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Abstract—In cloud computing, load balancing is a very im-
portant performance factor. Frequent addition and removal of
Virtual Machines (VMs) can cause load imbalance across Host
Machines (HMs). Therefore, redistribution of VMs to different
HMs needs to be performed periodically. This is called VM
load rebalancing (VMrB). Existing VMrB solutions consider
either balancing across HMs (inter-HM) or balancing within each
individual HM (intra-HM), but not both. In this paper, we give
a systematic review of existing VMrB literature, and present a
VMrB scheme named MOVMrB that optimizes load balancing
of multiple resources across HMs and in each individual HM.
Our solution is a true multiple-objective optimization approach
that does not scalarize multiple resources into one measurement.
Instead, we treat each resource as a separate dimension and
convert the load balancing of multiple resources to a complex
system optimization problem. In addition, we propose a hybrid
VM live migration algorithm that can dramatically speed up
the VMrB process. Extensive evaluations using synthetic and
real data have been conducted to test the proposed solutions
against existing VMrB studies. The results show that our scheme
can achieve a more balanced inter-HM and intra-HM load in
a more efficient way. To the best of our knowledge, this is the
first approach that considers both inter-HM and intra-HM load
balancing and does not scalarize multiple resources into one
measurement.

I. INTRODUCTION

Cloud computing is an on-demand computing model for
users to share a collection of configurable computing resources
and have ubiquitous and on-demand access to these resources.
Hardware virtualization creates virtual machines (VM) that
are like real computers with operating systems and can run
as applications on physical machines (PM), also called host
machines (HM). Multiple VMs can run on the same HM.
Virtualization is a core technology in cloud computing due
to its many advantages, such as reduced power consumption
and system cost, higher resource utilization, better application
portability, faster deployment, increased system security and
reliability, etc. [1]

VMs are created at users’ requests. Because of the difficulty
in predicting the behaviors of a wide variety of applications
running on VMs and the presence of burst in application traf-
fic, users pay each VM instance by size in resource units, not
by the actual resource consumption. The paid resource units
are usually guaranteed unless there is a very high demand.
For example, all pricing options (on-demand, reserved, spot)
in Amazon EC2 bill each instance of a particular type hourly.
Each instance type is a unique combination of CPU, memory,
storage, and network capacity. In this paper, the load of a VM

is the amount of resources allocated to it. And the load of a
HM is the total load of all VMs running on it.

The load balancing technology in cloud computing attempts
to distribute VM instances across a set of coordinating HMs
such that no HM is overloaded or under-loaded. Load balanc-
ing increases the scalability and availability of cloud comput-
ing systems and is a very important design consideration [2].
There are two sub-issues in load balancing: incremental VM
load balancing (VMiB) and VM load rebalancing (VMrB).
VMiB deals with the on-line balancing needs when cloud users
come and the VM instances are dynamically requested and
deployed. To ensure service quality and user satisfaction, quick
response is the key in VMiB and load balance may not be well
achieved. VMrB is similar to server consolidation [3]. Due to
the on-demand nature of cloud computing, many users come
and go and many VMs are frequently added and deleted. This
leads to the imbalance of VMs across HMs after certain time
period. VMrB re-computes the placements of VMs on HMs
off-line for better load balance. VM live migration completes
the actual VM redistribution without causing too much service
interruption. We study the VMrB problem in this paper.

There are two aspects of VMrB load balancing. From the
entire system perspective, the total amount of any resource
demanded by VMs should be spread evenly across different
cooperating HMs. We term this inter-HM (horizontal) load
balancing. On the other hand, from the perspective of an
individual HM, to satisfy future VM resource requests, we
need to balance the amount of residual resources in each
resource type. A HM with much CPU but little memory left
would be able to satisfy few VM resource requests. We term
this intra-HM (vertical) load balancing. Most research efforts
focus only on inter-HM load balancing. The others study
only intra-HM load balancing. No research has combined both
inter-HM and intra-HM load balancing.

The challenge in inter-HM load balancing is that given
multiple resources (CPU, memory, storage, etc), as is always
the case in the real world, how to achieve a good load
balance of each resource across different HMs. When there
is a single resource, we can always have a total ordering
of candidate solutions and choose the best. However, when
there are multiple resources, there may not exist an overall-
best solution that reaches the optimal balance along each
resource dimension. The problem gets even more complicated
when a large number of HMs and many resources have to be
considered.

