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Objectives

• To become familiar with the security and privacy issues of location informa-
tion in smart cities

• To become familiar with the concept of location proof for trajectories in
context of smart cities

• Tobecome familiarwith the conventional approaches for generating location
proofs and their shortcomings

• To become familiar with the idea of environmental element-based location
proof

• To become familiar with the optimal RSU deployment problem, which aims
to generate secure and privacy-preserved location proofs by using a mini-
mum number of RSUs
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29.1 Location-Related Security and Privacy Issues
in Smart Cities

For the past two decades, the term smart cities has gained an increasing
attraction from academia, government [1, 2], and industry [3, 4]. Within future
smart cities, people are expecting the usage of data, not only from some static
pre-deployed roadside sensors but also from intelligent vehicles moving within
the cities day after day. A typical intelligent vehicle is equipped with multiple
sensing devices, such as on-car cameras and gyroscopes, and also has wireless
communication capabilities, such asWi-Fi/LTE. All these devices record every
incidence within the city. Unlike the conventional location-based services
or mobile social networks, where data is related with a location spot, the
recorded data in intelligent vehicles is a continuous and integrated observation
along a vehicle’s trajectory (or trajectory segments). In the foreseeable future,
these vehicle-based data sequences will support a considerable number of
new applications, ranging from criminal scene reconstruction to smart traffic
management to environmental monitoring.
The intelligent vehicles will inevitably generate an enormous amount of data.

Moreover, the data itself may also bring plenty of security and privacy issues.
In order to control the data, a carefully designed data management system
is urgently needed. Such a management system must be able to balance the
trade-off among privacy, security, and data utility, which is extremely hard. For
example, in the application of criminal scene reconstruction, when an incident
occurs, how can the data management system efficiently and accurately find
all related data, meanwhile providing the privacy of these witnesses? When a
driver reports an illegal littering froma vehicle, howdoes the smart city’s system
verify that the claimer indeed was at the reported location and time, instead of
a frame-up?
In order to preserve data searching privacy, the existing works adopt

homomorphism-based data encryption. However, the scheme does not suit
intelligent vehicle systems, not only because there is a huge amount of data
and searching over cipher text is time consuming, but also because there is no
solution for extracting semantic information directly from encrypted images
or videos. In addition, from the existing location-based services and mobile
social networks, we have already seen the motivations for an adversary to mis-
state their spatiotemporal claims [5–7]; the encryption-based scheme cannot
handle situations in which the data itself is maliciously tampered with by an
adversary. Consequently, a key requirement for the intelligent vehicle-involved
smart cities involves its abilities (i) to verify the spatiotemporal claims made
by a vehicle, (ii) to quickly locate the corresponding queried records from an
enormous amount of data, and (iii) to simultaneously provide strong privacy
protections to the data owners.
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According to certain features of applications, the data owner (i.e., a vehicle
and its driver) must be in one of twomodes: proactive or reactive. In the proac-
tive mode, the data owner proactively claims a set of spatiotemporal data, and
the data management system should be able to verify these claims, while in the
reactive mode, the system searches for the data of the vehicles that are likely to
have appeared at a specific location during a specific time period.
In this chapter, we study the use of environmental factors to develop “evidence

of presence” for the intelligent vehicle system. More specifically, we consider
how to use the measured wireless signal from roadside units (RSUs) to verify
and index data. The evidence of presence is a means for a vehicle to demon-
strate that it was indeed at a specific location and time. For instance, given a
car that claims to have witnessed a particular car collision accident at a specific
location at a specific time, we would be able to verify such a claim by compar-
ing the claimer’s captured surrounding environmental factors against a known
database of environment features.Themalicious users, who did not pass by the
specific location and time, should be unable to generate the same evidence.
Unlike the existing approaches, where the location proof is constructed by

using cryptographic keys, the content of environmental evidences is not linked
to the identity of any vehicle, because many applications in smart cities are
only interested in the correctness of where and when data is collected. We take
a novel approach that relies on measuring the wireless properties inherent in
environments, for example, due to the multipath effect, to generate data index
(for the reactive mode) or to demonstrate evidence of presence (for the proac-
tive mode). The only task that each vehicle should take is to passively record
the surrounding environmental information.
For example, when a vehicle takes a short video at some place and time, the

