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EliMFS: Achieving Efficient, Leakage-resilient, and
Multi-keyword Fuzzy Search on Encrypted Cloud

Data
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Abstract—Motivated by privacy preservation requirements for
outsourced data, keyword searches over encrypted cloud data
have become a hot topic. Compared to single-keyword exact
searches, multi-keyword fuzzy search schemes attract more
attention because of their improvements in search accuracy,
typo tolerance, and user experience in general. However, existing
multi-keyword fuzzy search solutions are not sufficiently effi-
cient when the file set in the cloud is large. To address this,
we propose an Efficient Leakage-resilient Multi-keyword Fuzzy
Search (EliMFS) framework over encrypted cloud data. In this
framework, a novel two-stage index structure is exploited to
ensure that search time is independent of file set size. The multi-
keyword fuzzy search function is achieved through a delicate
design based on the Gram Counting Order, the Bloom filter,
and the Locality-Sensitive Hashing. Furthermore, considering the
leakages caused by the two-stage index structure, we propose
two specific schemes to resist these potential attacks in different
threat models. Extensive analysis and experiments show that our
schemes are highly efficient and leakage-resilient.

Index Terms—Cloud security, searchable encryption, multi-
keyword fuzzy search.

I. I NTRODUCTION

OUTSOURCING data to the cloud has become a prevalent
trend in recent years because of the benefits it brings to

data owners including convenient access, decreased costs, and
flexible data management. With the impetus of IT giants like
Amazon, Google, and Microsoft, more enterprises and individ-
uals incline to upload their data to cloud storage [1]. However,
data leakages occur frequently, causing huge losses to both
cloud providers and cloud users. The lack of data security
and privacy protection has become the biggest obstacle for the
development of cloud storage technologies. To protect owners’
data privacy, all data, especially the sensitive information, must
be encrypted before outsourcing, which unfortunately makes
traditional plaintext-search-based data utilization service a
challenging task.

Searchable Symmetric Encryption(SSE) is a useful cryp-
tographic primitive for searching encrypted data using partic-
ular keywords without leaking private information to cloud
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servers [2]. To support ciphertext searches on encrypted cloud
data, researchers have proposed a number of SSE schemes.
Considering the huge amount of outsourced documents in the
cloud, one important direction is amulti-keywordsearch [3]–
[5], which supports multiple (conjunctive or disjunctive) key-
words search, e.g., “cloud” and “security”, at one time. Com-
pared to asingle-wordsearch [6], [7], a multi-keyword search
can efficiently improve search result accuracy since single-
keyword searches usually return results that are far too coarse.
Note that most existing multi-keyword search techniques are
less friendly towards keyword spelling since theyonly support
exact keyword matching [8], [9]. Considering that users may
occasionally perform searches with typos in their search
keywords, fuzzy searchis proposed to achieve approximate
keyword matches to a certain extent. However, they usually
exploit edited distances to quantify keywords’ similarities for
single-word searchesonly.

To enhance the user-searching experience and protect
data privacy, achieving efficient, leakage-resilient, and multi-
keyword fuzzy search services on encrypted cloud data be-
comes a significant challenge, especially with the increasing
number of on-demand data users and the exploding quantities
of outsourced cloud data. In [10], the authors implemented a
search scheme that satisfies both multi-keyword and fuzzy re-
quirements simultaneously by treating several phrases in a pre-
defined dictionary as one keyword for a search; this approach
lacks flexibility in reality. [11] tackled the privacy-preserving
multi-keyword fuzzy search problem using aforward index
structure. However, forward index based schemes need to store
a list of keywords for each file and must check every file in
the file set when searching [12]; this is unaffordable when a
file set is large.

In this paper, we propose an Efficient Leakage-resilient
Multi-keyword Fuzzy Search (EliMFS) framework for en-
crypted cloud data. Unlike existing multi-keyword fuzzy
search schemes, we design a novel two-stage index structure,
consisting of aforward indexand aninverted indexto improve
search efficiency. Different from a forward index, the inverted
index stores a list of file identifiers for each keyword, and
a user can directly find the files for each keyword in a
query [13]. By building up the two-stage index and designing
the corresponding search algorithm, our search complexity
is only determined by the number of the files associated
with one keyword in the query rather than the entire file-
set size. Furthermore, note thatthere is a trade-off in the
complex index structure which leads to a greater search
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efficiency, but also causes more leakages. We aim to design a
framework to achieve the desired efficiency without hurting the
system privacy. Therefore, we analyze the possible leakages
of our framework in different threat models and design two
cryptographic schemes to balance the trade-offs among search
time, storage cost, and privacy for different security levels.
The multi-keyword fuzzy search function is implemented by
the flexible combination of some widely-used tools, including
bigram vector representation, locality-sensitive hashing (LSH)
[14], and the Bloom filter [15]. Our contributions can be
summarized as follows:

1) To the best of our knowledge, this is the first multi-
keyword fuzzy search scheme for encrypted cloud data
whose search complexity is independent of the file set
size;

2) Compared to existing multi-keyword fuzzy search solu-
tions [11], [16], we design a novel two-stage index struc-
ture and corresponding search algorithms to improve the
search efficiency on encrypted cloud data;

3) To protect data privacy, we analyze the possible leakages
of our framework in different threat models and we pro-
pose two specific schemes to achieve leakage-resiliency;

4) A comprehensive analysis of the privacy and efficiency
is given, and experiments on a real-world dataset further
show that our design has a low overhead in the search
process.

The rest of the paper is organized as follows. Section II
presents the formulation of our problem and the prelimi-
naries. Sections III and IV provide detailed descriptions of
our EliMFS framework and leakage-resilient schemes, respec-
tively. Sections V and VI present theoretical and experimental
analyses, respectively. Section VII summarizes the related
work, and the conclusion appears in Section VIII.

II. PROBLEM STATEMENT

Before describing our schemes, we state the efficient multi-
keyword fuzzy search problem in the outsourcing storage
setting and introduce some preliminaries.

A. System Model

Our system consists of three entities: a cloud server, a data
owner, and a group of authorized users, as shown in Fig. 1.
Initially, the data owner, who holds a file set, creates a secret
key, constructs a customized secure index for this file set, and
uploads the secure index along with the encrypted file set to
the cloud server. When the data owner needs to search his files
with keywords,w1, w2, . . . , wn, he generates a token based on
the queried keywords and his secret key. After the token is sent
to the cloud server, the cloud server executes a search with the
token and the secure index, and then returns the matched file
identifiers to finish the search process. With the search results,
the data owner can download the corresponding encrypted files
from the cloud server and decrypt them with his secret key. As
the gray arrows showed, other authorized users attempting to
search the data owner’s file set can obtain the tokens and file
decryption keys shared with them, according to access control
strategies.
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Fig. 1. Structure of encrypted cloud storage system

B. Threat Model & Design Goals

We assume that both the data owner and the authorized users
are trusted, but that the cloud server is honest-but-curious. That
means the cloud server follows the designed protocols hon-
estly, but it may collect, analyze, and leak the information of
its customers [17]. Regarding privacy requirements, two threat
models with different adversary capabilities are considered in
this paper, as in other related works [3], [11].
• Known Ciphertext Model: The cloud server can only

observe the encrypted file set, the encrypted index, the
submitted tokens, and the search results. It has no prior
knowledge of the file set or the search keywords.

• Known Background Model: In addition to the knowledge
in the Known Ciphertext Model, the cloud server is also
able to obtain some additional background information
like the statistical information about the files, the queried
keywords and their corresponding tokens, and the fre-
quency of searched keywords.

