
Correlated Friends’ Impacts in Social-crowdsensing

Wei Chang
Department of Computer Science

Saint Joseph’s University, USA

wchang@sju.edu

Wei-Shih Yang
Department of Mathematics

Temple University, USA

ws.yang@temple.edu

Jie Wu
Department of Computer and

Information Sciences

Temple University, USA

jiewu@temple.edu

ABSTRACT

Social sensing is a typical application of the crowdsourcing
system. With the consideration of system timeliness, flexi-
bility, and stability, it could not be more natural to build
a self-organized, distributed, and cross-platform crowdsourc-
ing system. Social-crowdsensing (SC) is the first attempt.
In SC, a huge sensing task is gradually partitioned into s-
maller pieces, and the pieces are propagated to potential
workers via stochastic social contacts. During these contact-
s, allocating the workload is a critical problem, which affects
the work’s completion time and system resource utilization.
By analyzing real data, we notice that the times of social
contact occurrences are partially correlated. Whether it is
necessary to purposely incorporate workers’ correlation into
the decision-making phase of workload allocation becomes
an open question. In this paper, we systematically study
the impacts of users’ correlated behaviors.

CCS CONCEPTS

•Networks→Mobile networks; •Mathematics of com-
puting→ Stochastic processes; •Theory of computation
→ Probabilistic computation;

KEYWORDS

Correlation, potential resources, social-crowdsourcing, uti-
lization, workload allocation.

ACM Reference format:

Wei Chang, Wei-Shih Yang, and Jie Wu. 2017. Correlated Friend-
s’ Impacts in Social-crowdsensing. In Proceedings of The 2nd In-
ternational Workshop on Social Sensing, Pittsburgh, PA USA,
April 21 2017 (SocialSens’17), 6 pages.
DOI: http://dx.doi.org/10.1145/3055601.3055605

1 INTRODUCTION

Social sensing is an emerging technique that collects partici-
pants’ surrounding information, such as sensory readings or

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SocialSens’17, Pittsburgh, PA USA

© 2017 ACM. 978-1-4503-4977-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3055601.3055605

WiFi AP

3G/4G

Wired

Online contacts

Physical contacts

Bucket

Leaking speed

Pipe

Figure 1: Workload allocation problem.

photos, via a crowdsourcing paradigm, where a task own-
er uploads a time-consuming sensing task onto a server [5]
and volunteers to undertake a part of the task. However,
there are three defects with these systems. First, they lack a
timely advertising mechanism to recruit workers. Unless the
owner provides a tempting payment, it is hard for a newly
created task to attract enough workers in a short time; many
off-line workers, who are eager to do certain types of tasks,
are not aware of the existence of the new tasks. Second, the
current systems are centralized and platform-specified: mal-
functions or the unavailability of a platform will make all of
its tasks fail. Finally, someone has to pay a fee for using
them. For instance, Mturk collects a 10% commission on
top of a task’s total payment [1].

This paper first proposes a new self-organized distributed
system, Social-Crowdsensing (SC). The main idea of SC is to
create a multilayered outsourcing structure via any stochas-
tic contacts, including physical encounters between friends
and virtual contacts via any online-chatting system, such as
Tencent QQ or WhatsApp. The general procedure for SC
is as follows. A job owner first creates an SC task. Once it
is done, the owner becomes the first worker and begins to
locally conduct the task. Here, the job owner could be the o-
riginal owner of the sensing task or a worker who undertakes
a subtask from a conventional crowdsourcing platform, such
as MTurk [2]. In SC, any worker can further recruit new
workers via social contacts. For example, when a worker no-
tices one of his friends coming online or when he physically
encounters a friend, he will send a message to the friend and
ask his willingness to join the task. If the answer is yes, a
portion of the workload will be transferred from the worker
to his friend, and then, both of them work in parallel. Since
workers may not immediately check messages, always access
the Internet, or stay together, their contact frequencies may
be different. Essentially, subtasks are assigned to workers via
multi-hop relays. Whenever a worker completes the assigned

SocialSens’17, April 21 2017, Pittsburgh, PA USA Wei Chang, Wei-Shih Yang, and Jie Wu

workload, he returns the sensing data to the job owner via
the Internet or physical counters-based multihop relays.

