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EIIMFS: Achieving Efficient, Leakage-resilient, and
Multi-keyword Fuzzy Search on Encrypted Cloud
Data

Jing Chen, Kun He, Lan Deng, Quan Yuan, Ruiying Du, Yang Xiang, and Jie Wu

Abstract—Motivated by privacy preservation requirements for ~ servers [2]. To support ciphertext searches on encrypted cloud
outsourced data, keyword searches over encrypted cloud data data, researchers have proposed a number of SSE schemes.
have become a hot topic. Compared to single-keyword exact congjgering the huge amount of outsourced documents in the

searches, multi-keyword fuzzy search schemes attract more loud ; tant direction i lti-k d h (3
attention because of their improvements in search accuracy, cloud, one important direction is multi-keywordsearch [3]-

typo tolerance, and user experience in general. However, existing [2], which supports multiple (conjunctive or disjunctive) key-
multi-keyword fuzzy search solutions are not sufficiently effi- words search, e.g., “cloud” and “security”, at one time. Com-
cient when the file set in the cloud is large. To address this, pared to ssingle-wordsearch [6], [7], a multi-keyword search
we propose an Efficient Leakage-resilient Multi-keyword Fuzzy .45 efficiently improve search result accuracy since single-
Search (ElIMFS) framework over encrypted cloud data. In this
framework, a novel two-stage index structure is exploited to keyword searches_u;ually ret.urn results that are far tpo coarse.
ensure that search time is independent of file set size. The multi- Note that most existing multi-keyword search techniques are
keyword fuzzy search function is achieved through a delicate less friendly towards keyword spelling since thayly support
design based on the Gram Counting Order, the Bloom filter, exact keyword matching [8], [9] Considering that users may
and the Locality-Sensitive Hashing. Furthermore, considering the occasionally perform searches with typos in their search

leakages caused by the two-stage index structure, we proposek ds. b dt hi imat
two specific schemes to resist these potential attacks in different €yworads, fuzzy searcns proposed 1o achieve approximate

threat models. Extensive analysis and experiments show that our Keyword matches to a certain extent. However, they usually

schemes are highly efficient and leakage-resilient. exploit edited distances to quantify keywords’ similarities for
Index Terms—Cloud security, searchable encryption, multi- Single-word searchesnly. _ _
keyword fuzzy search. To enhance the user-searching experience and protect
data privacy, achieving efficient, leakage-resilient, and multi-
[. INTRODUCTION keyword fuzzy search services on encrypted cloud data be-

UTSOURCING data to the cloud has become a prevaleg@mes a significant challenge, especially with the increasing
trend in recent years because of the benefits it bringsingmber of on-demand data users and the exploding quantities
data owners including convenient access, decreased costs, @reutsourced cloud data. In [10], the authors implemented a
flexible data management. With the impetus of IT giants likeearch scheme that satisfies both multi-keyword and fuzzy re-
Amazon, Google, and Microsoft, more enterprises and indiviguirements simultaneously by treating several phrases in a pre-
uals incline to upload their data to cloud storage [1]. Howevetefined dictionary as one keyword for a search; this approach
data leakages occur frequently, causing huge losses to begks flexibility in reality. [11] tackled the privacy-preserving
cloud providers and cloud users. The lack of data securiijulti-keyword fuzzy search problem usingfarward index
and privacy protection has become the biggest obstacle for gigicture. However, forward index based schemes need to store
development of cloud storage technologies. To protect ownegslist of keywords for each file and must check every file in
data privacy, all data, especially the sensitive information, muge file set when searching [12]; this is unaffordable when a
be encrypted before outsourcing, which unfortunately makée set is large.
traditional plaintext-search-based data utilization service aln this paper, we propose an Efficient Leakage-resilient
challenging task. Multi-keyword Fuzzy Search (EIIMFS) framework for en-
Searchable Symmetric Encryptig8SE) is a useful cryp- crypted cloud data. Unlike existing multi-keyword fuzzy
tographic primitive for searching encrypted data using partisearch schemes, we design a novel two-stage index structure,
ular keywords without leaking private information to cloudonsisting of dorward indexand aninverted indexo improve
. search efficiency. Different from a forward index, the inverted
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of our framework in different threat models and design two ~ Files

efficiency, but also causes more leakagége aim to design a
framework to achieve the desired efficiency without hurting the @ Initialize()

. . Cloud S
system privacy. Therefore, we analyze the possible Ieakages —_— W; i -

Index
cryptographic schemes to balance the trade-offs among search / Search()
time, storage cost, and privacy for d!fferc_anF security levels. ' <oe® \6/ 3 8
The multi-keyword fuzzy search function is implemented by /% / e g
the flexible combination of some widely-used tools, including / . C 3
reques S )

bigram vector representation, locality-sensitive hashing (LSH)  pata GenToken()
[14], and the Bloom filter [15]. Our contributions can be  Owner
summarized as follows:
1) To the best of our knowledge, this is the first multiFig. 1. Structure of encrypted cloud storage system
keyword fuzzy search scheme for encrypted cloud data

whose search complexity is independent of the file sgt Threat Model & Design Goals
size; '

2) Compared to existing multi-keyword fuzzy search solu- Ve assume that both the data owner and the authorized users
tions [11], [16], we design a novel two-stage index stru@'® trusted, but that the cloud server is honest-but-curious. That

ture and corresponding search algorithms to improve tAéans the cloud server follows the designed protocols hon-
search efficiency on encrypted cloud data; estly, but it may collect, analyze, and leak the information of

3) To protect data privacy, we analyze the possible |eakadg§5customers [17]. Regarding privacy requirements, two threat
of our framework in different threat models and we prOr_nodels with different adversary capabilities are considered in
pose two specific schemes to achieve leakage-resilienH}js Paper, as n other related works [3], [11].

4) A comprehensive analysis of the privacy and efficiency « Known Ciphertext ModelThe cloud server can only
is given, and experiments on a real-world dataset further observe the encrypted file set, the encrypted index, the
show that our design has a low overhead in the search submitted tokens, and the search results. It has no prior
process. knowledge of the file set or the search keywords.

The rest of the paper is organized as follows. Section I+ Known Background Modeln addition to the knowledge
presents the formulation of our problem and the prelimi- in the Known Ciphertext Model, the cloud server is also
naries. Sections Ill and IV provide detailed descriptions of ~able to obtain some additional background information
our EliIMFS framework and leakage-resilient schemes, respec- like the statistical information about the files, the queried
tively. Sections V and VI present theoretical and experimental keywords and their corresponding tokens, and the fre-
analyses, respectively. Section VII summarizes the related duency of searched keywords.

Token

Other Users

work, and the conclusion appears in Section VIII. Considering the above threat models, our scheme is de-
signed to achieve the following privacy and performance goals.
Il. PROBLEM STATEMENT o Multi-keyword Fuzzy Searcl®one scheme should support

Before describing our schemes, we state the efficient multi- Multi-keyword fuzzy searches over outsourced encrypted

keyword fuzzy search prob'em in the Outsourcing Storage files. For in.Sta.nce, a.SeaI‘Ch based on a Spe||i_ng mistake
setting and introduce some preliminaries. “clod security” can still return the “cloud security” rele-

vant files.
« Efficiency Considering that large file sets may exist in
the cloud, our scheme aims to be efficient and practical
in terms offile-set-size independencEhat is, the search
time should be sublinear with respect to the file set size.
Leakage-resilienceThe cloud server should neither infer
private information nor leverage the intermediate results
of searches in the targeted threat models.