Considering the above threat models, our scheme is de-
signed to achieve the following privacy and performance goals.
• Multi-keyword Fuzzy Search: One scheme should support

multi-keyword fuzzy searches over outsourced encrypted
files. For instance, a search based on a spelling mistake
“clod security” can still return the “cloud security” rele-
vant files.

• Efficiency: Considering that large file sets may exist in
the cloud, our scheme aims to be efficient and practical
in terms offile-set-size independence. That is, the search
time should be sublinear with respect to the file set size.

• Leakage-resilience: The cloud server should neither infer
private information nor leverage the intermediate results
of searches in the targeted threat models.

C. Security Definitions

We recall the semantic security definitions from [11] and
[13], and define the notions below:
• History: A History is the information which reflects the

interaction between the data owner and the cloud server.
It consists of the file setD, the keyword setW , and the
query setQ = {q1, q2, . . . } that is being searched.

• View: It is what the cloud server can actually see. The
Viewof aHistoryconsists of the encrypted file setED, the
encrypted indexI, and the tokensToken1, . . . ,Token|Q|.
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• Trace: The Trace of a History is defined as the infor-
mation that can be revealed to the cloud server, such as
the file set size and the search results. TheTraceof our
schemes will be listed in detail in Section IV.

Definition 1. For two Views with the sameTracewhere one
view is generated from aHistory selected by the cloud server
and the other is generated by a simulator, an EliMFS scheme
is semantically secure under the known ciphertext model, if
no probabilistic polynomial time (PPT) adversary is able to
distinguish them with a probability non-negligibly larger than
1/2.

Definition 2. Given a collection of keyword-token pairs and
two Views with the sameTracewhere one view is generated
from a History selected by the cloud server and the other
is generated by a simulator, an EliMFS scheme is semanti-
cally secure under the known background model, if no PPT
adversary is able to distinguish them with a probability non-
negligibly larger than1/2.

D. Preliminaries

1) Gram Counting Order: An n-gram is a contiguous
sequence ofn items from a given sequence of characters [18].
For example, given a keyword “cloud”, the 1-gram sequence
is {c, l, o, u, d}, and the 2-gram sequence is{cl, lo, ou, ud}.
In our structure, we choose a 2-gram sequence to parse a
keyword, and record it in an array of size26×26. Each element
in the array represents one possible bigram. If a bigram exists
in the 2-gram sequence, the corresponding element is set to
be 1; otherwise it remains 0. In this way, all the keywords
are transformed into bit arrays that can be input parameters of
Locality-Sensitive Hashing functions.

2) Locality-Sensitive Hashing:Locality-Sensitive Hashing
(LSH) has the capacity to map similar items to the same
bucket with a high probability. In this paper, all keywords are
processed by LSH before being attached to indexes or tokens,
so that the fuzzy search can be achieved. A hash function
family F is (R1, R2, P1, P2)-sensitive, if for any inputs ofp, q,
all hash functions,h ∈ F , satisfy the following conditions:

• if d(p, q) ≤ R1, thenh(p) = h(q) with a probability of
at leastP1;

• if d(p, q) ≥ R2, thenh(p) = h(q) with a probability of
at mostP2;

whered(p, q) denotes some kind of distance (e.g. Euclidean
distance or Hamming distance) betweenp and q, R1 and
R2 are the distance thresholds, andP1 andP2 represent the
probability thresholds. There are multiple options for imple-
menting LSH, such as LSHs based on bit sampling andP -
stable distribution. To recognize similar keywords, we employ
a P -stable distribution LSH [19] that maps ad-dimensional
vector to an integer. The hash functions of aP -stable hash
family follow h~a,b(~v) = ⌊

~a·~v+b
c ⌋, where~a is a d-dimensional

vector and each dimension is chosen independently from a
P -stable distribution.b is a random real number chosen from
[0, c]. The P -stable distribution LSH first projects~v onto ~a,
then it utilizesc to separate them. A different~a and b result
in different hash functions in the family.

3) Bloom Filter: A Bloom filter [20], using a bit array of
m bits to characterize a setS, verifies whether an element is
a member of a set. Each element inS is denoted byk bits
randomly chosen from them array positions. The Bloom filter
Bfs of the setS is structured as follows:

a. SetBfs to be anm bit length array of all zeros and
choose a hash familyH = {hi | hi : a → [1,m], a ∈
S, i ∈ [1, k]}.

b. For eachq ∈ S, set the positionshi(q) (i ∈ [1, k]) in
Bfs to 1.

To check several elements, we generate a bit array in the
same way. We then compute the inner product of this bit
array andBfs. If the result equalsnk, it means that these
elements belong toS, wheren is the number of elements to
be checked. In our scheme, every file has its own Bloom filter
that corresponds to the multiple contained keywords.

4) Secure kNN Computation:Secure kNN (k-nearest neigh-
bour) computation, proposed by Wong [21], is designed to
compute the distance between two encrypted database records.
In a secure kNN computation, all database records are ex-
tended tom-dimension vectors and encrypted by a vectorS
of m bits and twom×m invertible matrices{M1,M2}. The
algorithms are introduced in our schemes in Section IV. More
details of secure kNN computation are referred to in [21].

III. E LI MFS FRAMEWORK

In this section, we present the definition and main phases of
our EliMFS framework and build a two-stage index structure
to improve the search efficiency.

A. Definition

We first give the definitions of the two-stage index and the
EliMFS scheme. The main notations used in this paper are
summarized in TABLE I. An example of the two-stage index
structure is shown in Fig. 2.

Definition 3 (EliMFS). An Efficient Leakage-resilient Multi-
keyword Fuzzy SSE search scheme is based on the two-
stage index structure and consists of three polynomial-time
algorithms as follows:

• (SK, Index) ← Initialize(λ,D,W): This algorithm
takes as inputs the secure parametersλ, the file setD, and
the corresponding keyword setW . It generates the secret
keySK and builds up the secure indexIndex = (I1, I2).
Here, the first-stage index,I1, is an inverted index in
which each tag corresponds to a list of identifiers. The
second-stage index,I2, is a forward index in which each
file identifier corresponds to the keywords it contains;

• Token ← GenToken(SK, ~w): Given secret keySK
and the keyword list~w = {w1, w2, . . . , wn}, the data
owner computes aToken as a certificate to search~w in
D;

• ~id ← Search(Index,Token): The cloud server inputs
the secureIndex and theToken received from the re-
quested user and outputs the file identifier list,~id, that
matches the search keywords in theToken.
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TABLE I
NOTATIONS

Notation Meaning

D the file set of a data owner

W the keyword set ofD
D(w) file identifiers matching the keywordw

q
$← S sampling an elementq randomly from a setS

x← F an algorithmF with outputx

[1, n], n ∈ N an integer set{1, 2, . . . , n}
I1, I2 the first- and second- stage index

λ a secure parameter

SK the secret key of the data owner

w, ~w a keyword, and a keyword set

id, ~id a file identifier, and a file identifier set

ϑ the intermediate value of a keyword

(Enc,Dec) a symmetric encryption algorithm

F() a pseudo-random function

Bf a Bloom filter

Q a set of search queries

m the length of Bloom filter

F = {f1, . . . , fl} a LSH family with l hash functions

H = {h1, . . . , hk} the k hash functions of Bloom filter

tag the entrance of a keyword inI1
e an encrypted file identifier

thr the threshold attached in a token

ip the inner product of two Bloom filters

B. Main Phases

In this section, we introduce the three phases of the EliMFS
framework:Initialization, Token Generation, andSearch, with
a search example of the keywords “cloud” and “storage,” as
shown in Fig. 2. Two instances of the framework with different
efficiency privacy trade-offs are proposed in Section IV.