surrounding features (e.g., shadows, colors, brightness, etc.) exhibited in the
video frames will be different from those taken at other locations or times, due
to the differences caused by environmental factors such as weather condition
and random obstructions by physical objects. Similarly, the vehicle moves in a
region, and the quality of its received wireless signals from the same transmit-
ter will differ due to factors like interferences and multipath effect. Here, we
focus on using wireless signal features to index or verify spatiotemporal data
about sequences of observations in vehicle networks. Ideally, when the received
wireless signal features at every road stretch are unique, one can easily use the
features to index or verify the data of any location at any time. However, in
reality, it is too expensive to achieve such a dense coverage on a road stretch. In
order to minimize the deploying costs, we further study the optimal placement
problem of the roadside signal transmitters and the synchronization problem
among different transmitters.
The contributions of this chapter are as follows.We propose a novel approach

by exploring the spatiotemporally varied environmental signals to index or
verify vehicle networks’ data. We also provide an approximation algorithm to
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provide a near-optimal placement of the signal transmitters in this system.
Finally, we also study the time synchronization issue among different signal
transmitters.

29.2 Opportunities of Using Environmental Evidences

Due to the existence of malicious users, every piece of spatiotemporal data
should be verifiable by authorities. For instance, when a car accident occurs,
the police should not only verify the evidence of presence of a witness (i.e.,
location claimer) but also check how well the claimer’s provided information
corroborates with additional evidence, such as the data records of nearby vehi-
cles, surveillance cameras, and environmental factors.
The evidence of presence can be verified via either direct witness (DW) or

indirect support (IS).TheDWcomes from the directly recorded location proofs
from nearby attestors, the construction of which is the core of the conventional
cryptographic key-based approaches. Considering a group of nearby vehicles,
whenever one of them wants to create location-based data, all these vehicles
need to exchange some encrypted and spatiotemporal-bounded messages to
build the location proof. Although this type of scheme provides high-level secu-
rity protection, it inevitably discloses the nearby vehicles’ location privacy dur-
ing verification, since each cryptographic key is uniquely linked to a vehicle.
In addition, there are also key management issues, such as the revocation and
renewal of certain keys.
Considering that not all applications in smart cities need to know the iden-

tities of data owners, in this chapter, we construct the evidence of presence
for each spatiotemporal data rather than vehicles. We use the impacts of some
unpredictable environmental factors on the recorded data as IS for the evidence
of presence: the adversary, whodid not physically appear at the claimed location
during the claimed time, is not able to generate the data with the corresponding
“environmental marks.”The IS-based verification is conducted by checking the
consistency of spatiotemporal data’s embedded environmental factors against
a known database of historical environment features. Admittedly, the IS-based
evidence of presence cannot provide a security protection as high as DW does.
But it can successfully hold back the attackers who easily make location claims
without any physical appearance. Generally, at least six environmental facts can
be used as IS:

• Environment signals: The control messages of the received environment
signals are unpredictable, by which only the vehicles that have physically
appeared at that location at that time can possess the data. Moreover, due
to the multipath fading and shadowing conditions, the received signals’
qualities can also be considered.
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• Road patterns: The claimer and attestors are driving on the same road seg-
ment (straight road, right curve, or left curve) and therefore should have the
same turning pattern. Based on the readings of a gyroscope, one can discrim-
inate the cases of driving on a curve from changing lanes [8] and extract the
corresponding road patterns in that period.

• Non-overlapping trajectories: Since each vehicle takes a space, the claimer
and attestors’ trajectories should not overlap with other vehicles’ trajectories
in a spatiotemporal domain.

• Local co-viewing: The claimer and attestors are on the same road segments
and, therefore, should have similar local views, such as the same front cars or
similar nearby scenes, in their camera videos.We also consider the imperfect
recording conditions, such as bad weather and unpaved roads, and use them
to check the existence of inconsistency.

• Landmark co-viewing: Police can also find other vehicles that are at different
locations but relatively close to the reported region. From the vehicles’ car-
rying cameras, police may be able to extract the unique random statuses of
some landmarks and use them as the indirect supporters of a location claim.