A. System Model

Our system consists of three entities: a cloud server, a data
owner, and a group of authorized users, as shown in Fig. 1.
Initially, the data owner, who holds a file set, creates a secret,
key, constructs a customized secure index for this file set, and
uploads the secure index along with the encrypted file set to
the cloud server. When the data owner needs to search his files
with keywordswy, ws, . .., w,, he generates a token based o . —_
the queried keywords and his secret key. After the token is sefit Security Definitions
to the cloud server, the cloud server executes a search with th¥Ve recall the semantic security definitions from [11] and
token and the secure index, and then returns the matched [fig], and define the notions below:
identifiers to finish the search process. With the search resultsy History: A History is the information which reflects the
the data owner can download the corresponding encrypted files interaction between the data owner and the cloud server.
from the cloud server and decrypt them with his secret key. As It consists of the file seD, the keyword seW, and the
the gray arrows showed, other authorized users attempting to query setQ = {¢1,¢2, ... } that is being searched.
search the data owner’s file set can obtain the tokens and file View. It is what the cloud server can actually see. The
decryption keys shared with them, according to access control Viewof aHistory consists of the encrypted file s&D, the
strategies. encrypted indeg, and the tokenokeny, . .., Token,g,.
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« Trace The Trace of a History is defined as the infor- 3) Bloom Filter;: A Bloom filter [20], using a bit array of
mation that can be revealed to the cloud server, suchrasbits to characterize a s&, verifies whether an element is
the file set size and the search results. Treceof our a member of a set. Each elementSnhis denoted byk bits
schemes will be listed in detail in Section IV. randomly chosen from the: array positions. The Bloom filter

Definition 1. For two Views with the samelracewhere one B, of the sets s structured as follows:

view is generated from Hiistory selected by the cloud server @ SetBfs to be anm bit length array of all zeros and
and the other is generated by a simulator, an ElIMFS scheme ¢hoose a hash famil§{ = {h; | hi : a — [1,m],a €

is semantically secure under the known ciphertext model, if ~S:% € [1, K]} N )

no probabilistic polynomial time (PPT) adversary is able to D- For eachy € S, set the positions;(q) (i € [1,k]) in
distinguish them with a probability non-negligibly larger than Bfs w0 1.

1/2. To check several elements, we generate a bit array in the

. . . . We th te the i duct of this bit
Definition 2. Given a collection of keyword-token pairs an(game way. e hen compute the Inner product of is i

Vi ith th h L q rray andBf,. If the result equals:k, it means that these
;WO 1ews with ¢ ? san;e'lk')raciw elre ccj)ne VIEW IS é)eﬂerat(; elements belong t&, wheren is the number of elements to
igog]er?e::tsé?jr)t;;eaegitriulat)(/)rt aenCEc:ilIJ\/IFSSers\gre;ne i; ge?nta e checked. In our scheme, every file has its own Bloom filter

' : at corresponds to the multiple contained keywords.
cally secure under the known background model, if no P

: L . o 4) Secure kNN ComputatioiBecure kNN k-nearest neigh-
adversary is able to distinguish them with a probability non- ; . .
negligibly larger thant /2. rloour) computation, proposed by Wong [21], is designed to

compute the distance between two encrypted database records.
In a secure kNN computation, all database records are ex-
D. Preliminaries tended tom-dimension vectors and encrypted by a vec$or

1) Gram Counting Order: An n-gram is a contiguous of m bits and twom x m invertible matrices My, M>}. The
sequence of. items from a given sequence of characters ug@lgorithms are introduced in our schemes in Section IV. More
For example, given a keyword “cloud”, the 1-gram Sequen@@tans of secure kNN computation are referred to in [21].
is {¢,1,0,u,d}, and the 2-gram sequence {8l, lo, ou, ud}.
In our structure, we choose a 2-gram sequence to parse a . ELIMFS FRAMEWORK
keyword, and record it in an array of si26x26. Each element ) ) o )
in the array represents one possible bigram. If a bigram existd" this section, we present the definition and main phases of
in the 2-gram sequence, the corresponding element is sePtS ElIMFS framework an.d. build a two-stage index structure
be 1; otherwise it remains 0. In this way, all the keyword® improve the search efficiency.
are transformed into bit arrays that can be input parameters of
Locality-Sensitive Hashing functions. A. Definition

2) Locality-Sensitive Hashingtocality-Sensitive Hashin
) B g y g We first give the definitions of the two-stage index and the

(LSH) has the capacity to map similar items to the same. ) . . .
bucket with a high probability. In this paper, all keywords ar;gMFS scheme. The main notations used in this paper are
. W 9N P . 'S pap LA marized in TABLE I. An example of the two-stage index

processed by LSH before being attached to indexes or tokend!" ) A

so that the fuzzy search can be achieved. A hash functigrRucture is shown in Fig. 2.

family 7 is (R1, Rq, P1, P2)-sensitive, if for any inputs of, ¢,  Definition 3 (EIIMFS). An Efficient Leakage-resilient Multi-

all hash functionsh € F, satisfy the following conditions:  keyword Fuzzy SSE search scheme is based on the two-
o if d(p,q) < Ry, thenh(p) = h(q) with a probability of stage index structure and consists of three polynomial-time

at leastP;; algorithms as follows:
o if d(p,q) > R», thenh(p) = h(q) with a probability of  , (SK Index) <« Initialize(\,D,W): This algorithm
at mostP; takes as inputs the secure parametgrthe file seD, and

whered(p, ¢) denotes some kind of distance (e.g. Euclidean the corresponding keyword si¥. It generates the secret

distance or Hamming distance) betwegnand ¢, R, and
R, are the distance thresholds, aRd and P, represent the

probability thresholds. There are multiple options for imple-

menting LSH, such as LSHs based on bit sampling &hd

keySK and builds up the secure indéxdex = (Z;, 7).
Here, the first-stage index/;, is an inverted index in
which each tag corresponds to a list of identifiers. The
second-stage indeLy, is a forward index in which each

stable distribution. To recognize similar keywords, we employ file identifier corresponds to the keywords it contains;
a P-stable distribution LSH [19] that maps &adimensional  « Token + GenToken(SK,w): Given secret keySK
vector to an integer. The hash functions ofPastable hash and the keyword listd = {wq,ws,...,w,}, the data
family follow hg () = | £ |, whered is a d-dimensional owner computes doken as a certificate to searchv in
vector and each dimension is chosen independently from a D;