Typical SC applicable scenarios involve the demand of
timely collecting a set of reliable sensing data. For example,
taking pictures is a special type of sensing task; after Presi-
dent Donald Trump signed the immigration executive order
to restrict people from seven countries from entering the U-
nited States, journalists or body language experts may want
to capture 1, 000 pictures of the immediate facial reactions
of Muslim-Americans living in Hamtramck, Michigan when
heard the news for the first time. Since news is propagated
quickly and the task is about the first reactions of people in
a certain area, the conventional crowdsourcing platform is
not suitable for this type of task.

Since work segments are disseminated via multi-hop re-
lays to participants, the estimation of workers’ workloads
becomes a critical problem, which not only affects a task’s
completion time, but also the system resource utilization (i.e.
the amount of wasted human/sensing resources). An imme-
diate question in SC is as follows: given that SC tasks initiate
at random nodes, by what workload allocation strategy can
the system utilization be maximized? Unlike any model used
in crowdsourcing, workers in SC are correlated. For example,
colleagues have similar working hours, and therefore, their
times of unavailability for participating in the sensing tasks
are not independent. Experimental results (Fig. 2) also indi-
cate the existence of correlativeness. Whether it is necessary
to incorporate workers’ correlations into the decision-making
phase of workload allocation becomes an open question.

In this paper, we first propose a general model for the
workload allocation problem in SC, and then, to investigate
the impacts of the correlations, we provide an abstract mod-
el to describe the phenomena about workers’ correlativeness.
Two lightweight workload allocation algorithms are designed,
with and without considering the correlations, respectively.
By extensive simulations, we found a counterintuitive result
showing that the awareness of users’ correlation has a mar-
ginal contribution to the workload allocation problem in SC.

2 MODEL AND FORMULATION

2.1 System Model

We consider any type of social contact based on online-chatting
systems or users’ face-to-face contacts. Assume that an SC
system consists of m users (workers), and some of them are
friends, who may stochastically contact each other. Let vi
represent a user, and each user is associated with a constant
working speed, si. For the ease of analysis, we assume that
once a user participates in a task, he will not stop until the
task has been finished. Note that, in reality, a user can quit
at any time; before leaving, he should give the uncompleted
works to the remaining workers.

SC involves multiple rounds of recruiting via social con-
tacts: a user’s workload will be outsourced to his friend-
s, friends’ friends, and so on. In SC, essentially, a time-
consuming task is gradually partitioned into smaller pieces,
and these pieces are propagated from friends to friends via

0 20 40 60 80 100

0
20
40
60
80

100
120
140
160

 user id: 4

n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

0 20 40 60 80 100

0

20

40

60

80 user id: 7135

0 20 40 60 80 100

0

20

40

60

80

100
 user id: 11328

observation bins (1bin=15mins)

0 20 40 60 80 100

0

10

20

30

40

50

60 user id: 23088

(a) user daily activity pattern

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
e
rc

e
n
ta

g
e

correlation coefficient

(b) distribution of correlation

Figure 2: The correlation between social contacts

a multi-hop relay. A task consists of several work segments,
and a segment is the smallest indivisible data unit. The
workload of a worker is the total number of segments that
have been assigned to him. Any user could be a task’s owner,
and multiple tasks may coexist.

In SC, workload exchanges happen during stochastic con-
tacts between workers. When a worker physically comes
across another one, the overloaded one can offload a certain
amount of workload to the other one via a shortwave radio.
As for the free WiFi users, they may not always stay in the
same place, and some locations may not provide free net-
works. As a result, they may come on-line/off-line stochasti-
cally. Whenever they access the Internet, they can check and
re-balance their workloads with their online friends (cowork-
ers). Once in a while, cellular or wired network users may
spontaneously query their friends’ working progress and fur-
ther adjust workloads. However, due to costs of network
usage and workers’ reaction times, the contacts among these
workers are also intermittent, instead of ongoing. Clearly,
the workers’ contacting time is a random variable, and we
use λij to represent the average contacting frequency be-
tween vi and vj .

In practice, data transmission between workers can be im-
plemented by using the auxiliary file sharing functions pro-
vided by any online chatting system or network storages,
such as email or dropbox. Note that a worker’s friends
should not share one storage “box” due to the security rea-
son. SC has a concept of commitment: at any time, a work
segment only belongs to one worker. If we put work seg-
ments in one box and let the worker’s friends fetch the data
based on their dynamic needs, some workers may malicious-
ly modify certain segments in order to prevent others from
winning the bonus (the friends of a user may not be friends).
In order to avoid using complex security mechanisms, SC
does not allow multiple users to share network storage.