1) Initialization: In this phase, the data owner has two
major tasks: generating the secret key and constructing a
secure index. On one hand, the secret key can be initialized
by the existing cryptographic methods, e.g., DES or AES. On
the other hand, to implement an efficient multi-keyword fuzzy
search, we build a two-stage secure index containing various
file identifiers and keywords. In the first-stage index, each
keyword is transformed into a tag, which points to all the
file identifiers that contain this keyword. The second index is
just the opposite — it is generated by all the file identifiers
with their matched keywords.

In consideration of privacy, each file identifier is encrypted
by the algorithmEnc() when we use this framework. For the
fuzzy search function, a keywordwi is transformed into an
intermediate valueϑi(i ∈ [1, |W|]) by sequentially computing
a 26× 26-length bit array of a 2-gram sequence and an LSH
value (introduced in Section II-D). As illustrated in Fig. 2, in
the first-stage index, thetagi is created byϑi and a pseudo-
random functionF(x). In the second-stage index, each file
identifier maps to a Bloom filter [20] deduced by all the
intermediate values of multiple target keywords. In this two-
stage index structure, the first stage is able to efficiently
execute single keyword searches and shrink the search range in

tagx
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Fig. 2. The framework of EliMFS schemes

multi-keyword searches. The second stage is used to estimate
whether the results of the first stage indeed contain all target
keywords.

2) Token Generation:This phase is also executed on the
data owner. In this phase, a token is generated for keyword
searches. The token consists of two parts: a tag for searching
in the first-stage index and an item for searching in the second-
stage index.

The bottom of Fig. 2 shows an example of token generation
for the keywords “cloud” and “storage.” A token consists of
a tag and a Bloom filter. To calculate these two metadata, the
keywords “cloud” and “storage” should be first transferred
to two intermediate valuesϑx and ϑy; this is similar to
the process in the initialization phase. Then, the data owner
randomly chooses a keyword with a smallD(w) and calculates
the tagx by the intermediate value and a pseudo-random
functionF(). Assume the selected keyword is “cloud” in this
example. Meanwhile, the Bloom filter is generated from both
ϑx andϑy by the hash functionsh1, . . . hk.

3) Search: Unlike the two aforementioned phases, the
Search phase is executed on cloud servers. The keyword
search process is first executed in the first-stage index. Having
obtained a set of file identifiers from the first-stage search,
the cloud servers can now check this relatively small file set
(instead of the whole file set) using the second part of the
token.

As shown in Fig. 2, after receiving thetagx, the cloud
server searches in the first-stage index to find the encrypted file
identifier list (i.e.E(id1),E(id3)) that matches the keyword
“cloud.” Then, the cloud server decrypts each encrypted file
identifier in the list with the secret key received from the data
owner. In the second-stage index, the Bloom filter verifies
whether the file also matches the other keyword “storage.”
As mentioned in Section II-D, the inner productsBf1 · Bft
andBf3 · Bft are calculated as decision fundaments, where
Bfi is the Bloom filter ofidi andBft is the Bloom filter of
the token. If the inner product is approximately equal to2k,
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TABLE II
INITIALIZATION STEPS IN ELI MFS-B

Step 1:

1 K1,K2

$← {0, 1}λ, M1,M2 ∈ R
m×m, S ∈ {0, 1}m

2 SK = {K1, K2,M1,M2, S}
Step 2: For eachw ∈ W

3 ϑw ← F(w), tag ← F(K1, ϑw), Ke ← F(K2, ϑw),
h1(ϑw), . . . , hk(ϑw)

4 For all id ∈ D(w): appende← Enc(Ke, id) to I1[tag]; setI2[id][i] =
1, i ∈ {h1(ϑw), h2(ϑw), . . . , hk(ϑw)}

Step 3: For eachI2[id] = I

5 Initialize I
′

, I
′′

to m-bit length vectors

6 I
′

[j] = I
′′

[j] = I[j] if S[j] = 1; I
′

[j] = 1

2
I[j]+r, I

′′

[j] = 1

2
I[j]−r

if S[j] = 0, j ∈ [1,m], r is a random number

7 I2[id] = {MT
1
· I′

,MT
2
· I′′}

the corresponding file contains both of the keywords and the
identifier of this file will be attached to the search result. At
last, these identifiers are sent to the data owner so that he can
retrieve files from the cloud server.

IV. EFFICIENT LEAKAGE-RESILIENT SCHEMES

To resist leakages in different threat models, we instantiate
two specific schemes for the EliMFS framework.

A. EliMFS-B: Basic Scheme

1) Basic Leakages:Based on the analysis of various pri-
vacy threats in cloud search, we list the basic leakages that
need to be resisted:

• Plaintext Leakage: The content of the outsourced files
and the searched keywords may be obtained by the cloud
server if the schemes are not secure.

• Search Pattern Leakage: The search Pattern indicates
whether two tokens are performing for the same query.
Since most existing schemes use deterministic algorithms,
search pattern leakageis usually not well protected. In
this paper, we have a semi-protection function against
search pattern leakage; the cloud server can only estimate
whether two queries have the same keyword that is used
in the first-stage search. For instance, given the tokens of
queriesQ = (w1, w2, . . . ), Q

′

= (w
′

1, w
′

2, . . . ), the cloud
server is able to judge whetherw1 = w

′

1, but cannot
know whetherQ = Q

′

.
• Subset Leakage: This is a special leakage introduced by

the multi-keyword search since the cloud server may
obtain the intermediate search results of the queried mul-
tiple keywords. For example, if a multi-keyword search is
implemented by searching each keyword in query~w, then
the cloud server can obtain the search result of any subset
of ~w. Given the token of a queryQ = (w1, w2, . . . , wn),
the Subset Leakageis the result of a tampered query
Q

′

= (w1, ~w) in our two-stage index. The notation~w
refers to any nonvoid subset ofw2 . . . wn.

2) Scheme Construction:We then detail our solution to
the basic leakages: EliMFS-B. For simplicity, we usewi to
represent the 2-gram sequence of keywordwi.

The steps of algorithmInitialize(λ,D,W) are shown in
TABLE II. Given a secure parameterλ and a file setD with
a keyword setW , the data owner generates his secret key,

TABLE III
GENTOKEN STEPS INELI MFS-B

Step 1:
1 ϑw1

← F(w1), tag ← F(K1, ϑw1
), Ke ← F(K2, ϑw1

)
Step 2:

2 Initialize Bfq to be am-bit length array of all zeros
3 For all wi ∈ ~w: get ϑwi

← F(wi), h1(ϑwi
), . . . , hk(ϑwi

), and set
Bfq [j] = 1, j ∈ {h1(ϑwi

), . . . , hk(ϑwi
)}

Step 3:

4 Initialize Bf
′

q , Bf
′′

q to m-bit length vectors

5 Bf
′

q [j] = Bf
′′

q [j] = Bfq [j] if S[j] = 0; Bf
′

q [j] = 1

2
Bfq [j] + r

′

,

Bf
′′

q [j] = 1

2
Bfq [j]− r

′

if S[j] = 1, j ∈ [1,m], r
′

is a random number

6 Chosethr 6 k|~w|, Token = {tag,M−1

1
·Bf

′

q ,M
−1

2
·Bf

′′

q ,Ke, thr}

SK, and the secure index,Index = {I1, I2}. Obviously, this
algorithm consists of three steps. In step 1, the data owner
generates his secret key, which contains two random sequences
(K1,K2), two invertible matrices (M1,M2), and a vector (S).
Step 2 builds the index for the file setD. To generate an
inverted indexI1 and a forward indexI2 simultaneously, the
data owner initializesI1 and I2 to empty arrays. Then, for
each keyword inW , the data owner computes the intermediate
value, the entrance inI1, the secret key for encrypting file
identifiers, and thek hash values used in the Bloom filter.
Here,F = {fi | fi : {0, 1}26×26 → n, n ∈ Z, i ∈ [1, l]},
F : {0, 1}λ×{0, 1}λ → {0, 1}λ, andH = {h | h : {0, 1}∗ →
[1,m]}. The data owner encrypts all the file identifiers that
matchw with Ke, attaches them to setI1[tag], and then sets
all the positionsh1(ϑw), h2(ϑw), . . . , hk(ϑw) in I2[id] to 1.
In the last step, the data owner encrypts the Bloom filters in
the second index (I2) using the secure kNN encryption [21]
with (M1,M2, S). The Bloom filterI is split into two vectors
{I

′

, I
′′

} according toS, and thenI2[id] is set to be{MT
1 ·

I
′

,MT
2 · I

′′

}. Finally, the data owner getsIndex = {I1, I2}
and sends the index to the cloud server with the corresponding
encrypted files.

To search with keywords~w = {w1, w2, . . . , wn}, the data
owner needs to generate a token as a certificate by following
the steps in TABLE III. Assumingw1 is the chosen keyword
for the first-stage search, the data owner first computes the
intermediate value, the entrance inI1, and the secret key for
decrypting file identifiers. Note that ifn = 1, the next two
steps cannot be executed andtag can be sent to the cloud
server directly. In step 2, a Bloom filter (Bfq) is built from
all the keywords in~w. Each keyword is processed withF()
and inserted intoBfq with k hash functions. In the third step,
the Bloom filterBfq is encrypted withM1,M2, S in a manner
similar to that inInitialize(). At last, the data owner chooses
a threshold (thr) whose value can be selected arbitrarily based
on the preferred search accuracy.thr is used to compare the
inner products during the second search stage to judge whether
a file ID should be returned.Token = {tag,M−11 ·Bf

′

q,M
−1
2 ·

Bf
′′

q ,Ke, thr} is the final output and is sent to the cloud
server.

Upon receiving the token, the cloud server executes
Search(), as shown in TABLE IV. First, the cloud server
reads all the encrypted identifiers inI1[tag]. If Token =
{tag}, the cloud server returns these identifiers and finishes the
algorithm. IfToken = {tag,M−11 ·Bf

′

q,M
−1
2 ·Bf

′′

q ,Ke, thr},
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TABLE IV
SEARCH STEPS INELI MFS-B

Step 1:
1 RetrieveI1[tag]

Step 2: For eache ∈ I1[tag]
2 id← Dec(Ke, e), and getI2[id] = {MT

1
· I′

,MT
2
· I′′}

3 MT
1
I
′ ·M−1

1
Bf

′

q +MT
2
I
′′ ·M−1

2
Bf

′′

q = I
′T ·Bf

′

q + I
′′T ·Bf

′′

q =

IT · Bfq
4 If IT · Bfq ≥ thr, attachid to ~id

the cloud server checks the Bloom filters ofI1[tag] one by one
in Step 2. The encrypted identifiers are decrypted byKe, and
the corresponding Bloom filtersI2[id] = {MT

1 · I
′

,MT
2 · I

′′

}
are retrieved. Here, the secret keyKe is known by the cloud
server, but it reveals nothing except the search results ofw1.
Since the search results of queried keywords are not included
in the protected data, we consider this leakage to be acceptable.
With I2[id] and{M−11 ·Bf

′

q,M
−1
2 ·Bf

′′

q }, the inner product
IT ·Bfq can be easily obtained as shown in line 3 of TABLE
IV. Then, the server determines the feedback to the data owner
according to the comparison results between the inner products
and thr. If IT · Bfq ≥ thr, the cloud server attachesid to
the result. The results (~id) are returned to the data owner, and
with these identifiers, the data owner can retrieve files from
the cloud server as he wishes.

3) Analysis: From the perspective of practicality, both
efficiencyandsecurityare important considerations.

Regarding efficiency, the search complexity of EliMFS-B
is O(|D(w1)|), the communication cost is constantlyO(1),
and the storage cost on the cloud server isO(|W| + |D|). A
detailed analysis can be found in Section V. All in all, EliMFS-
B performs very efficiently, although it can only protect
basic leakages in the known ciphertext model. It is suitable
for applications that have a high efficiency requirement and
a general privacy requirement, meaning that EliMFS-B can
achieve semantic security withTrace1 as shown below.

For History Hi = (D,W ,Q = {q1, q2, . . . , qn}), Trace1 is

• Size Leakage: The file set size|D| and the keyword set
size |W|.

• Result Leakage: This leakage includes all the search
results(R1 . . . Rn), Ri = {(id, ip), id ∈ D(qi)}, and the
results of the first search stageD(w11) . . .D(wn1), where
id is the identifier that matches queryqi, ip is the inner
productI2[id] ·Bfqi , andwi1 is the selected keyword in
queryqi for the first-stage search.

• Equality Leakage: This leakage indicates whether two
queries have the samewi1. We number the keywords from
1 to |W|, and setEquality Leakageto be a vector (EL)
of length |Q|, whereEL[i] is the sequence number of
wi1 ∈ qi.

Theorem 1. EliMFS-B is semantically secure with Trace1
under the known ciphertext model ifF() is a secure psuedo-
random function and(Enc,Dec) is a secure symmetric
encryption algorithm.

Proof: To prove this theorem, we have to construct a
simulator that is indistinguishable from a real instance of our
scheme. Recall that the security game between an attacker

A and a challengerC under the known ciphertext model is
defined as follows.

1) A chooses aHistory Hi = (D,W ,Q = {q1, . . . , qn})
whoseTrace is Tr. Then,A sendsHi andTr to C.

2) C randomly chooses a bitb
$
← {0, 1}. Then, it

calculatesV ib = (EDb, Indexb,Tokenb1, . . . ,Tokenbn)
to get the View of Hi and invokes a simulator
S with Tr to obtain a View V i1−b =
(ED1−b, Index1−b,Token(1−b)1, . . . ,Token(1−b)n).
Both V ib andV i1−b are sent back toA.

3) A selectsb
′

∈ {0, 1} as the output of the game.
As described in Definition 1, if there exists a simulator that

makesPr[b
′

= b] =
1

2
+ε whereε is negligible, we can prove

that Theorem 1 stands.
The simulator is designed as follows. First,S randomly

selectsf
′

i
$
← {0, 1}|fi|, i ∈ [1, |D|] and setsED

′

= {f
′

i , i ∈
[1, |D|]}. Since the file set is encrypted by a secure symmetric
encryption algorithm,EDb andED

′

are indistinguishable.
After simulating the encrypted file set, the simulator gen-

erates the index and the tokens. Since the Bloom filter is
encrypted by the kNN encryption, which has been proven to
be secure under the known ciphertext model [21],I2 andI

′

2

are indistinguishable. We then describe howS simulatesI
′

1:
1) Initialize I

′

1 to an empty array.

2) For eachwi ∈ W , selecttag
′

i,K
′

i
$
← {0, 1}λ, and i ∈

[1, |W|] and initializeI
′

1[tag
′

i] to be an empty array.
3) For eachidj ∈ D(wi1), i ∈ [1, n], j ∈ [1, |D|], generate

e
′

ij ← Enc(K
′

EL[i], idj) and appende
′

ij to I
′

1[tag
′

EL[i]].