• EZpass-based PO: On roadside, there are some randomly deployed EZpass
readers (i.e., POs). The reader cannot obtain each vehicle’s account number
due to the inference, but we can use it to measure the number of cars that
have been passed within a short period of time [9]. If the reported number
of attestors differing from the reader’s measured number is greater than a
threshold, the claimer’s statement should not be accepted.

However, the randomness of the environmental factors may not be able to
provide full distinguishability among a given set of vehicle flows. For instance,
if one solely uses weather conditions as an IS-based evidence of presence,
the granulite must be at least on a city level. In other words, if the vehicle
flows do not consist of the paths through several far away cities, the weather
condition-based evidence becomes useless since every vehicle in a city is very
likely to experience the same weather. In this chapter, we focus on using wire-
less signal features to index or verify spatiotemporal data in vehicle networks.
Besides the existing cellular towers and Wi-Fi access points, we intentionally
deploy several RSUs (i.e., wireless signal transmitters) on certain road stretches
and let them generate spatiotemporal-bounded random signals. The signals
from both the RSUs and the existing wireless network infrastructures will be
used as environmental evidence of presence in our system.

29.3 Challenges of Creating Location Proofs

Location verification, also known as location proof [10], is a well-known prob-
lem in the mobile computing communities. The goal of location verification
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is to securely prove that a claimer has indeed appeared at a specific location
at a specific time. For verifying the spatiotemporal claims, different types
of schemes are designed. Using the distance-bounding protocols [11–13]
is a common approach, which measures the physical times/distances for
messages to transmit between a claimer and verifiers and estimates the
claimer’s real physical location based on these times. In this type of solution,
the verifiers could be other participants, such as mobile phone users and
vehicles [14], or some special infrastructures [15]. However, the accuracy
of the distance-bounding approaches relies on the deploying density of the
verifiers and their trustworthiness.
Cryptographic key-based approach [16–18] is another popular way to

generate the location proof, where the claimer and verifiers share a set of
spatiotemporal-bounded messages. Although this kind of approach avoids
the deployment issues with certain measuring infrastructures, it still has
trustworthiness and key management issues.
Recently, people have begun to consider using unique impacts of environ-

mental factors on surrounding objects to create evidence for location verifi-
cation. Unlike the conventional schemes, the environment-based approaches
[19, 20] do not require storing of any cryptographic keys/certificates nor do
they require the participants to perform any cryptographic processing, which
is very time consuming. Instead, claimers only need to capture some environ-
mental features, such as received signal strength (RSS) or the control mes-
sages in 802.11/4G LTE networks, which will be verified later against a known
database of features to establish the validity of local claims. Note that all these
schemes focus on built evidences for verifying the physical presence on a single
location spot.
However, for the vehicular data, it is essentially a sequence of records about

the surroundings, from the last data uploading location to the next one. Due
to the fact that, for certain applications like criminal scene reconstruction, no
one knows which piece of information is useful at the time of recording, we
need to create a set of location verifications for the vehicle. Clearly, directly
adopting the existing schemes for single spot is too expensive since a vehicle
would frequently create plenty of location proofs. The proposed system in this
chapter has been inspired by an indoor-tracking paper [21], where authors
use a set of collected Wi-Fi data to associate identities with different moving
objects in surveillance videos. More specifically, we verify the presence of a
vehicular trajectory by providing spatiotemporal-bounded messages only on
some crucial road stretches, the combination of which can uniquely distinguish
a trajectory from others. From the consideration of computing complexity, our
system adopts the RSS-based environmental evidence scheme [20] to generate
the messages on crucial road segments, and only the roadside infrastructures
possess keys, instead of vehicles. In order to make the vehicular data indexable
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and privacy preserving, we embed location and environment information
into some time-bounded random numbers and use them as both the index
and location proof of the vehicular data. Unlike the time-bounded random
numbers generating approach in paper [18], our system’s random numbers are
bounded to certain preknown locations (i.e., the physical locations of RSUs),
and our random numbers are more secure even if the initial random number
generating parameters is obtained by attackers. Note that exploring roadside
infrastructures is a commonly used approach in smart cities. However, the
existing works [22–24] mostly focus on the improvement of data transmis-
sions by using RSUs, while this chapter considers how to use the roadside
infrastructures to securely verify/index trajectory data.