Some researchers considered only one resource [4], [5].
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Others attempted to meet the challenge by using multiple
objective optimization methods to solve the multiple resource
inter-HM load balancing problem [1], [6]–[10]. Each objective
is the optimization of a resource load. However, they avoided
the complexity in the original problem by combining multiple
objectives into a single scalarized objective and then optimiz-
ing this single objective. This is essentially combining multiple
resource loads into one composite load and then balancing
this composite load instead of each individual resource load.
Scalarization does not always guarantee Pareto optimality [11].
No existing work has directly tackled the problem using a true
multiple objective optimization method.

In this paper, we study these two unexplored territories
and propose a VMrB solution called MOVMrB that optimizes
the load balancing of multi-dimensional resources both across
different HMs and within each individual HM. Our solution
is a true multiple-objective optimization approach. We treat
each resource as a separate dimension and solve the multiple
resource load balancing problem using a complex system
optimization method. In addition, we design a hybrid live VM
migration technique that reduces the migration cost via an
interval optimization method and decreases the number of VM
migrations by avoiding useless VM migrations.

We also give a systematic review of the current research
in load balancing in cloud computing. We categorize existing
research methods using multiple classification taxonomies.
A significant number of experiments have been conducted
to evaluate the proposed work against existing similar ones
using both the synthetic data and real-world data sets. The
results demonstrate that our VMrB solution can achieve a more
balanced inter-HM load and intra-HM load in a more efficient
way. And the proposed hybrid VM migration approach dra-
matically expedites the VM migration process, 9 to 35 times
faster, to be exact.

The rest of the paper is organized as follows. In Section
II, we classify and review the current and past research in
VMrB load balancing. In Section III, we present our MOVMrB
framework in great detail. The experimental setup and results
are discussed in Section IV. The paper is summarized in
Section V.

II. RELATED WORK

The existing research in VMrB can be classified into two
categories: inter-HM (horizontal) load balancing and intra-
HM (vertical) load balancing.

A. Inter-HM Load Balancing

The researches on inter-HM load balancing can be clas-
sified into two categories based on the number of resources
considered: single-dimensional and multi-dimensional.

Single-dimensional load balancing. Only one resource is
considered. It can be CPU, memory, or network bandwidth.
Network bandwidth is considered in [4]. [5] minimizes the
variance of CPU utilization.

Multidimensional load balancing. Multiple resources are
considered. The balancing problem has been converted into

a single objective problem based on four load scalarization
methods.

(1) Weighted Model. Weighted sum [6] and weighted prod-
uct [7] are widely used. In [7], the volume of a HM or VM
is defined as the product of its CPU, network and memory
loads. [6] takes weighted sum of CPU and memory utiliza-
tion. However, the weight coefficients in these researches are
closely related to the specific applications, and may be easily
influenced by subjective factor.

(2) Minmax Model. In [8], the load is scalarized by uniform
norm of multidimensional resources utilization. As variation
ranges of different loads may be different, the imbalance in
some resources may be ignored in the minmax model.

(3) Constraint Model. [1] and [9] convert the multi-objective
optimization problem into a constrained single-objective op-
timization problem, the memory load is regarded as one of
the constraints, and the measure of CPU load is regarded
as the objective function. However, as different application
types may require different cost model (e.g. CPU-intensive or
memory-intensive), there does not exist a unified schema for
all application types.

(4) Ideal Point Model. [10] introduces skewness to mix
loads with different resource requirements together, which is
defined as variance around the resource vectors. However, this
kind of load balancing policies based on sorting hosts is not
heuristic enough and has a relatively complex computation.

Another classification is MinMax strategy [1], [7]–[9] or
Minimum Variance strategy [6], [10], based on the method
to quantify the evenness over HMs. MinMax strategy is used
in VMrB to achieve load balance status by minimizing the
maximum of the HMs’ loads. However, if some big size VMs
exist, the effect of MinMax strategy will be weakened more or
less. Minimum Variance is used to minimize the variance of
HMs’ loads to ensure the loads fluctuated within a narrow
range. However, the premise of comparing solutions using
variance value is that the mean values of these solutions need
to be equal. The mean values may vary with the number of
used HMs, which may change for the reason of energy saving,
utility improving, etc.