4) PadI
′

1 to the required size with random data.
The tokens are constructed as follows. For eachqi ∈
Q, i ∈ [1, n], get tag

′

EL[i] and set Token
′

i =

(tag
′

EL[i], Enc(Bf
′

i ),K
′

EL[i], thr
′

i). Here,Enc(Bf
′

i ) is gen-

erated by the secure kNN encryptionthr
′

i = Min(ip)i, ip ∈
Ri.

Since the keywords are encrypted by a secure pseudo-
random functionF(·), file identifiers are encrypted by a secure
symmetric encryption algorithm(Enc,Dec), the Bloom filter
is encrypted by the kNN encryption (proven to be secure under
the known ciphertext model), and the index and tokens ofV ib
andV i1−b are indistinguishable.

This is done so that thePlaintext Leakageis preserved. Due
to the random numberr

′

, different tokens will be generated
from the same query. The cloud server can only know whether
two tokens have the same first-stage searched keyword, not
whether they are generated from the same query, so theSearch
Pattern Leakageis semi-protected. Further, all the queried
keywords are searched together in the second search stage
using anm-length array. As a result, it is impossible for the
cloud server to know the search result of any subset of~w
exceptw1, andSubset Leakageis prevented.

B. EliMFS-E: Extended Scheme

1) Advanced threats:Aside from basic leakages, the two-
stage structure incurs an additional threat:Cross Leakage.

Given two tokens of different queriesQ1 =
(w1, w2, . . . , wn) and Q2 = (w

′

1, w
′

2, . . . , w
′

n), where
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w1 and w
′

1 are different, the server is able to search the
queriesQ3 = (w1, w

′

2, . . . , w
′

n), andQ4 = (w
′

1, w2, . . . , wn).
The following example illustrates how cross leakage oc-

curs. Suppose the server receives two tokens,Token1 =
(tag1, Bf1,Ke1, thr1) for query ~w1 = (w1, w2) and
Token2 = (tag2, Bf2,Ke2, thr2) for query ~w2 = (w3, w4).
To get the search result of~w3 = (w3, w2), we focus on the
files inD(w3), namelyI1[tag2]. We divide the files that match
w3 into four categories: a) files that matchw3, w1, andw2; b)
files that matchw3 andw1 but notw2; c) files that matchw3

andw2 but notw1; d) files that matchw3 only. The judgement
conditions are as follows:

f ∈ D(w3)















f ∈ I1[tag1]

{

I2[idf ] ·Bf1 ≈ k|~w1| a
I2[idf ] ·Bf1 6= k|~w1| b

f 6∈ I1[tag1]

{

I2[idf ] ·Bf1 ≈ k(|~w1| − 1) c
I2[idf ] ·Bf1 6= k(|~w1| − 1) d

The search result of query(w3, w2) consists of all theids in
categories a) and c). The result of query~w4 = (w1, w4) can
be obtained similarly.

Although the cloud server is only given a thresholdthr1
instead of|~w1|, it can still obtain the approximate values of
|~w1| according to the maximum value of inner products when
searching in the second-stage index. Therefore, an extended
scheme that can preventCross Leakageis necessary.

In the known background model, the kNN encryption may
no longer be secure, since the cloud server can obtain more
historical information. For instance, if the cloud server collects
a large number of keywords and their corresponding tokens, it
may utilize linear analyses to break the kNN encryption and
link plaintext Bloom filters to encrypted ones [22]. Table IV
shows the linear equation:IT · Bfq = MT

1 I
′

·M−11 Bf
′

q +

MT
2 I

′′

·M−12 Bf
′′

q , in which only I, an m-bit length vector,
is unknown to the cloud server under the known background
model. With enough query-token pairs, the cloud server can
constructm similar linear equations to derive the coordinates
of I.

2) Scheme Construction:The main reason forCross Leak-
age is that the encrypted Bloom filter of a file is revealed
as soon as any of its keywords are searched in the first-
stage index. Therefore, we propose EliMFS-E, which solves
the problem by binding the Bloom filters inI2 to both files
and keywords. The main process of EliMFS-E is similar to
EliMFS-B with several differences.

To prevent linear analyses of the cloud server under the
known background model, we replace the hash functions
h1 . . . hk with keyed hash functions when generating Bloom
filters. When generating his secret keySK, the data owner
choosesk hash keys (keyi, . . . keyk) and embeds them into
SK. To calculate the locations of thek hash values for
a keyword w in the Bloom filter, functionshi(ϑw, keyi),
i ∈ [1, k] are invoked. The detailedInitialize() algorithm is
similar to that of EliMFS-B and is shown in TABLE V.

First, the data owner picks his secret key, which in-
cludes k additional keys (key1, key2, . . . , keyk). In Step
2, the Bloom filters of all the files are built and stored
in a temporary set (Itemp). Each keyword is transformed
into an intermediate value and is inserted intoItemp by

TABLE V
INITIALIZATION STEPS IN ELI MFS-E

Step 1:

1 K1,K2, key1, . . . , keyk
$← {0, 1}λ, M1,M2 ∈ R

m×m, S ∈ {0, 1}m
2 SK = {K1,K2, key1, . . . , keyk,M1,M2, S}

Step 2: Initialize Itemp and for each w ∈ W :
3 ϑw ← F(w), h1(ϑw, key1), h2(ϑw, key2), . . . , hk(ϑw , keyk)
4 For all id ∈ D(w), set Itemp[id][i] = 1, i ∈
{h1(ϑw, key1), h2(ϑw, key2), . . . , hk(ϑw , keyk)}

Step 3: For eachw ∈ W
5 tag ← F(K1, ϑw), Ke ← F(K2, ϑw), Sw = S, and set

Sw[hi(ϑw , keyi)] = 1 − S[hi(ϑw , keyi)], i ∈ [1, k]
6 For eachid ∈ D(w):

• Appende← Enc(Ke, id) to I1[tag]
• Get I = Itemp[id] and initializeI

′

, I
′′

to m-bit length vectors
• I

′

[j] = I
′′

[j] = I[j], if Sw[j] = 1; I
′

[j] = 1

2
I[j] + r, I

′′

[j] =
1

2
I[j] − r, if Sw[j] = 0, j ∈ [1,m], r is a random number

• I2[e] = {MT
1 · I

′

,MT
2 · I

′′}

TABLE VI
GENTOKEN STEPS INELI MFS-E

Step 1:
1 ϑw1

← F(w1), tag ← F(K1, ϑw1
), Ke ← F(K2, ϑw1

), Sw1
= S,

and setSw1
[hi(ϑw1

, keyi)] = 1− Sw1
[hi(ϑw1

, keyi)], i ∈ [1, k]
Step 2:

2 Initialize Bfq to be am-bit length array of all zeros
3 For all wi ∈ ~w: get ϑwi

← F(wi),
h1(ϑwi

, key1), . . . , hk(ϑwi
, keyk), and set Bfq [j] = 1,

j ∈ {h1(ϑwi
, key1), . . . , hk(ϑwi

, keyk)}
Step 3:

4 Initialize Bf
′

q , Bf
′′

q to m-bit length vectors

5 Bf
′

q [j] = Bf
′′

q [j] = Bfq [j] if S[j] = 0; Bf
′

q [j] = 1

2
Bfq [j] + r

′

,

Bf
′′

q [j] = 1

2
Bfq [j]− r

′

if S[j] = 1, j ∈ [1,m], r
′

is a random number

6 Chosethr 6 k|~w|, Token = {tag,M−1

1
· Bf

′

q,M
−1

2
· Bf

′′

q , thr}

TABLE VII
SEARCH STEPS INELI MFS-E

Step 1:
1 RetrieveI1[tag]