P-stable distributionb is a random real number chosen from « id < Search(Index, Token): The cloud server inputs
[0, c]. The P-stable distribution LSH first projectg onto d, the securelndex and the Token received from the re-
then it utilizesc to separate them. A differeat and b result quested user and outputs the file identifier list, that

in different hash functions in the family. matches the search keywords in theken.
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TABLE | 1. Initialization ‘ w ‘ idy, idy, ids ‘ id ‘ Wi, Wa, W3
NOTATIONS phase
2-gram
Notation Meaning Owner LSH Enc) EncO LSH
D the file set of a data owner @
w the keyword seto® T TTTTToo LY 22 2. 22 Brody = o e
— — - 3. Search phase ta id, 11...111 Bf,
D(w) file identifiers matching the keyword 81 S RULLL i
3 - tag, id- —>»> e~2k?
g+ S sampling an elemenj randomly from a seS S tags | E(id,), E(ids)
<+ F an algorithmF with outputxz erver
[1,n],n €N an integer se{1,2,...,n} = —oooooomooofpooooboo oo oo ST R
- - 2. Token
Z1,Z2 the first- and second- stage index generation phase |
A a secure parameter
Owner
SK the secret key of the data owner
LSH LSH
w, W a keyword, and a keyword set [JrJol o[l J1iJo]1]
id, id a file identifier, and a file identifier set 26x26
- - cl, lo, ou, ud st, to, or, ra, ag, ge
9 the intermediate value of a keyword 2ot
gram 2-gram
(Enc, Dec) a symmetric encryption algorithm
F() a pseudo-random function
Bf a Bloom filter Fig. 2. The framework of EIIMFS schemes
Q a set of search queries
m the length of Bloom filter
F=1{f1,. - fi a LSH family with { hash functions multi-keyword searches. The second stage is used to estimate
H={h1,....hs} the & hash functions of Bloom filter whether the results of the first stage indeed contain all target
tag the entrance of a keyword ifi; keywords.
e an encrypted file identifier 2) Token GenerationThis phase is also executed on the
thr the threshold attached in a token data owner. In this phase, a token is generated for keyword
ip the inner product of two Bloom filters searches. The token consists of two parts: a tag for searching

in the first-stage index and an item for searching in the second-
stage index.
B. Main Phases The bottom of Fig. 2 shows an example of token generation

In this section, we introduce the three phases of the EliME®S the keywords “cloud” and “storage.” A token consists of
framework:Initialization, Token GeneratiorandSearch with @ tag and a Bloom filter. To calculate these two metadata, the
a search examp|e of the keywords “cloud” and “Storage”’ ggywords “cloud” and “Storage" should be first transferred
shown in Fig. 2. Two instances of the framework with differerf® two intermediate value®), and ,; this is similar to
efﬁciency privacy trade-offs are proposed in Section V. the process in the initialization phase. Then, the data owner

1) Initialization: In this phase, the data owner has twéandomly chooses a keyword with a sniBilw) and calculates
major tasks: generating the secret key and constructingg tag. by the intermediate value and a pseudo-random
secure index. On one hand, the secret key can be initialiZé@ction F(). Assume the selected keyword is “cloud” in this
by the existing cryptographic methods, e.g., DES or AES. cpample. Meanwhile, the Bloom filter is generated from both
the other hand, to implement an efficient multi-keyword fuzzy= and?, by the hash functiona,, . .. hy.
search, we build a two-stage secure index containing various3) Search: Unlike the two aforementioned phases, the
file identifiers and keywords. In the first-stage index, eadbearch phase is executed on cloud servers. The keyword
keyword is transformed into a tag, which points to all theearch process is first executed in the first-stage index. Having
file identifiers that contain this keyword. The second index @btained a set of file identifiers from the first-stage search,
just the opposite — it is generated by all the file identifierie cloud servers can now check this relatively small file set
with their matched keywords. (instead of the whole file set) using the second part of the

In consideration of privacy, each file identifier is encryptetbken.
by the algorithmEnc() when we use this framework. For the As shown in Fig. 2, after receiving th&g,, the cloud
fuzzy search function, a keyword; is transformed into an server searches in the first-stage index to find the encrypted file
intermediate valu®, (i € [1, |W)|]) by sequentially computing identifier list (i.e. E(id;), E(id3)) that matches the keyword
a 26 x 26-length bit array of a 2-gram sequence and an LStloud.” Then, the cloud server decrypts each encrypted file
value (introduced in Section II-D). As illustrated in Fig. 2, indentifier in the list with the secret key received from the data
the first-stage index, th&ug; is created byy; and a pseudo- owner. In the second-stage index, the Bloom filter verifies
random functionF(z). In the second-stage index, each filavhether the file also matches the other keyword “storage.”
identifier maps to a Bloom filter [20] deduced by all théAs mentioned in Section 1I-D, the inner produd®f; - B f;
intermediate values of multiple target keywords. In this twaand B f5 - B f; are calculated as decision fundaments, where
stage index structure, the first stage is able to efficientlyf; is the Bloom filter ofid; and Bf; is the Bloom filter of
execute single keyword searches and shrink the search rangdé@token. If the inner product is approximately equabktq
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TABLE Il TABLE Il
INITIALIZATION STEPS IN ELIMFS-B GENTOKEN STEPS INELIMFS-B

Step 1: Step 1:
1 K],Kg(i{o,l})\,]\'fl,Mz €R™*X™ S ¢ {0,1}™ 1 Yy «— F(wi), tag < F(Ki1,Vw;), Ke < F(K2,9w;)

— Step 2:
2 SK = {Ki, Ko, M1, M, S .
; (K1, Ko, My, My, 5} 2 Initialize Bf, to be am-bit length array of all zeros
Step 2: For eachw € W 3 F I a7 9 ha (9 B (0 d
3 0. e Fw) tag — F(Kidw), K. F(Kadu), or all w; € @ gel v, = F(wi). ha(V,),- - hi(Pu,), and set
R (0u), ., hie (D) Bfoll=1.7 € 7 (Duw;), - hs (W)}
4 Forallid € D(w): appende + Enc(K,, id) to Z; [tag]; setZz[id][i] = Step 3: , P
1,7 € {h1(Vw), ha(Dw), ..., hi(Fw)} 4 |Initialize Bf,, Bf, to m-bit length vectors
Step 3: For eachZid] = 1 5 Bf;[j] = Bf/'lj] = Bfqlj) it Slj] = 0; Bf,l] = LBflsi) + 7,
5 In/ltlallze I//’ I to m-bit length vectfjrs ) . ) qu/ U] = LBfal] - i Sl =1, € [1,m], " is a random number
6 I[j]=1 [jl=I[iS}l=11IT[}=s3Ill+r.1I [jl=31Il]l-r < k@ - 1. g pot.ps”’
if S[j] =0,j € [1,m], r is a random num2ber 2 6  Chosethr < k||, Token = {tag, My - Bfy; My~ - Bfy , Ke, thr}

7 Tplid) = {MF -1, M7 1"}

SK, and the secure indekndex = {Z;,Z,}. Obviously, this
the corresponding file contains both of the keywords and thdgorithm consists of three steps. In step 1, the data owner
identifier of this file will be attached to the search result. Agenerates his secret key, which contains two random sequences
last, these identifiers are sent to the data owner so that he €&n, K3), two invertible matrices/,, M5), and a vectorg).

retrieve files from the cloud server. Step 2 builds the index for the file sé. To generate an
inverted indexZ; and a forward index, simultaneously, the
IV. EFFICIENT LEAKAGE-RESILIENT SCHEMES data owner initializesZ; andZ, to empty arrays. Then, for

To resist leakages in different threat models, we instantidt@ch keyword inV, the data owner computes the intermediate

two specific schemes for the EIIMFS framework. value, the entrance iff;, the secret key for encrypting file
identifiers, and the: hash values used in the Bloom filter.