B. Intra-HM Load Balancing

Due to the multiple dimensionalities of physical resources,
there always exists a waste of resources, which results from the
imbalanced use of multi-dimensional resources. [12] balance
the multidimensional resources of each server by minimizing
the sum of differences between the smallest scalarized residual
resource and each of the other residual resources. In [13], the
equilibrium is represented by the ratio of differences between
the residual resource pairs to sum of the used resource pairs.
In [14], the equilibrium is represented by RIV which refers to
the standard deviation of multi-dimensional resources in each
HM.

All VMrB solutions above can be classified into deter-
ministic algorithm (including binary search [8], [9], Best
Fit Decrease (BFD) [1], [7], [10], [14]) or non-deterministic
algorithm (including genetic algorithm [6], [12] and ant colony
algorithm [4], [13]). A deterministic algorithm has a faster
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convergence speed but easily falls into a local minimum.
A non-deterministic algorithm has the ability of finding the
global optimum but with a relatively slow convergence speed,
especially when the scale of problem is large.

III. THE MOVMRB FRAMEWORK

In this section, we first explain our new mathematical model
of the VMrB problem, including the major components: inter-
HM load unevenness, intra-HM load disequilibrium, hybrid
live VM migration cost, and the model itself as a whole. Then
we detail the steps in the hybrid live VM migration algorithm
and the VMrB load rebalancing algorithm.

The load of a VM or a HM is represented by a multi-
dimensional vector. Each dimension refers to the relative
utilization of a specific resource requested by a VM or located
on a HM, which is named VM load and HM load, respectively.
Assuming that a shared storage system [15] is used, only CPU,
memory, and bandwidth loads are considered in this study.

A. Inter-HM Load Unevenness
The load of each resource r on different HMs may be very

different. This imbalance of resource r across different HMs is
denoted unevenness(r) and computed using the Coefficient
of Variance (CV) theory.

unevenness(r) =

r
M ·

PM
j=1

⇣
Lr

j

Lr

� 1
⌘2

, (1)
where M is the number of used HMs. Let lCPU

i , lMEM
i and

lNET
i be the CPU, memory and network load of the VM i,
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resource r over all HMs. N is the number of VMs and the
value of xij shows whether VM i is placed on j (value 1) or
not (value 0). Equation (1) quantifies the relative variation in
the amount of resource r used across different HMs.

B. Intra-HM Load Disequilibrium
The amount of different resources left on each HM may

be different. To accommodate future VM instances, we need
to strive to balance the amount of residual resources along
each resource dimension on any individual HM. We use
disequilibrium(j) to quantify the imbalance in the rela-
tive utilization of multiple resources on HM j. Let Lj =
1
R
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i · xij be the average load of all resources on

HM j; R refers to the number of resources in consideration.
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C. Hybrid Live VM Migration Cost
Live VM migration process must be fast enough to avoid

noticeable disruption and performance degradation of running
services. The pre-copy approach [16] is a popular live VM
migration technique that includes an iterative pre-copy phase
followed by a minimal stop-and-copy phase.

The cost of live VM migration depends on the migration
time for pre-copy, the down time for stop-and-copy, and
the time for non-memory-transfer operations called overheads

[17]. Both the migration time and the down time are deter-
mined mainly by the amount of memory to transfer and the
speed of the network used for migration. The overhead cost
is fixed, but significant in particular when the network is fast.
The entire migration cost is modeled as follows.

MigCostij =
��xij � x0

ij

��
⇣
Overheads+ T imemig

i + T imedown
i

⌘
,

(3)
lMEM
i

LinkSpeed
 T imemig

i 
(w + 2) ⇤ lMEM

i

LinkSpeed
, (4)

0  T imedown
i 

lMEM
i

LinkSpeed
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where binary variables x0
ij and xij indicate whether VM i is

placed on HM j before and after rebalancing. T imemig
i is the

migration time. The pre-copy terminates after the VM’s entire
RAM is transferred more than w times. Therefore T imemig

i

is bounded by the two values given in Eq. (4). T imedown
i is

the down time and also has two bounds, as stated in Eq. (5)
. Overheads is the time for overhead operations. We set w to
3, and Overheads to 314ms as suggested in [17].

Our proposed hybrid migration strategy extends the basic
pre-copy approach by integrating the information about the
network for migration into the design. The above base live
VM migration cost model is therefore adjusted according-
ly. The new hybrid live VM migration cost is denoted as
HybridMigCost(). The computation of this new cost will be
discussed in detail together with the hybrid live VM migration
algorithm in Subsection E.