2.2 Problem Formulation and Challenges

SC is a self-organized distributed system. By following the
recruiting procedures, several users can temporarily create
an SC system by themselves. Although establishing SC is
easy, determining the workload for each worker is not triv-
ial: a workload allocation strategy directly influences tasks’
completion times and system resource utilization. Here, we

Social-crowdsensing SocialSens’17, April 21 2017, Pittsburgh, PA USA

define the resource utilization, U , as follows:

U =

∑m

i=1 si
∫ t∗

0
δi(t) dt

∑m

i=1 sit
∗

(1)

where t∗ is the time when a majority of the work has been
completed, and δi(t) is a 0/1 function. δi(t) = 1 if vi is work-
ing on some SC tasks; otherwise, δi(t) = 0. Our objective is

to determine a local workload allocation strategy to improve

the overall utilization of a social-crowdsourcing system.

We abstract an SC system as a stochastic bucket network,
as shown in Fig. 1: each node is modeled as a bucket with
unlimited volume. Initially, one (or a few) buckets have wa-
ter (the original large task). Each bucket has a hole at the
bottom, and its size is different, which reflects the worker-
s’ diverse working speed. Stochastically, we can pour some
amount of water from one bucket to another, which models
the workload allocation during contacts. We want to design
a local algorithm to determine the amount of transmitted
water for each contact. For the remainder of the paper, we
will not differentiate how a social contact is conducted (phys-
ically or online), since all types of contacts can be abstracted
as stochastic data exchanges between friends.

The optimal allocation [7] happens when (1) each worker
participates in a task as early as possible and (2) all of them
simultaneously complete their assigned work. However, due
to the lack of global information and the accurate future
encountering times, in practice, it is impossible to get an
optimal result. We notice that the essential requirement for
our objective is to quickly establish a balanced workload
allocation within a stochastic system.

Inspired by the Pagerank algorithm, a percentage of the
workload that a worker undertakes from a task is related
to the worker’s overall computing capacity, which is deter-
mined not only by his own working speed, but also the ca-
pacity from his friends, his friends’ friends, and so on. In
this paper, we allocate workloads according to it. Howev-
er, locally estimating such an overall score is challenging:
we should incorporate correlations, contacting uncertainties,
and working speeds into the score. Underestimation of the
score will inevitably result in a slow dissemination of the
work segments, while overestimation will cause some work-
ers to become overloaded.

3 CORRELATED SOCIAL

CROWDSENSING WORKERS

In this section, we first provide a mathematic model to repre-
sent the correlation among SC workers, and then, we design
a Markov Chain-based method to model the contacting be-
havior of each worker for a period of time. In Section V, we
compare several workload allocation algorithms by using the
synthetic data generated by this Markov Chain.

3.1 Correlation Model

Based on a user’s real-time contacting frequency, we asso-
ciate a virtual state to each user, called active level. For
instance, if vi contacts with other workers 20 times per hour

and vj contacts others 1 time per hour, then vi is more active
than vj . So, vi’s active level is higher than that of vj . Let
σi be the active level of vi, and there are 2k value types in
total, σi = {−k, · · · ,−2,−1, 1, 2, · · · , k}. In reality, we can
define the value of a user’s active level using thresholds. The
larger the value of k is, the finer the granularity used: when
k = 1, active levels indicate whether a user is online (σi = 1)
or offline (σi = −1), while when k = 2, they stand for “fre-
quently contacting”, “moderate”, “seldom contacting”, and
“offline”. Active level is a random variable. For example, a
user online contacted his friends for a while, then went out.
His active level changes from high to low.

Our paper considers the correlations between friends’ ac-

tive levels. For example, a pair of positively correlated friend-
s may often become online or offline at similar time. Let σ
represent the active levels of all workers at any moment,
σ = (σ1, σ2, . . . , σi, . . . , σm). The probability distribution of
workers’ active levels P (σ) can be represented as follows.