_ _ Here, F = {fi | fi : {0,1}?6%%¢ — nn € Z,i € [1,1]},
A. ElIMFS-B: Basic Scheme F:{0,1}* x {0,1}* = {0,1}*, andH = {h | h: {0,1}* —

1) Basic LeakagesBased on the analysis of various pri{1,m]}. The data owner encrypts all the file identifiers that
vacy threats in cloud search, we list the basic leakages thaitchw with K., attaches them to sé& [tag], and then sets
need to be resisted: all the positionsh (9.,), ha(9w), - - ., hi(9y) in Iy[id] to 1.

« Plaintext LeakageThe content of the outsourced filedn the last step, the data owner encrypts the Bloom filters in
and the searched keywords may be obtained by the cldi¢ second indexZg) using the secure kNN encryption [21]
server if the schemes are not secure. with (M, Ms, S). The Bloom filter] is split into two vectors

o Search Pattern LeakageThe search Pattern indicates{lI/,I”} according toS, and thenZ,[id] is set to be{ M{ -
whether two tokens are performing for the same query., M7 - I }. Finally, the data owner gefsidex = {7, 7Z,}
Since most existing schemes use deterministic algorithnagd sends the index to the cloud server with the corresponding
search pattern leakagis usually not well protected. In encrypted files.
this paper, we have a semi-protection function againstTo search with keywordsi = {wy, ws,...,w,}, the data
search pattern leakagéhe cloud server can only estimateowner needs to generate a token as a certificate by following
whether two queries have the same keyword that is uséa steps in TABLE IIl. Assumingu; is the chosen keyword
in the first-stage search. For instance, given the tokensfof the first-stage search, the data owner first computes the
queriesQ = (wy,ws,...),Q = (wy,w,,...), the cloud intermediate value, the entrancei, and the secret key for
server is able to judge whether; = w’l, but cannot decrypting file identifiers. Note that it = 1, the next two
know whetherQ = Q. steps cannot be executed atidy can be sent to the cloud

» Subset Leakagdhis is a special leakage introduced byerver directly. In step 2, a Bloom filteB3(f,) is built from
the multi-keyword search since the cloud server magll the keywords inw. Each keyword is processed wiff()
obtain the intermediate search results of the queried mahd inserted intd3 f, with £ hash functions. In the third step,
tiple keywords. For example, if a multi-keyword search ithe Bloom filterB f, is encrypted with\M,, M5, S in a manner
implemented by searching each keyword in quérghen similar to that inInitialize(). At last, the data owner chooses
the cloud server can obtain the search result of any subadhresholdhr) whose value can be selected arbitrarily based
of «. Given the token of a quer§) = (wq,ws,...,wy,), on the preferred search accuratyr is used to compare the
the Subset Leakagés the result of a tampered queryinner products during the second search stage to judge whether
Q" = (wi, @) in our two-stage index. The notatiodi  a file ID should be returnedoken = {tag, My *-Bf,, My *-
refers to any nonvoid subset af; . .. w,. Bf, K., thr} is the final output and is sent to the cloud

2) Scheme ConstructionWe then detail our solution to server.
the basic leakages: EIIMFS-B. For simplicity, we use to Upon receiving the token, the cloud server executes
represent the 2-gram sequence of keyward Search(), as shown in TABLE IV. First, the cloud server

The steps of algorithninitialize(\, D, W) are shown in reads all the encrypted identifiers i [tag]. If Token =
TABLE II. Given a secure parameterand a file setD with  {tag}, the cloud server returns these identifiers and finishes the
a keyword set, the data owner generates his secret keglgorithm. If Token = {tag, My '-Bf,, My '-Bf, , K., thr},
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TABLE IV A and a challenge€ under the known ciphertext model is
SEARCH STEPS INELIMFS-B defined as follows.
Step 1 1) A chooses distory Hi = (D,W,Q = {q1,---,qn})
1 _ RetrieveZ, [tag] whoseTraceis Tr. Then, A sendsHi andT'r to C.
Step 2: For eache € 7, [tag] ] $ .
2 id + Dec(K,,e), and getTo[id] = {MT . 1", MT . 1"} 2) C randomly chooses a hib < {0,1}. Then, it
3 MIT -M'Bf,+MIT MyBf =17 -Bf, +1'T Bf) = calculatesVi, = (€Dy, Indexy, Tokenyy, . . ., Tokeny,,)
IT - Bf, to get the View of Hi and invokes a simulator

4 If IT . Bf, > thr, attachid to id

S with Tr to obtain a View Vii_ =
(ED1-p, Index; —, Token(y_p)1, . . ., Token(; )y, ).