D. VMrB Problem Formulation
Given N VMs to be re-distributed on M HMs for load

rebalancing, assume that all resources needed by a VM can be
satisfied by a single HM. Let TCPU

j , TMEM
j and TNET

j denote
the maximum amount of used CPU, memory, and network
bandwidth of HM j respectively. Let yj represent whether HM
j is in use (value 1) or not (value 0). The VMrB problem is to
simultaneously meet all the objectives listed in Eqs. (6)-(10)
without violating any of the constraints listed in Eqs. (11)-(15).

Minimize :unevenness(cpu), (6)

Minimize :unevenness(memory), (7)

Minimize :unevenness(bandwidth), (8)

Minimize :
XM

j=1
disequilibrium(j), (9)

Minimize :HybridMigCost(), (10)

Subject to: XM

j=1
xij = 1, i = [1, ..., N ], (11)

XN

i=1
lCPU
i · xij  TCPU

j · yj , j = [1, ...,M ], (12)

XN

i=1
lMEM
i · xij  TMEM

j · yj , j = [1, ...,M ], (13)

XN

i=1
lNET
i · xij  TNET

j · yj , j = [1, ...,M ], (14)

yj , xij 2 {0, 1} , i = [1, ..., N ] and j = [1, ...,M ], (15)

The first three objectives are to minimize inter-HM load
imbalance: the unevenness in the use of each single re-
source (CPU, memory, or bandwidth) across HMs. The fourth
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objective is to minimize the intra-HM load imbalance: the
disequilibrium in the use of different resources within each
single HM.

The first constraint in Eq. (11) ensures that each VM resides
in only one HM. The next three constraints make sure that the
total usage of each resource by all VMs running on any single
HM does not exceed the upper bound (lower than 100%) set
for that resource on that HM. The last constraint specifies that
yj and xij must be binary variables. Therefore any single HM
is either used or not and any VM is either running on a single
HM or not.

E. Hybrid Live VM Migration Algorithm
Given a set of N VMs to be lively migrated over M

HMs, the existing research in live VM migration are either
serial migration or parallel migration. In a serial migration,
the migration of these VMs are carried out in sequence. The
migration of the next VM will not start until the migration of
the previous VM is completed. Each data transfer is operated
at the full channel bit rate. The total live migration cost for
all VMs is

NP
i=1

MP
j=1

MigCost
ij

[18].
In a parallel migration, the migration of multiple VMs

are carried out concurrently [18], [19]. The results in [19]
show that parallel migration is faster than serial migration, in
particular when a large number of VMs are migrated together.
The benefit comes as a result of overlapping the suspend and
resume phases of multiple VMs. However, this performance
statement is based on the assumption that VMs have small
memory capacity and slow page dirty rate. The evaluations
in [18] demonstrate that sequential migration is better than
concurrent migration in terms of the migration time. With
the increase in concurrency granularity, the migration time of
each node also increases significantly because the network for
migration becomes the bottleneck.

Algorithm 1 HybridMigration
1: Filter invalid migrations and set migration batch mb=0;
2: for k = 1 to K do
3: if this VM

k

has not been arranged then
4: Find out the set VMC

k

of VMs satisfying the following three conditions:
(1) Each VM has not been arranged;
(2) The transfer route of each VM does not cross with VM

k

;
(3) The transfer route of each VM does not cross with each other;

5: Set both VM
k

and each VM in VMC
k

to be arranged;
6: mb + +;
7: Set the migration sequence number of VM

k

and each VM in VMC
k

to
be mb;

8: end if
9: end for

10: Find the VM
mb

with the maximum memory lMEM

mb

in migration sequence mb;

11: HybridMigCostlowerBound=
P

(Overheads +
l

MEM

mb

LinkSpeed

)

HybridMigCostupperBound=
P

(Overheads +
(w+3)⇤lMEM

mb

LinkSpeed

)

In this study, we propose a hybrid live VM migration
algorithm that utilizes the information about the network for
migration. It is based on the observation that full duplex Ether-
net is widely deployed in data centers. In our hybrid design, we
have each link carry the data transfers of two simultaneous live
VM migrations. Each transfer route is dedicated to only one
live VM migration process. The live migrations of multiple
VMs are executed concurrently on different transfer routes.