Step 2: For eache ∈ I1[tag]
2 GetI2[e] = {MT

1
· I′

,MT
2
· I′′}

3 MT
1
I
′ ·M−1

1
Bf

′

q +MT
2
I
′′ ·M−1

2
Bf

′′

q = I
′T ·Bf

′

q + I
′′T ·Bf

′′

q =

IT · Bfq
4 If IT ·Bfq ≥ thr, attachid to ~id

h1(ϑw, key1), h2(ϑw, key2), . . . , hk(ϑw, keyk), where func-
tions h1 to hk are chosen from a hash familyH = {h |
h : {0, 1}∗ × {0, 1}λ → [1,m]}. The indexesI1, I2 are
constructed in Step 3. In line 5, the entrance inI1, the
secret key for encrypting file identifiers, and a specific vector
(Sw) of each keyword are calculated. Then, for each file that
matchesw, the data owner inserts the encrypted identifier
e into I1 and setsI2[e] as the Bloom filter encrypted by
{M1,M2, Sw}. Thus, the data owner can get the whole secret
index,Index = {I1, I2}, and sends it to the cloud server with
the corresponding encrypted files.

The improvement of theGenToken() algorithm is sim-
ilar, as shown in TABLE VI. The hash functionshi(ϑw)
are replaced with keyed hash functionshi(ϑw, keyi) and
the Bloom filter of the query(w1, w2, . . . ) is encrypted by
(M1,M2, Sw1

), whereSw1
is calculated from the intermediate

value ofw1 (namely,ϑw1
). Because the secret keyKe would

no longer be sent to the cloud server, the decryption operation
in theSearch() algorithm is removed (TABLE VII).
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3) Analysis: Regardingefficiency, EliMFS-E has a higher
storage cost (O(Σw∈W |D(w)|)) than EliMFS-B. The search
complexity and communication cost are the same in EliMFS-
E as in EliMFS-B:O(|w1|) andO(1), respectively. EliMFS-E
also provides a stronger leakage-resilient ability, which means
a higher semantic security guarantee withTrace2.

For History Hi = (D,W ,Q = {q1, q2, . . . , qn}), Trace2 is

• Size Leakage: The file set size|D|, the keyword set size
|W|, the quantity of file-keyword pairsΣw∈W |D(w)|, and
the result size of the first-search stage|D(wi1)|, where
wi1 is the selected keyword in queryqi for the first stage
search.

• Result Leakage: (R1 . . . Rn), Ri = {(id, ip), e ∈ D(qi)},
whereid is the identifier that matches queryqi andip is
the inner productI2[id] ·Bfqi .

• Equality Leakage: The sequence number of the selected
keyword of each query is(EL[1], . . . , EL[n]).

Theorem 2. EliMFS-E is semantically secure with Trace2
under the known background model ifF() is a secure pseudo-
random function and(Enc,Dec) is a secure symmetric
encryption algorithm.

Proof: As shown in the proof of Theorem 1, we have to
construct a simulator that produces indistinguishable traces.
The difference between the two theorems is that EliMFS-E
is designed for the known background model. In the known
background model, we allow the cloud server to collect a
certain number of keyword-token pairs that are different from
the queries used in the game. With these pairs and twoViews
following the sameTrace, the cloud server should not be
able to distinguish which one is generated by the simulator.
Formally, the security game between an attackerA and a
challengerC under the known background model is defined
as follows.

1) A choosesq and sends it toC. Then,C responds with
the corresponding tokens. This step can be carried out
by A adaptively for polynomial times, and the set of all
queries is denoted byQ′.

2) A chooses aHistory, Hi = (D,W ,Q = {q1, . . . , qn})
whoseTrace is Tr, andqj 6∈ Q′ for 1 ≤ j ≤ n. Then
A sendsHi andTr to C.

3) C randomly chooses a bitb
$
← {0, 1}. Then, it

calculatesV ib = (EDb, Indexb,Tokenb1, . . . ,Tokenbn)
to get the View of Hi and invokes a simulator
S with Tr to obtain a View V i1−b =
(ED1−b, Index1−b,Token(1−b)1, . . . ,Token(1−b)n).
Both V ib andV i1−b are sent back toA.

4) A selectsb
′

∈ {0, 1} as the output of the game.

S simulatesED
′

in the same way here as in the proof of
Theorem 1. To simulate the index and tokens,S first randomly
picksM

′

1,M
′

2 ∈ R
m×m, S

′

∈ {0, 1}m. The index is generated
as follows.

1) Initializes I
′

1, I
′

2, and I
′

temp to empty arrays, and ini-
tializes each item ofI

′

temp to be anm bit length array
of all zeros.

2) For eachqi ∈ Q and i ∈ [1, n],

a) Generate a Bloom filter (Bf
′

i ) in which the number
of bit 1 equalsMax(ip), ip ∈ Ri.

b) For each(idj , ipj) ∈ Ri andj ∈ [1, |D|], randomly
chooseipj 1s fromBf

′

i , construct a bit arrayBf
′

ij ,
and setI

′

temp[j] asI
′

temp[j] +Bf
′

ij .
c) For the elements ofI

′

temp that are bigger than 1,
replace them with 1.

3) For eachqi ∈ Q, if there does not existEL[j] =

EL[i](j < i), select tag
′

EL[i], e
′

1, . . . , e
′

|D(wi1)|
$
←

{0, 1}λ and setI
′

1[tag
′

EL[i]] = (e
′

1, . . . , e
′

|D(wi1)|).

4) Choose a freee
′

for each idx ∈ Ri, set I
′

2[e
′

] to be
encryptedI

′

temp[x], and marke
′

as used.
5) For the other freee

′

, generate elements inI
′

2 for them
randomly.

6) PadI
′

1 andI
′

2 to the required size with random data.
With all this be done,I

′

1 andI
′

2 are built.
Then, S constructs the tokens. For eachqi ∈ Q and

i ∈ [1, n], S gets tag
′

EL[i] and encryptsBf
′

i with EL[i]

and SK
′

. S sets Token
′

i = (tagEL[i]′ , Enc(Bf
′

i ), thr
′

i),

thr
′

i = Min(ip)i, ip ∈ Ri.
Basic leakages are not incurred since the files are encrypted

by semantically secure symmetric encryption, keywords are
encrypted by a secure pseudo-random functionF(), and file
identifiers are encrypted by a secure symmetric encryption
algorithm (Enc,Dec). Due to the the indistinguishability of
keyed hash functions, no PPT adversary is able to carry out
linear analysis on kNN encryption, so EliMFS-E is secure
under the known background model.

Given two tokens of queries~w1 = (w1, w2) and
~w2 = (w3, w4), Token1 = (tag1, Bf1, thr1),Token2 =
(tag2, Bf2, thr2), and the server cannot get the correct inner
product of the Bloom filters encrypted byw

′

3, or ofBf1, which
is encrypted byw

′

1. Therefore, the approach for obtaining the
search result of(w3, w1) mentioned above no longer works,
andCross Leakageis prevented. Note that the search result of
the first-stage search can be easily covered up by obfuscating
operations like padding each item inI1 to a fixed size with
random encrypted file identifiers.