the cloud server checks the Bloom filtersiaftag] one by one Both Vi, and Vi, -, are sent back tol.
in Step 2. The encrypted identifiers are decryptedsay and ) A selectsb & {0,1} as the output of the game.
the corresponding Bloom filtet&,[id] = {MT - 1", MZ - 1"} As described in Definition 1, if there exists a simulator that
are retrieved. Here, the secret k&y is known by the cloud makesPr[b/ = b] = = +¢ wheree is negligible, we can prove
server, but it reveals nothing except the search resulis;of that Theorem 1 stands.
Since the search results of queried keywords are not included’he simulator is designed as follows. Firs, randomly
in the protected data, we consider this |eakage to be acceptabifects & {0,1}#, i € [1,|D]] and setED’ = {fi,ie
With To[id] and {M; " - Bf,, M5 " - Bf, }, the inner product [1 |DJ]}. Since the file set is encrypted by a secure symmetric
I"- Bf, can be easily obtained as shown in line 3 of TABLEncryption algorithme D, and €D are indistinguishable.
IV. Then, the server determines the feedback to the data ownejfter simulating the encrypted file set, the simulator gen-
according to the comparison results between the inner produgites the index and the tokens. Since the Bloom filter is
andthr. It I - Bf, > thr, the cloud server attachéd t0  encrypted by the kNN encryption, which has been proven to
the result. The resultsd) are returned to the data owner, ange secure under the known ciphertext model [Z%] and Z,
with these identifiers, the data owner can retrieve files frogte indistinguishable. We then describe hSvsimulatesZ, :
the cloud server as he wishes. _ o 1) Initialize Z, to an empty array.
1_3)_ Analysis: From the_ perspective qf pra_ctlcahty, both 2) For eachw; € W, selecttag;-,K; S {0,1}*, andi e
efﬂmencyz_;md securityare important con5|der§t|ons. _ [1,|W|] and initializeZ, [tag;] to be an empty array.
. Regarding efficiency, the .sea_\rch complexny of EIIMFS-B 3) For eachid; € D(wi1),i € [1,n],j € [1, D]}, generate
is O(|D(w1)]), the communication cost is constanty(1), o o Enc(K' id,) and append.. to 7, [tag, ]
and the storage cost on the cloud serve©$W| + |D|). A v BL[p ™97 _ ij ALl
detailed analysis can be found in Section V. Allin all, EliMFs- 4) PadZ; to the required size with random data.
B performs very efficiently, although it can only protect 'he tokens are constructed as follows. For eaghe
basic leakages in the known ciphertext model. It is suitabfe K [17”]/’ get tagppp and set TO}{eni =
for applications that have a high efficiency requirement ar(dagEL[i],Enc(Bfi)7KEL[i]7thri). Here, Enc(Bf;) is gen-
a general privacy requirement, meaning that EIIMFS-B cajtated by the secure kNN encryptiohlr; = Min(ip);,ip €
achieve semantic security wiffracel as shown below. R;.
For History Hi = (D,W, Q = {q1,42, ..., qn}), Tracel is Since the keywords are encrypted by a secure pseudo-
. Size LeakageThe file set siz¢D| and the keyword set random functior¥(-), file identifiers are encrypted by a secure
size |[W|. symmetric encryption algorithifEnc, Dec), the Bloom filter
« Result LeakageThis leakage includes all the searchs encrypted by the KNN encryption (proven to be secure under
results(R; ... R,), R; = {(id, ip),id € D(¢;)}, and the the known ciphertext model), and the index and tokeng of
results of the first search sta@¥w ;) . .. D(w, ), where andVi;_; are indistinguishable.
id is the identifier that matches quegy, ip is the inner ~ This is done so that thlélaintext Leakagés preserved. Due
productZ,[id] - Bf,,, andw;, is the selected keyword in to the random number , different tokens will be generated
queryg; for the first-stage search. from the same query. The cloud server can only know whether
« Equality Leakage This leakage indicates whether twotwo tokens have the same first-stage searched keyword, not
queries have the same;. We number the keywords from whether they are generated from the same query, sB¢hech
1 to |[W|, and setEquality Leakageo be a vector L) Pattern Leakages semi-protected. Further, all the queried

of length |Q|, where EL[i] is the sequence number ofkeywords are searched together in the second search stage
wit € g;. using anm-length array. As a result, it is impossible for the

) ] ) ) cloud server to know the search result of any subsetiof
Theorem 1. EIIMFS-B is semantically secure with Trace:lexceptwl and Subset Leakagis prevented. -

under the known ciphertext modelHY) is a secure psuedo-
random function and(Enc,Dec) is a secure symmetric g EiMFS-E: Extended Scheme

encryption algorithm. 1) Advanced threatsAside from basic leakages, the two-

Proof: To prove this theorem, we have to construct stage structure incurs an additional thre2ioss Leakage
simulator that is indistinguishable from a real instance of our Given two tokens of different queries@; =

/ /

scheme. Recall that the security game between an attacker, ws,...,w,) and Qy = (w;,ws,...,w,), where
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w; and u/1 are different, the server is able to search the TABLE V
queriesQs = (w1, w’27 o ’w;l), andQ, = (w’l’w% W) INITIALIZATION STEPS IN ELIMFS-E
The following example illustrates how cross leakage oc<wep T
curs. Suppose the server receives two tokéfsken; = 1 Ky, Ko, keys,. .., keyx & {0,1}*, My, My € R™X™ S € {0,1}™
(tagi, Bfi, Kei,thry) for query @ = (wi,wp) and 2 _SK=1Ki Ko keyr . ke, My, My, 5)

o Step 2: Initialize Zicrmp and for eachw € W:
Tokeny = (tage, Bfa, Keo, thre) for query wy = (ws,w4). 3 9, « F(w), hi (9w, key1), ha (9w, key), - . ., hi (D, keyk)

To get the search result af; = (w3, ws), we focus on the 4 ?zr (ﬁall kzsl N ;f . D;i?'> set it%p[zi[l] N = i e
files in D(ws), namelyZ, [tag,]. We divide the files that match —sep 3 Fareachu e W k U
ws into four categories: a) files that matel, w;, andw,; b) 5 tag <+ F(Ki,9w), Ke <« F(Kz,9w), Sw = S, and set

files that matchos andw; but notws; c) files that matchvs ¢ E;[Z;f:ﬁg’é%zilf 1= Sl keys)l, i € 1, 4

andws but notw; ; d) files that matchws only. The judgement « Appende < Enc(K.,id) to T, [tag]
conditions are as follows: . G,etl = I,t,cmp [d] and initializel/, I”lto m-bit length vect/([)rs

. o Il =1 [ =1} ifSulil =L I [l =3I+ 1 [j] =

f € Tuftagy] § Dlids]- BA = k| a 3105) — . Sulj] = 0. € [1,m], = 1S a random number
f € Dlws) 091\ Tlidy) - By # k| b o Tl = (i 10 1)
3 1 ¢ Tiltagy] Tplids] - Bfy = k(Jwh| —1) ¢
Ig[ldf] Bfl 75 k(|w1| — 1) d TABLE VI

The search result of querfws, w2) consists of all theds in GENTOKEN STEPS INELIMFS-E
categories a) and c). The result of quetly = (w;,w,) can Sep T
be obtained similarly. 1 B, — F(wr), tag < F(K1,0uw,), Ko « F(Ka, 94, ), Sw; = S,

Although the cloud server is only given a thresheld-; Stei,”gzsetgwl[hiwwl’keyi)] = 1= Suy[hiuy, keyi)l. ¢ € [1, K]

instead of|w, |, it can still obtain the approximate values ok Initialize Bf, to be am-bit length array of all zeros

- : H . For all w; S W get Yy, < F(w;),
1| according to the maximum value of inner products wheh By (D keys)s o hon (B ey, and Set BRG] = L
searching in the second-stage index. Therefore, an extendedj € {h1(Vuw,, keyr), .- ., he(Pw,, keyr)}
scheme that can preve@ross Leakagés necessary. Step 3:

In the known background model, the kNN encryption may 'n';'a;';e BfBjB[fJ] © ’;?'I[J'TT?IZE’JTIO'SO BA = 1510+