The details on how to arrange the transfer routes for a set of
VMs and HMs are described in Algorithm 1.

The problem of minimizing the hybrid migration
cost in Eq. (10) is an interval optimization problem:
Minimize<HybridMigCostlowerBound, HybridMigCostupperBound>.
As HybridMigCostupperBound = HybridMigCostlowerBound +
P (w+2)⇤lMEM

mb

LinkSpeed
, we can simplify the two objectives into one:

Minimize HybridMigCostlowerBound.
Our hybrid design also includes an invalid migration filter.

The filter is used to exclude the scenario where the two
HMs hosting two VMs with the same resource demands are
exchanged after the live migration. After removing invalid VM
migrations, the hybrid migration cost is computed using Eqs.
(3)-(5).

We assume that a 10-gigabit Ethernet is dedicated for the
sole purpose of live VM migration, and is separated from the
network for normal business operations. This is consistent with
the system configuration in VMware ESXi, which assigns a
VMkernel network for VMotion. It is also assumed that the
network connecting HMs is a Tree architecture consists of
access switches and aggregate switches, as shown in [20]. Each
aggregate switch is connected to two access switches, each of
which further connects to five HMs.

F. MOVMrB VM Rebalancing Algorithm

The VMrB problem is formulated as a multiple objective
optimization problem in Subsection D. To find the correspond-
ing Pareto optimal solutions, we do not scalarize multiple
objectives into one. Instead we regard the VMrB problem as
a true multiple objective complex system optimization issue
and solve it using BBO/Complex [21]. BBO/Complex is an
extension to the basic BBO, which is different from other
population-based optimization methods [22].

MOVMrB converts VMrB to a complex system that
has multiple subsystems. Each subsystem Sk performs self-
optimization to meet its own objectives subject to its own
constraints. Subsystems also help each other to improve by
sharing information mutually. Together they make the entire
complex system optimized.

We decompose the complex system using the optimization
objectives. There are two types of subsystems: Subs-H and
Subs-V. Subs-H is used to minimize the horizontal (inter-HM)
load imbalance (Eqs. (6)-(8)) and the hybrid migration cost
(Eq. (10)). Subs-V is intended to minimize the vertical (intra-
HM) load disequilibrium (Eq. (9)) and the hybrid migration
cost. Any subsystem must be classified as either Subs-H or
Subs-V. All constraints in Eqs. (11)-(15) must be satisfied by
each and every subsystem.

MOVMrB optimizes the VMrB complex system using B-
BO/Complex. A subsystem Sk corresponds to an archipelago
Ak of islands. Each island is a candidate VMrB solution,
i.e. a rebalanced VM placement matrix. We will use island
and matrix interchangeably in the remaining sections of the
paper. There are two types of archipelagos, Arch-H and Arch-
V, corresponding to the subsystem types, Subs-H and Subs-V.

Let E =
�
AH

1 , AH
2 , . . . , AH

h , AV
1 , AV

2 , . . . , AV
t

 

denote an ecosystem of h + t archipelagos.
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AH
k =

�
IHk1, I

H
k2, . . . , I

H
kT ;O1, O2, O3, O5;C1, C2, C3, C4, C5

 

represents an arbitrary archipelago of Arch-H, which
contains T islands, four objective, and five constraints.
AV

k =
�
IVk1, I

V
k2, . . . , I

V
kT ;O4, O5;C1, C2, C3, C4, C5

 
represents an

arbitrary archipelago of Arch-V, which contains T islands,
two objective, and five constraints. The five objectives
O1, O2, O3, O4, O5 correspond to Eqs.6 to 10. The five
constraints C1, C2, C3, C4, C5 correspond to Eqs.11 to 15. All
islands in the same archipelago have the same objectives and
same constraints.

Each island is defined by a vector of N SIVs. E.g. is-
land kt in archipelago Arch-H AH

k is denoted by IHkt =
⇥
SIV H

kt1, SIV
H
kt2, . . . , SIV

H
ktN

⇤
, where k 2 {1, 2, ..., h} , t =

1, 2, . . . , T. Each SIV, SIV H
ktN , is an integer that refers to the

index of a HM hosting a VM. The HSI (Habitat Suitability
Index) of an island IHkt is denoted by HSIHkt. It represents the
goodness of a candidate solution.