29.4 Environmental Evidence-Assisted Vehicular Data
Framework

29.4.1 SystemModel and AttackModel

Our intelligent vehicle-based smart city system consists of three components:
vehicles, roadside infrastructures, and a supporting data management system.
The proposed system integrates the existing devices on a vehicle and provides
a more comprehensive description of a city. We assume that each vehicle is
equipped with a video camera, which keeps recording all surrounding events;
an EZpass tag, which is associated with a driver’s account number; and multi-
ple sensing and communication devices, such as a gyroscope, accelerator, and
wireless signal transmitter. Without loss of generality, we use Di to represent a
piece of data. Note that, in our model, a single vehicle can return zero or mul-
tiple pieces of data, and how to use the data is determined by the smart city
applications, which is out of this chapter’s scope.
The centralized data management system is responsible for collecting,

searching, and verifying the data pieces D collected from vehicles. Each Di is
implicitly associated with certain temporal and spatial information, (Ti, Li).
In order to protect the location privacy of a data owner and provide the
capability of spatiotemporally verifiable evidence of presence, we embed the
time and location information into environmental wireless signals (i.e., (⋅))
and use them as both data index and verification evidence. Each vehicle only
needs to send the location claims to the data management system in the form
((Ti, Li),Di) rather than directly and explicitly uploading the (Ti, Li) to the
data collector.
For constructing the spatiotemporal-embedded wireless signals, we consider

two types of roadside infrastructures: the existing wireless communication
infrastructures and some RSUs, which are specially installed by the smart
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cities. RSUs are wireless transmitters, and the only task they conduct involves
continually broadcasting certain specially designed random signals to the
passing vehicle.
There are two types of attackers: privacy prier (PP) and fake claimer (FC).The

objective of PP is to establish a connection between a vehicle and its reported
data without physically dogging the victims. In this chapter, we focus on the
scenarios, where PP tries to find others’ location privacy by querying the data
management system with some well-designed spatiotemporal query demands.
We also assume that there are a small number of malicious vehicles con-

trolled by FC, who is able to manipulate any value of the controlled vehicles.
According to the exact applications, reporting fake spatiotemporal data can be
beneficial to the adversary in different ways. For example, in the application of
smart traffic management, FC can maliciously create an illusion of having sev-
eral accidents on a road stretch such that the routing paths may be recalculated
or the traffic lightsmay falsely adjust their switching frequencies or lengths. For
the crime scene reconstruction, FCmay use some tampered data to frame some
victims or exculpate outlaws. In this chapter, we want to prevent the attackers
who make fake location claims without any physical presence at the claimed
location during the claimed time.

29.4.2 Roadside Unit-Based Environmental Evidence Construction

The construction of the embedded signals is based loosely on [20]. Let us
assume that RSU and the central data management system use public/private
keys. Here, we only consider the keys of RSU and the data collectors, instead
of individual vehicles, the number of which is significantly greater than that
of RSU. The physical location of RSU is preknown by the data management
system, and a special control message will be randomly generated and sent
from the data management system to the corresponding RSU. The control
message to RSUi contains a future time T0, an initial value ui, and an increment
Δui. At run-time T , when a passing vehicle is detected at RSUi, the RSU
randomly selects a transmission power p > 0 and uses this signal power to
broadcast certain spatiotemporal-embedded messages to the vehicle. Based
on these four variables, the corresponding RSU will generate a series of
time-dependent random numbers: from future time T0, each moment T will
be represented as Ri(T) = ui + Δui ×

∑T
T0

p. Instead of explicitly using the time
value T , our system will take the random number Ri(T) as a time indicator;
only the data management system and the corresponding RSUi can extract the
spatiotemporal information from it.
The spatiotemporal message is defined as

Mi(T , L) ← ⟨RSUi,Ri(T),Enci(p),Hi(T , p)⟩
where Enci(⋅) represents an encryption by using RSUi’s key, and Hi(T , p) is a
hash signature of (RSUi,Ri(T),Enci(p)). Upon receiving Mi(T , L), a vehicle first



