transitions (active, awakening, and
inactive), some performance loss may be present.

Additional simulation studies considering more metrics
(sensor measurement errors and brink detection ability and
simulation results) are given in Appendix J, available in the
online supplemental material.

8 PROOF-OF-CONCEPT SYSTEM

To validate the applicability and benefits of FaceTrack, we
implement a proof-of-concept system using the TinyOS
[19]. The system is deployed in the Hong Kong PolyU cam-
pus stadium to track an experimental vehicle. The system
contains 20 Imote2 wireless sensors [20]. Our objective of
this implementation is to observe the tracking performance
of FaceTrack, considering several aspects, including TEF
and TAR.

We conduct a total of 10 rounds of experiments. We ana-
lyze the experimental results gathered from all of the
rounds. Fig. 10a shows that the TEF reduces (i.e., the accu-
racy of tracking increases) with an increasing Py, and
FaceTrack has a lower TEF (around 60 to 70 percent) than
both ANS and GNS. The target is enabled to move at speeds
up to (3-6)m/s and o = 0.5. We estimate TAR based on the
experimental results, taking TEF and localization errors into
account. In Fig. 10b, we observe that as Py increases, the
TAR also increases. It also reveals that the TAR is close to
100 percent when 5 < Py < 7, which validates our simula-
tion results. FaceTrack outperforms both ANS and GNS, by
achieving significantly higher tracking ability (more than
40 percent) than both of them. More metrics and experimen-
tal setups, as well as more extensive experimental results,
can be found in Appendix K, available in the online supple-
mental material.

9 CONCLUSION

The main functionality of a surveillance wireless sensor net-
work is to track an unauthorized target in a field. The chal-
lenge is to determine how to perceive the target in a WSN
efficiently. We proposed a unique idea to achieve a WSN
system for detecting movements of a target using polygon
(face) tracking that does not adopt any prediction method.



948 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.4, APRIL2014

Evaluation results demonstrated that the proposed tracking
framework can estimate a target’s positioning area, achieve
tracking ability with high accuracy, and reduce the energy
cost of WSNs. From the framework, two facts can be
highlighted emphatically: 1) the target is always detected
inside a polygon by means of a brink detection, and 2) it is
robust to sensor node failures and target localization errors.

Two interesting problems, which we are currently inves-
tigating, are as follows: 1) the performance of variable brink
lengths of the polygon versus adjustable transmission
power levels in a WSN for target detection and its energy
cost in the WSNSs; 2) the impact of the target’s dynamic
movements, brink detection, and real-time polygon for-
warding in target tracking.
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