The MOVMrB algorithm includes three major operations:
initialization, subsystem optimization, and elitists selection.
The last two operations are performed in sequence in each
iteration. The algorithm stops when the termination criteria is
met.

Initialization. The initial population (placement matrix sets)
is the number of subsystems multiplied by the number of
islands (placement matrix) per subsystem. Each subsystem is
a matrix set where each matrix is an island and each column
is an SIV. Each SIV is randomly generated and meets all five
constraints in Eqs. (11)-(15).

Algorithm 2 Subs-H/V Optimization
1: P

0
m,n

sets =FeasibilityTest(P
m,n

sets ); //verify the feasibility of each
P

m,n

(solution matrix)
2: < P

0
m,n

, costs> sets = Cost Functions(P
0
m,n

sets );//calculate the costs of each
P

m,n

3: sorted < P
0
m,n

, rank> set =NonDomSorting(<P
0
m,n

, costs> sets)
4: Save the sorted < P

0
m,n

, rank> set as ST
k

;
5: Perform within-subsystem imgration;
6: Perform inter-subsystem imgration;
7: Perform probabilistic mutation;
8: Clear the duplicates and get the P

00
m,n

set = RemoveDuplicate(P
0
m,n

);
9: P

000
m,n

set = FeasibilityTest(P
00
m,n

set);
10: < PP

000
m,n

, costs> set = Cost Functions(P
000
m,n

set);
11: < P

000
m,n

, rank> set = NonDomSorting(< P
000
m,n

, costs> set);
12: Replace the worst Nelite matrices of current set with the best Nelite matrices

saved in step four as < P#
m,n

, costs> set;

Subsystem Optimization. It includes within-subsystem mi-
gration and cross-subsystem migration. The within-subsystem
migration is executed on each subsystem. It is used for each
subsystem to perform self-optimization with respect to its own
objectives and constraints. During within-subsystem migra-
tion, different islands in the same subsystem share information
with each other. The cross-subsystem migration is only carried
out in selected subsystem pairs. It is designed for the chosen
subsystems to exchange information with each other and
improve each other’s performance, which further optimize the
entire complex system.

As shown in Fig. 1, feasibility test and cost functions
are carried out on each subsystem, based on the constraints
and objectives that we have set. The feasible solutions of

each objective have been obtained from different subsystems.
The subsystems are loosely coupled and they communicate
with each other by cross-subsystem migration. It provides
an efficient way to communicate between subsystems and
provides a unique migration strategy to share information
both within and across subsystems. Cross-subsystem migration
can significantly enrich communication among subsystems
compared to more traditional methods.

Subs-VWithin-Subsystem Migration

Cross-Subsystem Migration

Mutation

Feasibility Test

Cost Functions

Subs-HWithin-Subsystem Migration

Cross-Subsystem Migration

Mutation

Feasibility Test

Cost Functions

Initialization

Elite 
Selection

Next 
Population 
Generation

Fig. 1: Subsystems in VMPMBBO

Algorithm 2 describes the optimization of the two types of
subsystems Subs-H and Subs-V. The cost functions for the
matrix in Subs-H are unevenness(cpu), unevenness(memory),
unevenness(bandwidth) and HybridMigCost(). The cost func-
tions for the matrix in Subs-V are HybridMigCost() and
PM

j=1 disequilibrium(j). Function FeasibilityTest verifies that
each candidate solution (a rebalanced placement matrix) sat-
isfies all constraints in Eqs. (11)-(15). If any constraint is
violated, the matrix is replaced with a newly generated matrix
based on First Fit Decrease algorithm. If the adjusted matrix
still violates some constraint, discard this new matrix and reuse
the matrix before the current rebalancing iteration. Function
NonDomSorting uses the non-dominated ranking algorithm in
[3],though not included, due to space limitations.

During probabilistic mutation, each island in a subsystem is
chosen for mutation with probability Pmutation. The mutation
is to replace a randomly selected SIV in the chosen island
with a Gaussian mutation operator. Following the mutation,
duplicate islands are removed and the feasibility of each island
(candidate solution) is checked against the constraints.

Elitists Selection. Rank candidate solutions (matrices) using
the non-dominated ranking algorithm in [3]. Then choose
a set of Nelite best non-dominated solutions from the best
solutions in the current generation and the elitists from the
last generation. Next generate new population for the next
generation and replace the worst candidate solutions with the
newly selected Nelite elitists.