no longer be secure, since the cloud server can obtain morer7 Ul = 1Bf,ll - If Sl = 1. j € [1, m, s 2 random number
historical information. For instance, if the cloud server collects  cnosethr < k||, Token — {tag, M; " Bf. My By thr)
a large number of keywords and their corresponding tokens; it
may utilize linear analyses to break the kNN encryption and TABLE VI
link plaintext Bloom filters to encrypted ones [22]. Table IV SEARCH STEPS INELIMES-E
shows the linear equation? - Bf, = M{1 - M{'Bf, +
MZIT" - M; By, in which only I, anm-bit length vector, ;= etiever, (tag]
is unknown to the cloud server under the known backgroun@tep 2: For eache € Z: [tag]
model. With enough query-token pairs, the cloud server can Ge;zﬂe]*ﬁMlT, r, %T r }1 v m
constructm similar linear equations to derive the coordinatel M IBJ,M Bfq+ My Bfg =1"-Bfg+1 =Bl =
of I. 4 If 7. Bf, > thr, attachid to id
2) Scheme Constructionfhe main reason fo€ross Leak-
age is that the encrypted Bloom filter of a file is revealed
as soon as any of its keywords are searched in the firi-(y,, key1), ha(w, keya), . .., hi (D, keyr), where func-
stage index. Therefore, we propose EIlIMFS-E, which solvéiens h, to hj are chosen from a hash famit = {h |
the problem by binding the Bloom filters ifi, to both files h : {0,1}* x {0,1}* — [1,m]}. The indexesZ;,Z, are
and keywords. The main process of EIIMFS-E is similar toonstructed in Step 3. In line 5, the entranceZin the
EIIMFS-B with several differences. secret key for encrypting file identifiers, and a specific vector
To prevent linear analyses of the cloud server under th€,) of each keyword are calculated. Then, for each file that
known background modele replace the hash functionsmatchesw, the data owner inserts the encrypted identifier
hi...hx with keyed hash functions when generating Bloom into Z; and setsZ;[e] as the Bloom filter encrypted by
filters. When generating his secret kéyx, the data owner {M;, M, S, }. Thus, the data owner can get the whole secret
choosesk hash keys Key;, . . . key) and embeds them into index,Index = {Z;,Z-}, and sends it to the cloud server with
SK. To calculate the locations of thé hash values for the corresponding encrypted files.
a keywordw in the Bloom filter, functionsh;(d,,, key;), The improvement of th&senToken() algorithm is sim-
i € [1,k] are invoked. The detailethitialize() algorithm is ilar, as shown in TABLE VI. The hash functions;(d,,)
similar to that of EIIMFS-B and is shown in TABLE V. are replaced with keyed hash functiohs(d,,, key;) and
First, the data owner picks his secret key, which irthe Bloom filter of the queryw;,ws,...) is encrypted by
cludes k additional keys Keyi,keys, ..., keyr). In Step (My, Ms, S,,), whereS,,, is calculated from the intermediate
2, the Bloom filters of all the files are built and storedialue ofw,; (namely,?,,,). Because the secret kdy. would
in a temporary setZ..,,). Each keyword is transformedno longer be sent to the cloud server, the decryption operation
into an intermediate value and is inserted irffgQ.,,, by in the Search() algorithm is removed (TABLE VII).
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Analysis: Regardingefficiency EIIMFS-E has a higher

storage cost@(X,ew|D(w)])) than EIIMFS-B. The search

complexity and communication cost are the same in EIIMFS-

E as in EIIMFS-B:O(|w1|) andO(1), respectively. EIIMFS-E

also provides a stronger leakage-resilient ability, which means

a higher semantic security guarantee witlce2.

For History Hi = (D,W, Q = {q1,q2, . . .

,qn}), Trace? is
Size LeakageThe file set sizéD|, the keyword set size
|[W]|, the quantity of file-keyword pair§ e |D(w)|, and
the result size of the first-search sta@®w;;)|, where

8

a) Generate a Bloom filtelﬁ(f;) in which the number
of bit 1 equalsMax(ip),ip € R;.

b) Foreachid;,ip;) € R; andj € [1,|D|], randomly
chooseip; 1s fromBf;, construct a bit array f;;,
and Setztemp [.7] asz—t§mp [.7] + Bfij'

c) For the elements df, that are bigger than 1,
replace them with 1.

For eachq; € Q, if there does not exisE L]j]
EL[|(j < i), selectiagy e s €pu)|
{0,1}* and setZ, tagpr) = (€1, €p(un))-

emp

Ten ||

wy1 IS the selected keyword in quegy for the first stage
search.

o Result LeakaggR; ... R,), R; = {(id,ip),e € D(¢;)},
whereid is the identifier that matches quegy andip is
the inner products[id] - Bfy,. rando/mly. / . . .

« Equality LeakageThe sequence number of the selected 6) PadZ, andZ, to the required size with random data.

keyword of each query i$EL[1],. .., EL[n]). With all this be doneZ, andZ, are built.
Then, § constructs the tokens. For eagh € Q and

Theorem 2. ElIMFS-E is semantically secure with TraceZ; < [1,n], S gets tag;EL[.] and encryptsBf, with EL]i]
under the known background modeFif) is a secure pseudo- ;4 SK' S sets TOkeIl,Z — (tagpLyy Enc(Bf)), thr))
: i EL[) i) i)

random function and(Enc,Dec) is a secure symmetric
encryption algorithm.

4) Choose a free’ for eachid, € R;, setZ,]e] to be
encryptedz,,,,,, [z], and marke  as used.

5) For the other free’, generate elements I'ﬁz for them

thr; = Min(ip);,ip € R;.

Basic leakages are not incurred since the files are encrypted

Proof: As shown in the proof of Theorem 1, we have tdy semantically secure symmetric encryption, keywords are

construct a simulator that produces indistinguishable tracescrypted by a secure pseudo-random funclg, and file
The difference between the two theorems is that EliIMFS4Hentifiers are encrypted by a secure symmetric encryption
is designed for the known background model. In the knowalgorithm (Enc, Dec). Due to the the indistinguishability of
background model, we allow the cloud server to collect keyed hash functions, no PPT adversary is able to carry out
certain number of keyword-token pairs that are different frofinear analysis on kNN encryption, so EIIMFS-E is secure
the queries used in the game. With these pairs andMieaws under the known background model.
following the sameTrace the cloud server should not be Given two tokens of queriest; = (wi,w2) and
able to distinguish which one is generated by the simulatef, = (ws,ws), Token; = (tagi, Bfi,thr1), Tokens =
Formally, the security game between an attackerand a (tagz, Bf2,thre), and the server cannot get the correct inner
challengerC under the known background model is definegroduct of the Bloom filters encrypted b% or of B f1, which
as follows. is encrypted byu/l. Therefore, the approach for obtaining the
search result ofws,w;) mentioned above no longer works,
the corresponding tokens. This step can be carried dCross Leakagés prevented. Note that the search result of

: o1 first-stage search can be easily covered up by obfuscating
by A adaptively for polynomial times, and the set of alfn® . 4 . . ) : .
queries is denoted bg'. operations like padding each item ih to a fixed size with
+qn})

2) A chooses aistory, Hi = (D,W,Q = {qi,... random encrypted file identifiers. [ ]
whoseTraceis Tr, andg; ¢ Q' for 1 < j < n. Then
A sendsHi andT'r to C.

3) C randomly chooses a bib & {0,1}. Then, it Before dealing with experiments, we first analyze the perfor-
calculatesVi, = (£Dy, Indexy, Tokeny, . . ., Token,,) mance of our schemes theoretically. As shown in TABLE VI,
to get the View of Hi and invokes a simulator we compare the asymptotic performance of our schemes with
S with Tr to obtain a View Vi;, = the schemes of [5], [11] and [23].