P (σ) =
1

Z
e
∑

i Xiσi+
∑

i6=j Xijσiσj+
∑

i6=j 6=k Xijkσiσjσk · · · (2)

where {X} are parameters. Note that, when k = 1, any m-
dimensional probability distribution can be represented in
the form of Eq. 2. Since we are focusing on the correlations
between friends, we approximate P (σ) as follows.

P (σ) ≈
1

Z
× e

∑
i6=j Jijσiσj+

∑
i hiσi =

1

Z
eH(σ) (3)

where Z is a normalization factor. Jij represents the cor-
relation between vi and vj : Jij > 0 indicates a positive
correlation, while Jij < 0 indicates a negative correlation;
Jij = 0 means independent. hi indicates each worker’s own
tendency for being active or inactive. The larger a worker’s
h value is, the larger the chance that the worker is active.
The relative value between h and J determines how strongly
friends’ active levels influence a worker. For general con-
ditions where k > 1, we take Eq. 3 as an approximation
of P (σ). Eq. 3 shows that there are more chance for posi-
tively correlated friends to appear/disappear together. For
example, when k = 1, vi and vj appearing/disappearing
together means σi = σj = ±1; similarly, the complemen-
tary case indicates σi = −σj . Based on Eq. 3, we have

P (σi = σj) =
1
Z
eJijσ

2
i > P (σi = −σj) =

1
Z
e−Jijσ

2
i .

3.2 Simulate Correlations

In this subsection, we build a discrete-time Markov Chain,
(σt)∞t=0, to simulate the changes of users’ active levels in a
period of time. We assume that, at any moment, there is
at most one worker changing its active level, and we take
each possible combination of workers’ active levels as one
state of the Markov Chain. σt = {σt

1, σ
t
2, . . . , σ

t
m} gives the

snapshot of all workers’ active levels at time t. For the ease
of description, here, we only show the case of k = 1: each
worker is either active (σi = 1) or inactive (σi = −1). Note
that we test both conditions where k = 1 and k = 2 in
Section V. Simulation results show that k = 1 is sufficient
for our problem. Let σ′ ∼j σ represent that only worker
vj ’s active level is different between states σ and σ′, and let

SocialSens’17, April 21 2017, Pittsburgh, PA USA Wei Chang, Wei-Shih Yang, and Jie Wu

Contacts

Active Inactive

time

1

2

3

Figure 3: Contacts vs. active/inactive statuses.

P (σ, σ′) = P (σt+1 = σ′|σt = σ) be the transition probability
from state σ to σ′. We have:

P (σ, σ′) =

1
m
· e

∑
i6=j Jijσiσ

′
j
+hjσ

′
j

∑
σj=±1 e

∑
i6=j Jijσiσj+hjσj

if σ′ ∼j σ

1
m
· e

∑
i6=j Jijσiσj+hjσj

∑
σj=±1 e

∑
i6=j Jijσiσj+hjσj

if σ′ = σ

0 if others
(4)

where m is the total number of workers, and σ′

j is the active
level of user vj in state σ′.

Theorem 3.1. The stationary distribution of the construct-

ed Markov Chain, (σt)∞t=0, is equal to P (σ) from Eq. 3.

Due to page limits, we skip the proof. The basic idea is to
show that P (σ) =

∑

σ′ P (σ′)P (σ′, σ). In practice, based on
real data, one may learn J and h in Eq. 3 by the Levenberg-
Marquardt Algorithm, and then, simulate and test any simi-
lar (but different) condition using Eq. 4. Or, one can directly
give certain values to J and h, and generate data.

Based on the simulated active levels, stochastic contacts
are further generated whenever a pair of friends’ statuses
are both active, as illustrated by Fig. 3. The contacting
intervals follow an exponential distribution. In a general
case, where k > 1, for each pair of friends vi and vj , the
average contacting frequencies, λij(σi, σj), may be different
for each type of active level combination. Admittedly, the
real world is more complex than our model. Instead, our
model provides an approach that simulates the correlation
among workers: we can generate workers’ contacting data
with any desired correlation degree, which can be further
used to check the impacts of correlation on the workload
allocation problem.