Trim Size: 6.125in x 9.25in Single Column Song c29.tex V2 - 04/24/2017 11:25am Page 827�

� �

�

29 Environmental-Assisted Vehicular Data in Smart Cities 827

measures the RSS and then constructs evidence of presence as the following:

(T , L) ← ⟨Mi(T , L),RSS⟩
In the proactive mode, a user can make a location claim by ⟨T , L, (T , L),D⟩,
and then, the datamanagement systemwill verify whether the claimed location
and time is consistent with (T , L). In the reactive mode, users stochastically
upload a sequence of data records, ⟨(T , L), {D}⟩, to the datamanagement sys-
tem whenever they have Wi-Fi access.

29.4.3 Environmental Evidence-Assisted ApplicationModels

29.4.3.1 Location Claim Verification
The environmental factor-based evidence of presence provides a strong pro-
tection against FC: for an individual attacker, unless the keys of both data man-
agement system and RSU are compromised at the same time, any fake location
claim can always be identified.
The verification has two phases. The first phase is a simple filtering, which

simply checks the information consistency within message (T , L). The sys-
tem first verifies whether the claimed local L is under the signal range of the
reported RSUi. Next, it extracts the cipher text Enci(p) from the claimed mes-
sage, decrypts it by using RSUi’s key, and compares the result with the reported
RSS value. If they match, it is likely that the claimer had been physically present
at the claimed time and location.
However, considering that the number of possible power levels is very lim-

ited, there is an extreme situation that an adversary may correctly guess the
value of p at somemoments. To solve the situation, regarding a local claim that
has passed the first phase of verification, the data management system con-
ducts a second roundof verification,which requires direct communicationwith
RSU. Upon finishing the first phase of verification, the data management sys-
tem further checks the data consistency between the reported random number
Ri(T) and RSUi’s historic records. The system requires RSUi to send a list of
its selected transmitting powers from T0 to the claimed time T , reconstructs
the spatiotemporal-bounded random number as R′

i(T), and compares it with
the reported value Ri(T). If no inconsistency is detected during this phase, the
location claim is trustworthy, unless the adversary compromises both RSU and
the data management system.

29.4.3.2 Privacy-Preserved Data Collecting
In the conventional location proof for mobile users, a user intends to prove
his physical appearance at a location spot in a moment. However, for many
applications in smart cities, including on-car camera-based city surveillance,
crime scene reconstruction, searching for abducted children, and smart traffic
controls, any spot on a vehicle’s trajectory may contain critical information,



Trim Size: 6.125in x 9.25in Single Column Song c29.tex V2 - 04/24/2017 11:25am Page 828�

� �

�

828 Smart Cities: Foundations, Principles and Applications

which is unknown at the time of recording. Therefore, along the moving path
of a vehicle, a series of on-road records will be generated, and the whole data
segment will be stored as a data unit on a server. In the reactive mode, the
crux becomes how to use environmental evidence to index and retrieve the data
about a period of walking in a privacy-preserved way, which directly affects the
efficiency of the system.
For the design of a privacy-preserved data collecting/searching system, the

trade-off between users’ privacy and data utility is an important issue: on the
one hand, when an accident occurs, the surveillance system should be able to
quickly identify the accident’s witness and the corresponding location proofs,
which are the evidences showing that the witness was indeed at the region near
the accident; on the other hand, the surveillance systemmust also consider the
privacy of individual users, whose historical visiting sequencesmust be hidden.
Based on this trade-off, our surveillance system separately stores the index of a
vehicle’s historical data from the whole data.
In this chapter, we build a multiagency privacy-preserved system, where dif-

ferent agencies are unable to see the content of any vehicle without the coop-
eration of others. Basically, there are three components: (i) a data management
server, which is responsible for collecting, searching, or verifying spatiotem-
poral data; (ii) a special storage system for supporting smart city applications,
which consists of several clouds; and (iii) a bookkeeping server, which stores
the mapping between each data record and its access address in the clouds.
For the users in reactive mode, they stochastically upload their recorded sur-