(ED1_p, Index;_p, Token(y )1, . . ., Tokengy_p),,). [23] provided a fuzzy keyword searchable encryption
Both Vi, andVi;_, are sent back tod. scheme with an inverted index of sizZgW). In this scheme,

4) A selectsh’ € {0,1} as the output of the game. the entire index must be scanned to find the fuzzy result of a

Feyword. Thus, its search time complexity G |W|). Wang

et al. [5] proposed a method of searching multiple keywords

over an inverted index. To get the result, the cloud server has

to compute the product of the token, whose lengthig,

, with the entire inverted index, which includes&| x |W|
andZ,.,,, to empty arrays, and ini- matrix. As a result, the efficiency of this scheme is not quite
, 1o be anm bit length array satisfactory, and it does not support a fuzzy keyword search.
The scheme of [11] provided the functions of both multi-
keyword and fuzzy keyword searches. However, its search time

1) A chooses; and sends it t&. Then,C responds with

V. THEORETICAL ANALYSIS

S simulates€D’ in the same way here as in the proof o
Theorem 1. To simulate the index and tokefidirst randomly
picks M, M, € R™*™ S" € {0,1}™. The index is generated
as follows.

1) Initializes Z,, Z,,

tializes each item of,

tem
of all zeros.
2) For eachy; € Q andi € [1,n],
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TABLE ViIII
COMPARISON OFASYMPTOTICPERFORMANCE

Multi-keyword Search | Fuzzy Search | Search Time | Communication Cost Storage Cost
paper [23] X v o(qwl) o) o(wl)
paper [5] v X o(gw)) o(gw)) o(wP)
paper [11] v v o(D)) o) o(D))
ElIMFS-B v VA O(|D(w1)]) O(1) o(jwW| + D))
EliMFS-E v v O(D(w1)]) o) O(Zwew|DP(w)])

is linear with the size of the file set because it utilizes a fodv

1.2

index.

The search complexity of EIIMFS-B i©(|D(w,)|) since
the search time of the first-stage indexd$l) and the second >
search stage only takes place in the results of the first search =
stage. This scheme needs only one round of communication, § :
and its token size is constant. Therefore, its communication & g} .2 . -
cost is constantlyO(1), no matter how many keywords are : : Eﬁgg;g:ég RV
searched at one time. The storage cost of the cloud server is 0.2 - pr2(c=0.2) ]
the space fof; andZ,; that is,O(|W|+ |D|). In conclusion, 0 i | Prae=05)
ElIMFS-B has the best performance in all efficiency aspects 0 2 4 6 8 10
with a basic semantic security guarantee. Number of hash functions

ElIMFS-E has a performance similar to EIIMFS-B. It haTs_i
a larger storage cost, but its leakage-resilient ability has’
improved. Sincé; is an inverted index and each file-keyword
pair corresponds to an item i, the storage space for theA. Search Accuracy
index is OOW + T,ew|D(w)]), which is approximate to
O(Zwew|D(w)]). Suppose the client has a file set of 1000§

f'lfeél.ﬂgsea;h ﬂls ct;rggg; 15;10 ke)iw5o (;g(s) It:he fr'lze of the;_:nd ﬁjdently. The fuzzy search is realized with Locality-Sensitive
ortll -= 1S abou whem = - rorthe same fiie Hashing, as described. We employ a 2-stable distribution LSH

set, the size of the index of scheme EIIMFS-B is only aboyt . : : ;
i . : . V%nml hich tains/ hash functions, and h hash
200MB. The querying and searching processes of E|IMFST ét)i/org];w)alvtr;ce ei;?eilgics)n ash functions, and each has

are similar to those of EIIMFS-B. Thus, the communication
cost and the search complexity remain the same. But the search ha ) (5) = Ld U+ bJ

time of ElIMFS-E may be even shorter than that of EIIMFS-B (@?) c

because all the Bloom filters that match the same keyworére, is a26 x 26 = 676 dimensional vector, and each of its
can be stored in consecutive positions. This means that odlyhensions are randomly chosen from the distribution defined
one disk read operation is needed. The decryption operatign f(z) = %e—ﬁ/?_ b € [0,¢] is a random real number.

id < Dec(KL, e) is also omitted in EIiIMFS-E. The trade-offwhile ¢ is a fixed real number for one hash family, different
is worthwhile because the storage space of the cloud servegiigices ofz andb result in different hash functions.

enormous. In our future works, we will improve this scheme Tg achieve the optimal performance of the fuzzy search, a
by optimizing the storage cost with some strategies. large number of keywords are involved in our experiment. The
intermediate values of these keywords and the keywords that
are similar to them are calculated to evaluate the fuzzy level.
In our experiment, we use two probabilities to evaluate the

To present practical utility, we tested our schemes on a re@feuracy of the fuzzy keyword search:
world dataset: 10000 files with 16027 keywords selected frome True positive:prl = {F(w;) = F(ws)|w; andws only
the Enron Email Dataset [24]. We implemented prototypes of one character distinction exists.
ElIMFS-B, ElIMFS-E, and the basic scheme of [11], which is « True negativepr2 = {F(w1) # F(w2)lw; and w,
represented as MFS. multiple character distinctions exist.

The programs were written in Java and were executétiese probabilities should be as high as possible.
on a desktop equipped with an Intel Core i5-4200H CPU Fig. 3 shows thatprl decreases when the quantity of
at 2.8 GHz, 8 GB RAM, and a 64-bit Windows 10. Fothe hash functions iF gets larger, while increases when
simplicity, the AES algorithm was used as the psuedo-randdracomes bigger. Howevepy2 acts the opposite way. That
functionF() and the CPA secure symmetric encryption algas, pr2 increases as the number of the hash functiongin
rithm (Enc, Dec). SHA-256 and HmacSHA1 were utilizedincreases, and decreases with the increment dherefore, it
in h;(9,) and h; (9, key;), respectively. is important to make a trade-off betwegnl andpr2. In the

3. The performance of keyword fuzzifying with variolsand cs

To achieve the best accuracy for the keyword search, the
arameters in LSH and the Bloom filter need to be selected

VI. EXPERIMENTAL ANALYSIS
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The false positive rates of Bloom filter with variouss and ks

Fig. 6.

Number of Queried Keywords

The token generation times with differgn|s

1000 - Bf éﬁ}ﬁ%@%”g ,,,,,,, L B ]D|. EIiMFS-B.takes a little more time thap MFS because
e —— it needs to build two indexes; and Z,, while MFS only

S 800 [ needs to build one. However, the difference is quite small
§ T since the most time-consuming operation is the encryption
& 600 of the Bloom filter, shown as the purple columns. Thus,
£ faster matrix calculation can shorten the initialization time
FoA00 e ‘ effectively. Index generation is executed only once when the
200 system starts up, which has little influence on the efficiency
ﬁh of the whole system. Therefore, the extra time consumption

1000 2000 4000 6000 8000 10000
File Set Size

of EIIMFS-B is acceptable.