4 WORKLOAD ALLOCATION

To make better use of system resources, a workload allo-
cation strategy should be able to quickly establish a bal-
anced workload distribution among workers. In this paper,
we allocate workloads according to a worker’s overall com-
puting capacity. Due to the distributed feature of SC, we
approximate the overall capacity based on workers’ 2-hop
information. In this section, we first propose a deterministic
algorithm, which approximates the overall capacity without
considering the correlation, and then, we provide another
stochastic algorithm, which explicitly exploits the correla-
tions. By using the Markov Chain method from Section III,
we compare these two algorithms in Section 5. Experimen-
tal results show that the deterministic approach is a good

534

534

1

21

2

6 7

53

4

6

7

21

Figure 4: The local view of contacting graph.

1, 2, 3, 3

12 23

Figure 5: Potential capacities’s estimation.

approximation algorithm, which implicitly incorporates the
correlation into the estimation of the overall capacity.

In order to avoid making inconsistent workload allocation
decisions, whenever workers contact each other, they are re-
quired to share their neighbors information within r-hop,
including working speeds si, average contacting frequencies
λij , and social relations.

4.1 Basic Rule for Workload Allocations

Assume that, at a time, v1 contacts v2, and that their carry-
ing workloads are w1 and w2, respectively. Let w∗

1 and w∗

2

be their updated workloads. Assigning workloads accord-
ing to users’ individual working speeds is the simplest way:

(w∗

1 , w
∗

2) =
[

((w1+w2)s1
s1+s2

, (w1+w2)s2
s1+s2

)
]

, where s1 and s2 are

the local computing speeds of v1 and v2. However, since SC
allows workers to further forward the workload to others, in
order to allocate workloads more properly, one should not
only consider the computational capacity of the current con-
tacting person, but also the capacity of his future potential
contacts. Let qi stand for worker vi’s overall capacity, which
assembles both current and future contacts’ computational
capacities. The basic rule for workload allocation during a
pairwise contact becomes the following:

(w∗

1 , w
∗

2) =

[

(w1 +w2)q1
q1 + q2

,
(w1 + w2)q2

q1 + q2

]

(5)

In SC, a single and fixed-value overall computation ca-
pacity q is not sufficient for providing appropriate workload
allocation. Let’s take Fig. 5 as an example. Suppose that
only v1 is carrying work, while v2 and v3 are idle. Let qi be
the overall computation capacity of worker vi, and si be its
local working speed. One unique feature of SC is that there
are zero-speed workers. Although they do not process tasks’
data, the existence of them significantly accelerates the prop-
agation of work segments. In Fig. 5, suppose s1 = s2 = 0,
s3 6= 0, and that v1 first contacts v2 and then v2 contacts
with v3. Here is the dilemma for the value of q2. At the
first time of contact, we need q2 > 0 and q1 = 0 such that v1
will give all his workload to v2, while for the second time, we

Social-crowdsensing SocialSens’17, April 21 2017, Pittsburgh, PA USA

Algorithm 1: Pairwise Overall Speed

1: /*Suppose that vu is contacting with vu′*/
2: Eliminate node vu′ from social contact graph G
3: Initialization qu ← su /*Local contribution*/
4: for i ∈ N(u) do
5: qu ← qu + λuisi /*1-hop contribution*/
6: for j ∈ N(i) do
7: qu ← qu + λuiλijsj /*2-hop contribution*/
8: if j ∈ N(u) then
9: qu ← qu − λuiλijλujsj /*Double counted*/

10: Return quuu′ ← qu

need q2 = 0 and q3 > 0 so that v2 will not keep any workload
himself. Clearly, we cannot find out such a fixed number for
q2. Hence, a single and fixed-value qi is not sufficient for
estimating workers’ overall computation capacities.

4.2 Overall Capacity Estimation without

Correlation

The capacity qi reflects the amount of workload that vi and
his friends can process within one unit of time. If the inter-
contacting time T between a pair of workers follows expo-
nential distribution with parameter λ, the probability that
the workers contact each other within the unit time can be
approximated as P (T ≤ 1) = 1− e−λ ≈ λ.

In SC, a workload exchange happens when a pair of friends
contact each other. The values of q only need to discrimi-
nate the capacity’s difference between the current contacting
workers. Here, we propose a new concept, called Pairwise
Overall Capacity (POC): the overall capacity of a worker is
partially determined by whom the worker is compared with.