V. THEORETICAL ANALYSIS

Before dealing with experiments, we first analyze the perfor-
mance of our schemes theoretically. As shown in TABLE VIII,
we compare the asymptotic performance of our schemes with
the schemes of [5], [11] and [23].

[23] provided a fuzzy keyword searchable encryption
scheme with an inverted index of sizeO(W). In this scheme,
the entire index must be scanned to find the fuzzy result of a
keyword. Thus, its search time complexity isO(|W|). Wang
et al. [5] proposed a method of searching multiple keywords
over an inverted index. To get the result, the cloud server has
to compute the product of the token, whose length is|W|,
with the entire inverted index, which includes a|W| × |W|
matrix. As a result, the efficiency of this scheme is not quite
satisfactory, and it does not support a fuzzy keyword search.
The scheme of [11] provided the functions of both multi-
keyword and fuzzy keyword searches. However, its search time
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TABLE VIII
COMPARISON OFASYMPTOTICPERFORMANCE

Multi-keyword Search Fuzzy Search Search Time Communication Cost Storage Cost

paper [23] × √
O(|W|) O(1) O(|W |)

paper [5]
√ × O(|W|) O(|W|) O(|W|2)

paper [11]
√ √

O(|D|) O(1) O(|D|)
EliMFS-B

√ √
O(|D(w1)|) O(1) O(|W|+ |D|)

EliMFS-E
√ √

O(|D(w1)|) O(1) O(Σw∈W |D(w)|)

is linear with the size of the file set because it utilizes a forward
index.

The search complexity of EliMFS-B isO(|D(w1)|) since
the search time of the first-stage index isO(1) and the second
search stage only takes place in the results of the first search
stage. This scheme needs only one round of communication,
and its token size is constant. Therefore, its communication
cost is constantlyO(1), no matter how many keywords are
searched at one time. The storage cost of the cloud server is
the space forI1 andI2; that is,O(|W|+ |D|). In conclusion,
EliMFS-B has the best performance in all efficiency aspects
with a basic semantic security guarantee.

EliMFS-E has a performance similar to EliMFS-B. It has
a larger storage cost, but its leakage-resilient ability has
improved. SinceI1 is an inverted index and each file-keyword
pair corresponds to an item inI2, the storage space for the
index is O(W + Σw∈W |D(w)|), which is approximate to
O(Σw∈W |D(w)|). Suppose the client has a file set of 10000
files and each file contains 150 keywords; the size of the index
of EliMFS-E is about 30GB whenm = 5000. For the same file
set, the size of the index of scheme EliMFS-B is only about
200MB. The querying and searching processes of EliMFS-E
are similar to those of EliMFS-B. Thus, the communication
cost and the search complexity remain the same. But the search
time of EliMFS-E may be even shorter than that of EliMFS-B
because all the Bloom filters that match the same keyword
can be stored in consecutive positions. This means that only
one disk read operation is needed. The decryption operation
id← Dec(Ke, e) is also omitted in EliMFS-E. The trade-off
is worthwhile because the storage space of the cloud server is
enormous. In our future works, we will improve this scheme
by optimizing the storage cost with some strategies.

VI. EXPERIMENTAL ANALYSIS

To present practical utility, we tested our schemes on a real-
world dataset: 10000 files with 16027 keywords selected from
the Enron Email Dataset [24]. We implemented prototypes of
EliMFS-B, EliMFS-E, and the basic scheme of [11], which is
represented as MFS.

The programs were written in Java and were executed
on a desktop equipped with an Intel Core i5-4200H CPU
at 2.8 GHz, 8 GB RAM, and a 64-bit Windows 10. For
simplicity, the AES algorithm was used as the psuedo-random
functionF() and the CPA secure symmetric encryption algo-
rithm (Enc,Dec). SHA-256 and HmacSHA1 were utilized
in hi(ϑw) andhi(ϑw, keyi), respectively.
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A. Search Accuracy

To achieve the best accuracy for the keyword search, the
parameters in LSH and the Bloom filter need to be selected
prudently. The fuzzy search is realized with Locality-Sensitive
Hashing, as described. We employ a 2-stable distribution LSH
family (F ) which containsl hash functions, and each hash
function has the expression

h(~a,b)(~v) = ⌊
~a · ~v + b

c
⌋

Here,~a is a26×26 = 676 dimensional vector, and each of its
dimensions are randomly chosen from the distribution defined
by f(x) = 1√

2π
e−x

2/2. b ∈ [0, c] is a random real number.
While c is a fixed real number for one hash family, different
choices of~a andb result in different hash functions.

To achieve the optimal performance of the fuzzy search, a
large number of keywords are involved in our experiment. The
intermediate values of these keywords and the keywords that
are similar to them are calculated to evaluate the fuzzy level.
In our experiment, we use two probabilities to evaluate the
accuracy of the fuzzy keyword search:

• True positive:pr1 = {F(w1) = F(w2)|w1 andw2 only
one character distinction exists.}

• True negative:pr2 = {F(w1) 6= F(w2)|w1 and w2

multiple character distinctions exist.}

These probabilities should be as high as possible.
Fig. 3 shows thatpr1 decreases when the quantity of

the hash functions inF gets larger, while increases whenc
becomes bigger. However,pr2 acts the opposite way. That
is, pr2 increases as the number of the hash functions inF
increases, and decreases with the increment ofc. Therefore, it
is important to make a trade-off betweenpr1 andpr2. In the
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following experiments, we setl = 7 and c = 0.3 so thatpr1
andpr2 are both larger than 0.8.

Bloom filter has a distinct advantage on spacial and tem-
poral cost on searching compared with other data structures.
However, it also has some shortcomings. There exist false
positives when searching with Bloom filter, and the false
positive isPfp = (1− e−kn/m)k [15], wheren is the number
of the elements in the set,m is the length of the bit array, and
k is the number of hash functions. In our experiments, 100
to 182 keywords are extracted from one file, so we setn to
be 180. As shown in Fig 4, the false positive rates are tested
under differentms andks. The result indicates that,fp grows
with k whenm is small, andfp declines with the increase ofk
whenm is large. Andfp is always smaller than 0.0004 when
m is larger than 3000. Therefore in the following experiments,
we setm to 5000 andk to 20 for the best search accuracy.

Due to the existence of false positives and false negatives,
some matched files may have a lower inner product than other
files. A trade-off between false positives and false negatives
can be made by choosing a proper threshold (thr).

B. Efficiency

In this subsection, we mainly analyze the time consumption
of our schemes from different aspects.

1) Index building time:In Fig. 5, the columns with stripes
show the index generation time of our EliMFS-B and MFS.
We can see that the generation time increases linearly with
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|D|. EliMFS-B takes a little more time than MFS because
it needs to build two indexes,I1 and I2, while MFS only
needs to build one. However, the difference is quite small
since the most time-consuming operation is the encryption
of the Bloom filter, shown as the purple columns. Thus,
faster matrix calculation can shorten the initialization time
effectively. Index generation is executed only once when the
system starts up, which has little influence on the efficiency
of the whole system. Therefore, the extra time consumption
of EliMFS-B is acceptable.

2) Token generation time:Fig. 6 shows the token gen-
eration time with different keyword numbers for querying.
When only one keyword is searched, our schemes show a huge
advantage. The token generation time is quite small because
only a tag is computed. When multiple keywords are searched,
the lines jump up to more than 60ms because the most time-
intensive step in this phase is the encryption of the Bloom
filter, which costs nearly 60ms. It is obvious that the token
generation time rises linearly when the number of keywords
grows. In addition, the growth rate of EliMFS-E is larger than
that of both EliMFS-B and MFS. This is because|~w| times of
operations are needed to insert all the queried keywords into
the Bloom filter, and the keyed hash functionhi(ϑw, keyi)
takes more time thanhi(ϑw). Even though EliMFS-B and
EliMFS-E take a little more time to generate tokens, they can
obtain more benefits from the search time, as shown below.