rounding data, from the last uploading time to the current time onto their own
selected clouds in the form of ⟨(T , L), {D}⟩. Note that the users do not need to
provide any information about themselves during uploading. For each record⟨(T , L), {D}⟩, it must be associated with one environmental evidence (T , L),
and data {D} are partitioned into different segments according to the closest
(T , L). Upon receiving the record, the cloud returns the corresponding access
address A to the user. Clearly, only the vehicle’s owner knows the full access
addresses of his data. Next, the user sends A to the bookkeeping server, and
the server will generate a unique random number R and send it back. Data pair
(R,A) is locally saved in the bookkeeping server. For the last step of data col-
lecting, the user sends the indexing ⟨(T , L),R⟩ to the datamanagement server.
Figure 29.1 shows the structure of our environmental evidence-based data col-
lecting system. Since the data collecting process does not involve any user’s
identity, our system is privacy preserved.
For the reactive mode, a data management server essentially is an index

server, and all indexes are sorted according to the values of RSUi and Ri(T) in
(T , L). Note that for each initial value pair (T0,ui), the values of the following
time-dependent random numbers are strictly increasing, which partially
reflects the temporal visiting orders of different vehicles at the same RSU.
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Figure 29.1 Environmental
evidence-based data
collecting process.

Storage system
(store full data)

Data management
server (data index)

Bookkeeping
server (mapping)

User (1) < ε(T,L), {D} >

(2) A(3) A

(4) R

(5) < ε(T,L), R >

29.4.3.3 Environmental Index-Based Data Retrieval
Thebasic environmental index-based data retrieval process is as follows.When
an incident occurs at {T , L}, the law enforcement will query the data man-
agement server by using {T , L}, and the server will return a set of record
numbers {R}, whose environmental indexes match the query content. Based
on the return results, the law enforcement will contact the bookkeeping server
and find the physical storing addresses {A}. Finally, the data segments can be
obtained from the storage system by using {A}. However, in reality, most inci-
dences do not happen around RSUs. How to find out a set of potential wit-
nesses by using the environmental indexes must be considered, which essen-
tially relates with RSU-based localization.
Themain idea of the RSU-based localization is that, at a given past timeT , the

location of any vehicle can be estimated based on the traveling distances toward
one or several RSUs. LetTi(⋅) and Li(⋅) be the record time and location of RSUi’s
environmental evidence, respectively, and let L and T be the vehicle’s current
location and time. Assume that the vehicle had received a set of evidences from
{RSUi}, 1 ≤ i ≤ l, and Ti−1 < Ti. Based on the environmental evidences, the
location of the vehicle at T can be pinpointed at the locations satisfying the
following set of equations:

∥ L − Li ∥= ∫
T

Ti

s(𝜏) d𝜏,∀i ∈ [1, l]

where ∥ L − L′ ∥ is the length of the road from L to L′ and s(⋅) represents the
vehicle’s historical speed at any moment. Similarly, for every RSUi near the
incident’s location, we can compute a time window for the users, who poten-
tially may be witnesses, as the following: Ti ∈ [T − ∥L−Li∥

Smin
,T − ∥L−Li∥

Smax
], where

T and L represent the time and location of the incident. Take Figure 29.2 as
an example. Suppose that a vehicle received two consecutive environmental
evidences, respectively, from RSUc and RSUe. Let T ′ be a moment between
the receiving times of the tags. Based on the vehicle’s speed information, we
can compute the traveling distance from RSUe to the vehicle’s location at T ′.
In Figure 29.2, there are three possible destinations at which the vehicle may
arrive from RSUe based on the distance, and there are two other locations that
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RSUa RSUe

RSUb

Crash

RSUc

RSUd

Figure 29.2 The
generation of target
environmental index.

e1 e2 e3

e8e7

e4 e5 e6

Figure 29.3 Distinguish six
vehicle flows in Table 29.1 by
RSUs. The black vertices represent
intersections, edges indicate road
stretches, and the gray boxes give
the potential places where an
RSU can be deployed.

the vehicle could arrive at RSUc. The intersection of these two sets gives the
estimated location at time T ′.