Let quuu′ and qu
′

uu′ be the respective overall capacities when
vu contacts vu′ . For avoiding the situation of cyclic helping
relations, vu′ is ignored during the computation of vu’s q

u
uu′ ,

and vise versa.
A worker’s POC is computed as the summation of his own

working speed, si, and the expected amount of workload that
his friends can help within a unit of time. In Fig. 4 (c), the
expected amount of capacity that v2 obtains from v5 via
direct contacts is P (T25 ≤ 1)s5 = λ25s5; the expected ca-
pacity via indirect contacts (2-hop) is P (T23 ≤ 1)P (T35 ≤
1)s5 = λ23λ35s5. However, there is a double-counted con-
dition where v5 can be reached via both 1-hop and 2-hop
contacts. Hence, for v2, the capacity obtained from v5 e-
quals (λ25 + λ23λ35 − λ25λ23λ35)s5. Algorithm 1 gives the
procedure for computing the POC. Each worker can locally
compute the POC of himself and the other contacting work-
er. When computing quuu′ , Algorithm 1 only takes vu’s 2-hop
information into account.

4.3 Overall Capacity Estimation with

Correlation

In order to better estimate the overall capacity q, we incorpo-
rate the concept of the correlated active level into the POC.

Optimal M-hop D-2hop S-2hop Speed
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
ti
liz

a
ti
o
n

methods

 Participate

 Not Participate

Figure 6: The impact of
zero-speed workers

Optimal M-hop D-2hop S-2hop Speed

0.3

0.4

0.5

0.6

0.7

u
ti
liz

a
ti
o
n

methods

 Inverse

 Random

 Proportional

Figure 7: Speed distribu-
tion’s impacts

0 2 4 6 8 10 12 14 16

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u
ti
liz

a
ti
o
n

workload *10
4

 D-2hop

 Speed

 Optimal

 S-2hop (k=1)

 S-2hop (k=2)

 M-hop

Figure 8: S-2hop’s pa-
rameter: k = 1 VS. k = 2

20 40 60 80 100 120 140
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

u
ti
liz

a
ti
o
n

average inter-contacting time

 D-2hop

 Speed

 Optimal

 S-2hop (k=1)

 S-2hop (k=2)

 M-hop

Figure 9: Ave. inter-
contacting intervals

The idea is to add a predicator about the availability of fu-
ture contacts based on the current information P{σt+1

i =
σ′

i, σ
t+1
j = σ′

j |σ
t
i = σi, σ

t
j = σj}, and to further apply a finer

capacity estimation based on the predication, where the con-
tacting frequency λ in Algorithm 1 is refined by the following

equation:λij(σi, σj) = βij ×
(σi+k)(σj+k)

4k2 , where βij reflects
the average number of contacts made by vi and vj in a unit
of time. Note that the predicator can be created based on
long-time observations, and that λij(σi, σj) essentially gives
the average contacting frequency for each type of active level
combination.

5 EVALUATION

5.1 Evaluation Setup and Metric

For ease of comparison, we call the scheme, which splits
workloads according to workers’ local speeds, Speed ; the de-
terministic POC, which does not consider correlations, is
called D-2hop; the stochastic POC that explores a worker’s
active level is called S-2hop. We also design an approach, M-

hop. The basic idea is to use global information to create a
transition matrix about the average percentage of workloads
that a worker forwards to its contacts, and then, compute the
stationary distribution. The details of M-hop can be found
in our previous work [4]. Based on the posterior knowledge,
one can compute the shortest path from a task owner to
workers, and the optimal result can be found by letting all
participants complete their workload at the same time. Al-
though this algorithm is useless in reality, we use its results
as a comparison criterion. We use Optimal to represent it.

We first use synthetic data to show that the result of D-
2hop is very close to that of the S-2hop, and then, we test

SocialSens’17, April 21 2017, Pittsburgh, PA USA Wei Chang, Wei-Shih Yang, and Jie Wu

(a) Social graph

0 1 2 3 4 5 6 7 8 9

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

u
ti
liz

a
ti
o
n

workload *10
6

 D-2hop

 Speed

 Optimal

(b) Inversely

0 1 2 3 4 5 6 7 8 9

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

u
ti
liz

a
ti
o
n

workload *10
6

 D-2hop

 Speed

 Optimal

(c) Random

Figure 10: Real data: Sigcomm09

the D-2hop on real data. The synthetic simulation is based a
real social graph: karate club [3]: We use our Markov Chain
model to create σi for each worker. Whenever two workers
are active, they may have social contacts. The distribution
of inter-contacting times follow an exponential distribution.
Workers’ contacting frequencies and tasks’ owners are ran-
domly selected. Workers’ computing speeds follow a uniform
distribution from 0 to 5 units of work per unit of time. The
real data comes from the Sigcomm09 data set [6].