IV. EVALUATION

In this section, we describe the settings of our experiments
and present the evaluation results comparing the proposed
MOVMrB with eight existing VMrB solutions.
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Fig. 2: Boxplots of inter-HM resource utilization in Scenario-1

TABLE 1: Solutions for comparison

Solution Load scalarization Model Optimization Algorithm

S-1 Weighted Model Best Fit Decrease (BFD)
S-2 Minimax Model
S-3 Constraint Model
S-4 Ideal Point Model
S-5 Weighted Model Genetic Algorithm (GA)
S-6 Minimax Model
S-7 Constraint Model
S-8 Ideal Point Model

TABLE 2: VM instances and Server specification in EC2

Instance Specs Server Specs
Instance Type vCPU Memory(GB) CPU Memory(GB)

T2.micro 1 1

128

T2.small 1 2

40 logic
T2.medium 2 4

processors
M3.medium 1 3.75
M3.large 2 7.5
M3.xlarge 4 15
M3.2xlarge 8 30

A. Experimental Setting

1) Solution Configuration: The eight competing solutions
are combinations of two existing optimization algorithms and
four existing multidimensional load balancing models (adopted
in [7], [8], [1], [10],respectively), as listed in Table 1. The
minimum variance strategy is adopted to quantify inter-HM
evenness in the eight solutions. In the first four solutions,
the VMrB process is simulated using the existing Best Fit
Decrease algorithm (BFD) in [1], [7], [10]. In the other four
solutions, the VMrB process is simulated using the existing
Genetic Algorithm (GA) [6].

MOVMrB is configured with the parameters: the number
of subsystems is 2. The number of islands per subsystem
(archipelago), Pmutation and Nelite are 3 and 0.05 and 1
respectively, which are adopted in our early research [3]. Every
test was repeated with 10 runs for each algorithm in each
scenario and the average resultsover 10 independent runs are
reported. Based on the complexity of the different datasets, the
termination criterion is set to 100,000 function evaluations.

MOVMrB and eight competing solutions were implemented

and tested using CloudSim 3.03 [23]. The test cases were
conducted on a VM with 4 vCPU (2.2GHz each) and 8 GB
of memory.

2) Datasets: We evaluate the performance of our solution
using use both synthetic and real dataset. For the synthetic
dataset (called Scenario 1), we generate VM demand sets
based on the widely adopted normal distribution N(0.12, 0.05)
[24]. The system in the simulation consists of 50 HMs and 200
VMs. A random VM to HM mapping is used in the initial
layout. For the real dataset (called Scenario 2), we consider
the resource requirements of seven different types of VM
instances in Amazon EC2, as shown in Table 2. A total of
3,000 requests from these seven types of VM instances are
randomly generated.

B. Experimental Results

1) Solution Quality: The first scenario is based on Synthetic
Dataset. The results are shown in Figs. 2 and 3(a), and Table 3.
Fig. 2 depicts the statistical distribution of resource utilization
among HMs before and after load rebalancing in 10 simulation
runs. origin in the figures refers to the VM to HM placement
before the rebalancing is done. The median in boxplot refers
to the middle value of resource utilization of each HM. The
more concentrated the data, the more balanced the inter-HM
resource. It is revealed that the intervals between upper quartile
and lower quartile of loads in GA (S5-S8) and MOVMrB are
smaller than those in BFD (S1-S4), respectively. In Fig. 2
(a), the CPU utilization across HMs is more balanced in S-7
than in MOVMrB, and MOVMrB is better than the others.
However, from Figs. 2 (b) and (c), we can find that both the
memory and network loads are most balanced in MOVMrB,
and the variation range of inter-HM load is reduced to below
20%.

In Fig. 3(a), we use boxplot to depict the statistical distri-
bution of intra-HM load disequilibrium values through their
quartiles in 10 runs. The smaller the value, the more balanced
the intra-HM resource. Because the other solutions do not
include intra-HM load rebalancing, the multiple loads on
each HM become more disequilibrium than the original state
except solution S-8. However, the intra-HM load reachs a more
balanced state in MOVMrB, where the standard deviation of
the intra-HM load is below 0.04.
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TABLE 3: Live migration cost in Scenario-1

Solution S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 MOVMrB

HybridMigCostlowerBound 83.6 83.6 82.4 83.4 83.7 81.8 83.4 83.1 8.4
HybridMigCostupperBound 496.7 496.7 487.9 495.5 496.7 485.6 495.2 493.4 51.6
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Fig. 3: Boxplots of intra-HM load disequilibrium
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Fig. 4: Boxplots of inter-HM resource utilization in Scenario-2

Table 3 lists the average VM live migration costs with
nine solutions in 10 runs. This table shows that MOVMrB
accelerates the live migration process more than nine times.