3) Search time:As the most important performance metric,
search times with various impact factors are presented in
Fig. 7. Fig. 7a reflects the relationship between the search time
and the file set size. With the growth of the file set size, the
curve of MFS ascends linearly, while the curves of EliMFS-B
and EliMFS-E grow slowly at a low level. This is because in
MFS, the search process always has to go through the entire
file set. The search times of our schemes, on the other hand,
only rely on the results of the first search stage. When the file
set gets larger, the size of the search result in the first stage
grows, which leads the second search stage to expend more
time. EliMFS-B is a little slower than EliMFS-E because it
executes one more operation:id← Dec(Ke, e).

The relationship between the search time and three other
parameters are displayed in Figs. 7b, 7c, and 7d, when the
file set size is fixed at 10000. The search time of MFS
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remains unchanged in these three images since the file set
size is constant. In Fig. 7b, different quantities of keywords
are extracted from these files so that various sizes ofW are
made up. We can see that the line trends of our schemes are
similar to those in Fig. 7a: the search times of our schemes
are much shorter than that of MFS, and they grow slowly with
|W|. The more keywords extracted from a file, the more likely
a file will match. Therefore, more results can be obtained in
the first search stage. This is why the search times of our
schemes increase with the growth of the keyword set size.

Fig. 7c demonstrates the relationship between the search
time and |D(w1)| when searching in 10000 files, wherew1

is the selected keyword in a query for the first stage search.
The search time of MFS stays constant as mentioned above,
and in EliMFS-B and EliMFS-E, the search time linearly
increases with|D(w1)| because the server needs to search over
all the files that matchw1 to get an accurate result for the
queried keyword set. Sincew1 is the keyword that matches
the fewest files, the size ofD(w1) would not be very large.
Thus, EliMFS-B and EliMFS-E search much faster than MFS,
except in the extreme case wherew1 matches almost all the
files in D.

In Fig. 7d, when the file set size is fixed (10000 files and
16027 keywords), the search time is almost independent of the
query size in all three schemes; in such a scenario, our schemes
spend far less time than MFS. When only one keyword is
queried, the second search stage will be omitted, and as a
result, the search time is extremely short. When|~w| > 1, the
search time remains stable no matter how many keywords are
searched.

In conclusion, our EliMFS schemes based on LSH, the
Bloom filter, and a two-stage index, have a similar token gen-
eration time as MFS, but reduce the search time remarkably.

VII. R ELATED WORK

Searchable Encryption(SE) enables data owners to out-
source their private files to a semi-trusted server without re-
vealing the plaintexts while simultaneously guaranteeing key-
word search functions. Currently, researchers propose many
state-of-the-art SSE schemes: [2] proposed the first Searchable
Symmetric Encryption (SSE) scheme, and full-domain search
scheme rather than an index-based scheme; [25] and [26] pre-
sented SE schemes based on asymmetric encryption; [27] and
[28] dealt with a malicious cloud server and proposed schemes
to support verifiable and searchable symmetric encryption;
[29] redefined the security of SE schemes based on the adver-
sarial server’s prior knowledge; [6] and [8] proposed schemes
that support dynamic updating; [30] improved SE schemes
in terms of the index I/O efficiency; [31] utilized attribute-
based encryption to achieve verifiable multi-user SSE; [32]
proposed a new verifiable database (VDB) framework so that
clients cannot only retrieve database records, but also detect
any attempt by the server to tamper with the data; [33] first
applied encrypted keyword searching on de-duplicated data;
and [34] and [35] applied searchable encryptions to specific
applications, such as public key encryption and E-Health
Clouds. However, none of these works support multi-keyword
or fuzzy keyword searches.
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A. Multi-keyword Search

The multi-keyword searchschemes can search multiple
keywords simultaneously over encrypted data. [3] constructed
a binary data vector for each file where each bit in the vector
represents a keyword of the file. This structure is similar to
schemes based on the Bloom filter whenk = 1, wherek is the
number of hash functions. In [36], a tree structure index based
on term frequency was used to support ranked searches, and
the cosine similarity measure was exploited to check whether
the file index contained indicated keywords. [4] utilized an
inverted index and a hash table to improve efficiency, but
increased communication costs. Furthermore, [9] expanded
[4] to a multi-user scenario. [37] supported a pattern-matching
string search, a more flexible method than a general boolean
search SSE. [5] achieved a multi-keyword search with an
inverted index for the first time, but its efficiency was not quite
satisfactory. [38] dealt with ranked multi-keyword searches
in a multi-owner mode based on a bilinear map and the
Decisional Bilinear Diffie-Hellman (DBDH) assumption, but
an administration server was needed. All of, these schemes
only considerexact keyword searches.

B. Fuzzy Keyword Search

To deal with spelling mistakes and searches for similar
keywords, multiplefuzzy keyword searchschemes were pro-
posed [39], [40]. [7] proposed a wildcard-based fuzzy keyword
search over encrypted data. [41] improved it with a smaller
index. The work of [42], which proposed a higher security
guarantee but with a larger space requirement, was also
based on [7]. Finger-prints were extracted from keywords and
encrypted with a secure kNN encryption to achieve a top-k
fuzzy search in [23]. Xu et al. [43] exploited edit distances
to quantify keyword similarities in their work, and they also
employed a TF-IDF (Term Frequency and Inverse Document
Frequency) rule to rank the results. However, most existing
works (except [10] and [11]) do not support multi-keyword
and fuzzy searches simultaneously.

C. Multi-keyword Fuzzy Search

To implement a fuzzy search, [10] exploited a Bedtree
inverted index and realized multi-keyword search functions
through pre-defined phrases, e.g. “Cloud Storage” as a single
keyword. However, in this scheme, one Bloom filter must be
built for each edit distance value of each keyword, which
leads to a tremendous index size. In [11], Wang et al. used
the forward index, the Bloom filter, and Locality-Sensitive
Hashing techniques to implement multi-keyword fuzzy search.
However, its search time is linear with the file set size in the
cloud. Therefore, its performance may be severely influenced
when there are huge file sets to search. In [44], Wang et al.
proposed a ranked multi-keyword fuzzy search on encrypted
data based on a two-layered index structure. Unfortunately,
both of the two layers use forward index, which is still linear
with the file set size in the cloud. Fu et al. [16] improved
search accuracy via a uni-gram based keyword transformation
method while remaining the search time linearly with the file

set size. Our paper focuses on further improving the search
performance without hurting the system’s privacy in terms of
leakages.

VIII. C ONCLUSION

In this paper, we focus on a multi-keyword fuzzy search
over a large encrypted file set in cloud storage. An Effi-
cient Leakage-resilient Multi-keyword Fuzzy Search (EliMFS)
framework is proposed for the encrypted cloud data; it con-
sists of a novel two-stage index structure, Locality-Sensitive
Hashing, and a Bloom filter. The two-stage index structure
ensures that the search time is linearly independent of the file
set size. Meanwhile, the multi-keyword fuzzy search function
is implemented based on the Gram Counting Order, the Bloom
filter, and Locality-Sensitive Hashing. Regarding the leakages
caused by the two-stage index, we present two schemes to
handle threats in different threat models. Theoretical analysis
and experimental evaluations demonstrate our design’s practi-
cality.
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