2) Token generation timefig. 6 shows the token gen-
eration time with different keyword numbers for querying.
When only one keyword is searched, our schemes show a huge
advantage. The token generation time is quite small because
following experiments, we sdt= 7 andc = 0.3 so thatpr1  ONly atag is computed. When multiple keywords are searched,
andpr2 are both larger than 0.8. the lines jump up to more than 60ms because the most time-

Bloom filter has a distinct advantage on spacial and tedfli€nsive step in this phase is the encryption of the Bloom
poral cost on searching compared with other data structuriéer, which costs nearly 60ms. It is obvious that the token
However, it also has some shortcomings. There exist fa/@gneration time rises linearly when the number of keywords
positives when searching with Bloom filter, and the fals8"0Ws. In addition, the growth rate of EIIMFS-E is larger than
positive is Py, = (1 — e~*7/m)k [15], wheren is the number that of_both EliIMFS-B and MFS. This is beca_Qsa times of _
of the elements in the set; is the length of the bit array, and operations are needed to insert all the quer_led keywords into
k is the number of hash functions. In our experiments, 16@e Bloom f|IFer, and the keyed hash fU”Ct'@?‘(ﬁkaeyi)
to 182 keywords are extracted from one file, so wersdb takes more time _thamiww): Even though EIIMFS-B and
be 180. As shown in Fig 4, the false positive rates are testeMFS-E take a little more time to generate tokens, they can
under differentns andks. The result indicates thafp grows obtain more benefits from the search time, as shown below.
with & whenm is small, andfp declines with the increase 6f ~ 3) Search time:As the most important performance metric,
whenm is large. Andfp is always smaller than 0.0004 whersearch times with various impact factors are presented in
m is larger than 3000. Therefore in the following experiment§ig. 7. Fig. 7a reflects the relationship between the search time
we setm to 5000 andk to 20 for the best search accuracy. and the file set size. With the growth of the file set size, the

Due to the existence of false positives and false negativéyve of MFS ascends linearly, while the curves of EIIMFS-B
some matched files may have a lower inner product than ottgéd EIIMFS-E grow slowly at a low level. This is because in

files. A trade-off between false positives and false negativb¥S, the search process always has to go through the entire
can be made by choosing a proper threshotd) file set. The search times of our schemes, on the other hand,

only rely on the results of the first search stage. When the file
o set gets larger, the size of the search result in the first stage
B. Efficiency grows, which leads the second search stage to expend more
In this subsection, we mainly analyze the time consumptidime. EIIMFS-B is a little slower than EIIMFS-E because it
of our schemes from different aspects. executes one more operatial: < Dec(K., e).
1) Index building time:In Fig. 5, the columns with stripes The relationship between the search time and three other
show the index generation time of our EIIMFS-B and MFSQarameters are displayed in Figs. 7b, 7c, and 7d, when the
We can see that the generation time increases linearly wiille set size is fixed at 10000. The search time of MFS

Fig. 5. The index generation times wheR| ranges
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remains unchanged in these three images since the file sdh conclusion, our ElIIMFS schemes based on LSH, the
size is constant. In Fig. 7b, different quantities of keywordBloom filter, and a two-stage index, have a similar token gen-
are extracted from these files so that various sizeB\ohre eration time as MFS, but reduce the search time remarkably.
made up. We can see that the line trends of our schemes are
similar to those in Fig. 7a: the search times of our schemes
are much shorter than that of MFS, and they grow slowly with VIl. RELATED WORK
|[W|. The more keywords extracted from a file, the more likely
a file will match. Therefore, more results can be obtained in Searchable EncryptioffSE) enables data owners to out-
the first search stage. This is why the search times of ostiurce their private files to a semi-trusted server without re-
schemes increase with the growth of the keyword set size.vealing the plaintexts while simultaneously guaranteeing key-
Fig. 7c demonstrates the relationship between the seavebrd search functions. Currently, researchers propose many
time and|D(w;)| when searching in 10000 files, whetg state-of-the-art SSE schemes: [2] proposed the first Searchable
is the selected keyword in a query for the first stage sear@dymmetric Encryption (SSE) scheme, and full-domain search
The search time of MFS stays constant as mentioned abasttheme rather than an index-based scheme; [25] and [26] pre-
and in ElIMFS-B and ElIIMFS-E, the search time linearlgsented SE schemes based on asymmetric encryption; [27] and
increases withD(w, )| because the server needs to search o@8] dealt with a malicious cloud server and proposed schemes
all the files that matchy; to get an accurate result for theto support verifiable and searchable symmetric encryption;
queried keyword set. Since; is the keyword that matches[29] redefined the security of SE schemes based on the adver-
the fewest files, the size dP(w;) would not be very large. sarial server’s prior knowledge; [6] and [8] proposed schemes
Thus, EIIMFS-B and EIIMFS-E search much faster than MF$at support dynamic updating; [30] improved SE schemes
except in the extreme case wherg matches almost all the in terms of the index 1/0 efficiency; [31] utilized attribute-
files in D. based encryption to achieve verifiable multi-user SSE; [32]
In Fig. 7d, when the file set size is fixed (10000 files angroposed a new verifiable database (VDB) framework so that
16027 keywords), the search time is almost independent of tients cannot only retrieve database records, but also detect
guery size in all three schemes; in such a scenario, our schermeg attempt by the server to tamper with the data; [33] first
spend far less time than MFS. When only one keyword &pplied encrypted keyword searching on de-duplicated data;
queried, the second search stage will be omitted, and asral [34] and [35] applied searchable encryptions to specific
result, the search time is extremely short. Wheih > 1, the applications, such as public key encryption and E-Health
search time remains stable no matter how many keywords &euds. However, none of these works support multi-keyword
searched. or fuzzy keyword searches.
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A. Multi-keyword Search set size. Our paper focuses on further improving the search
doerformance without hurting the system’s privacy in terms of
ages.

The multi-keyword searchschemes can search multipl
keywords simultaneously over encrypted data. [3] construct&fk
a binary data vector for each file where each bit in the vector
represents a keyword of the file. This structure is similar to
schemes based on the Bloom filter wher: 1, wherek isthe  In this paper, we focus on a multi-keyword fuzzy search
number of hash functions. In [36], a tree structure index base¥er a large encrypted file set in cloud storage. An Effi-
on term frequency was used to support ranked searches, gigiit Leakage-resilient Multi-keyword Fuzzy Search (EIIMFS)
the cosine similarity measure was exploited to check whettéamework is proposed for the encrypted cloud data; it con-
the file index contained indicated keywords. [4] utilized afists of a novel two-stage index structure, Locality-Sensitive
inverted index and a hash table to improve efficiency, bitashing, and a Bloom filter. The two-stage index structure
increased communication costs. Furthermore, [9] expand¥@sures that the search time is linearly independent of the file
[4] to a multi-user scenario. [37] supported a pattern-matchig§t size. Meanwhile, the multi-keyword fuzzy search function
string search, a more flexible method than a general booldafmplemented based on the Gram Counting Order, the Bloom
search SSE. [5] achieved a multi-keyword search with d#fer, and Locality-Sensitive Hashing. Regarding the leakages
inverted index for the first time, but its efficiency was not quitéaused by the two-stage index, we present two schemes to
satisfactory. [38] dealt with ranked multi-keyword searchdndle threats in different threat models. Theoretical analysis
in a multi-owner mode based on a bilinear map and tt@d experimental evaluations demonstrate our design’s practi-
Decisional Bilinear Diffie-Hellman (DBDH) assumption, butcality.
an administration server was needed. All of, these schemes
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