Scenario 2 is based on real dataset. The results are shown
in Figs. 3(b), 4 and Table 4. Figs 2(b) and 3 plot the average
results of 10 runs. The statistical distribution in Fig. 4 shows
that the variation of inter-HM resource utilization in MOVMrB
is controlled within the range of 15% for CPU utilization and
20% for memory utilization, which is much less than the other
eight solutions.The advantage of MOVMrB is not very obvious
in intra-HM balance in Scenario 2, where nine solutions can
balance intra-HM resources more or less. However, MOVMrB
has significantly improved the inter-HM balance when taking
intra-HM disequilibrium at a lower level.

From Table 4, it is obvious that MOVMrB accelerates
the live migration process about 35 times. And it just takes
no more than 15 minutes to migration a total of 2775 VM
instances. The speed-up ratio is much more than that in Sce-
nario 1, because there are more access switches and aggregate
switches in Scenario 2 than Scenario 1, and there is much
more room for migration parallelization.

In summary, MOVMrB can achieve a better inter-HM and
intra-HM balance at the smallest migration cost. MOVMrB
has an overall superior performance compared to the other
eight solutions.

2) Rebalance Efficiency: The entire VMrB rebalancing
process involves two stages: optimum searching and VM live
migration. Fig. 5 shows the average time spent on each stage
in nine solutions of 10 runs. The curves illustrate that: (1) The
time for optimum searching in BFD solutions is always less
than GA solutions and MOVMrB. This is because both GA
and MOVMrB are non-deterministic algorithms, which have
the ability of finding the global optimum but at a relatively
slow convergence speed. (2) The time for VM live migration
is much more than the time for optimum searching in all cases
except MOVMrB in scenario 2 where there is much more room
for migration parallelization. (3) Compared to GA solutions,
MOVMrB has about the same computational time, which is
about 20 minutes in Scenario 2. (4) The total rebalancing
time in MOVMrB is always less than that of the other eight
solutions.
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Fig. 5: Total rebalance time of each scenario in nine solutions

V. CONCLUSION

In this paper, we proposed a novel multiple objective
optimization framework named MOVMrB for rebalancing the
placements of VMs in order to achieve load balance of
multiple resources in cloud computing. Our approach does
not simplify the problem complexity by scalarizing multiple
objectives into one. Instead, we treat each resource as a
separate dimension and simultaneously maximize the load
balance of each resource.

Our proposed VM rebalancing solution considers both the
load balancing of each resource across HMs (inter-HM load
balancing) and the load balancing of different resources within
the same HM (intra-HM load balancing) at the same time. This
design makes the entire system reach a good load balance. We
also present a hybrid live VM migration strategy that utilizes
the information about the migration network architecture and
the interval optimization method to speed up the live migration
of a set of VMs.

In addition, we systematically reviewed the existing research
in load balancing of cloud systems, and classified them using
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TABLE 4: Live migration cost in Scenario-2

Solution S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 MOVMrB

HybridMigCostlowerBound 110.8 110.6 110.5 110.1 110.6 110.7 110.6 110.5 3.1
HybridMigCostupperBound 491.4 490.4 489.9 487.9 490.4 490.9 490.4 490.1 14.3

different taxonomies. We conducted an extensive set of exper-
iments to evaluate our approach against existing similar VMrB
solutions. The experiments are done using both synthetic data
and real world data set. The results demonstrate that our
scheme can achieve a more balanced inter-HM and inter-HM
load in a more efficient way. To the best of our knowledge,
this is the first true multiple objective load rebalancing effort.
And this is the first attempt at optimizing the inter-HM load
balance and intra-HM load balance simultaneously.

In the future, we will refine our hybrid live VM migration
cost model [25] and extend our hybrid live VM migration
technique to accommodate other network architectures, such
as fat-tree and SDN [26]. The parallelization of BBO/Complex
will also be explored and tested on a cluster powered by
OpenStack.
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