We use utilization as our evaluation metric. The utiliza-
tion is computed as the ratio between the number of com-
puting resources that have been used during the observation
and the total number of available resources that the system
is able to provide. Due to the propagation delays, the uti-
lization can never reach 100%.

5.2 Simulation results

Fig. 6 shows the impacts of the zero-speed workers’ partici-
pation. Since the zero-speed workers can accelerate the prop-
agation of work segments, SC encourages people to partici-
pate, even if they will not work on the task by themselves.
We can see that the utilization of all methods decreases when
the zero-speed workers are excluded from the task, and the
reduced amount is almost 10%. In Fig. 7, we test the im-
pacts of the relation between a worker’s local speed and the
number of neighbors on a social graph. When the speed is
proportional to the node degree, the utilization of all meth-
ods is significantly increased. When the speed is inversely
proportional to node degree, Speed has the most impact. S-
ince the frequently contacting users have lower speeds, work
segments are trapped around the task owner.

S-2hop considers workers’ active levels, and there are 2k
levels. From Fig. 8, we can see that, by using a larger k, the
results of S-2hop are improved, but the difference between
k = 1 and k = 2 is very small, only about 0.5%. For the rest
of the simulation, we will only consider the case where k = 1.
In addition, the result of S-2hop is close to that of M-hop.
Considering that M-hop explores the global information, S-
2hop is a good approximation, even if k = 1. Fig. 9 shows
the impacts of the average length of inter-contacting time.
With the increasing length of intervals, it takes more time

to propagate work segments, and therefore, the utilizations
decrease.

Fig. 10 gives the experiment’s results on real data. When
the distribution of workers’ speeds is inversely proportional
to their number of friends, our approach can improve the
system utilization by almost 10%. Moreover, the changing
pattern of each method is consistent with our synthetic data-
based simulation results.

6 CONCLUSION

This paper proposes a new system, social-crowdsensing, and
further considers the workload allocation problem among
workers. By analyzing real data, we find that friends’ ac-
tivities are not independent. Many questions arise once
crowdsourcing workers are correlated. To our best knowl-
edge, no one has systematically studied this problem before.
In this paper, we first provide a model for describing and
simulating the users’ correlated activities. Then, we pro-
pose two schemes, with and without explicitly using the cor-
relation information, to locally allocate participants’ work-
loads during social contacts. Counterintuitively, extensive
experiments show that, even if we explicitly imposed a cor-
relation among users, the correlation information can only
bring a marginal improvement to the system utilization and
the work’s makespan.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, CNS 1439672, CNS 1301774, and ECCS 1231461.

REFERENCES
[1] aws.amazon.com/pricing/mturk/ visited at 2014.
[2] www.mturk.com/mturk/ visited at 2017.
[3] www-personal.umich.edu/ mejn/netdata/ visited at 2017.
[4] W. Chang and J. Wu. Progressive or Conservative: Rationally

AllocateCooperative Work in Mobile Social Networks. In IEEE

TPDS, 2014.
[5] L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A. Landay.

Cascade: Crowdsourcing taxonomy creation. In ACM SIGCHI,
2013.

[6] A.-K. Pietilainen. CRAWDAD data set thlab/sigcomm2009 (v.
2012-07-15). http://crawdad.org/thlab/sigcomm2009/, 2012.

[7] S. Zhang, J. Wu, and S. Lu. Minimum makespan workload dissem-
ination in dtns: Making full utilization of computational surplus
around. In ACM MobiHoc, 2013.

	Abstract
	1 Introduction
	2 Model and Formulation
	2.1 System Model
	2.2 Problem Formulation and Challenges

	3 Correlated Social Crowdsensing Workers
	3.1 Correlation Model
	3.2 Simulate Correlations

	4 Workload Allocation
	4.1 Basic Rule for Workload Allocations
	4.2 Overall Capacity Estimation without Correlation
	4.3 Overall Capacity Estimation with Correlation

	5 Evaluation
	5.1 Evaluation Setup and Metric
	5.2 Simulation results

	6 Conclusion
	Acknowledgments
	References