29.4.4 Optimal Placement of Roadside Units

In the previous section, our investigations assumed an ideal environment in
which sufficient RSUs cover every road stretch in a city. However, in practice,
such a situation is unlikely to occur. In order to minimize the deployment costs
of the RSUs, a special optimally placing algorithm is needed.
However, this problem is not trivial since not every road segment needs an

RSU, and although it is hard for an attacker to forge environmental evidence,
the attacker can still easily hide some received evidence in order to pretend
that he was somewhere else. Take Figure 29.3 as an example. Assume that
there is a map consisting of eight road stretches and there are six vehicle
trajectories on the map, which are given in Table 29.1. Our objective is to

Table 29.1 RSU-based tags of given flows in Figure 29.3.

f1 e1 → e7 → e5 → e6 Ø e7 e7, e6
f2 e4 → e5 → e6 e4 e4 e4, e6
f3 e4 → e5 → e8 → e3 e4, e3 e4, e8 e4, e8
f4 e1 → e2 → e8 → e6 e2 e8 e8, e6
f5 e1 → e7 → e5 → e8 → e3 e3 e7, e8 e7, e8
f6 e4 → e7 → e2 → e3 e2, e3 e4, e7 e4, e7
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install a minimal number of RSUs on some road stretches such that every
trajectory can be uniquely identified according to the received environmental
evidences. More specifically, considering that some RSUs may use the same
transmitting powers or time-dependent random numbers, here we focus on
the distinguishability exclusively based on RSU identity numbers within the
environmental evidences. For the ease of description, we name the received
environmental evidences’ RSU identities as tags.
Table 29.1 gives three different methods of RSU displacement in Figure 29.3.

If only honest users are considered, the optimal RSU placement set is
{e2, e3, e4}, and the received tag sequences of each flow are given in “tags 1”
column of Table 29.1. Clearly, all of them have different tag sequences, and
therefore, they are fully distinguishable. However, this displacement has a
problem when the system contains malicious users: any attacker can easily
pretend to be flow f1 by using an empty tag set. As a result, when an attacker
exists, all flows must be covered by some tags. Column “tags 2” shows an
optimal placement by deploying RSUs on stretches e4, e7, and e8, and this
placement provides full distinguishability and coverage on the given flows.
However, in terms of security, the requirements of full coverage and full
distinguishability are not enough. For the attackers who travel along the flow
f6, they are able to be disguised as either f1 or f2 by intentionally dropping tags
from e4 or e7, since the tag sequence of f6 is a super-sequence of that of f1 and
f2. The secure and optimal RSU placement in Figure 29.3 is to deploy RSUs on
{e4, e6, e7, e8}, and the corresponding tag sequence of each flow can be found
in the “tags 3” column of Table 29.1’s.
Generally, the optimal placement of RSUs must guarantee three conditions.

First, a minimal number of RSUs are deployed on certain road stretches. Sec-
ond, the vehicles traveled along different routesmust be distinguishable accord-
ing to their received environmental evidences’ RSU identities. Last, considering
that an adversary may intentionally drop certain RSUs’ messages in order to
create fake location claims, a flow’s tag sequence cannot be the subsequence of
any other flow’s received tag sequence.

29.4.4.1 Problem Formulation
Let graph G = (V ,E) denote a map, where node set V is a set of road intersec-
tions, and edge set E = {e} represents all road segments on G with E ⊆ V 2. G
containsmpredefined vehicle flowsF = {f1, f2,… , fm}. Each flow is represented
as a walk, which is a sequence of edges, fi ∈ (e1, e2,…). For the ease of descrip-
tion, we redefine the symbol “⊆” to represent a subsequence relationship, and
we have fi ⊆ fi, Ø ⊆ fi. Note that all flows in F satisfy: fi ⊈ fj for ∀i, j, i ≠ j, and in
a walk, both nodes and edges can be repeated, as illustrated in Figure 29.4. For
instance, in Figure 29.4, if all edges are deployed with RSUs, the tag sequence
for f2 is (e1, e5, e8, e6, e2, e5, e8, e6, e3, e4), which is a walk.
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f1
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Figure 29.4 Distinguish four
vehicle flows by roadside stations.

In order to securely distinguish vehicles of different vehicle flows, several
RSUs are deployed on E: whenever a vehicle passes an RSU, the vehicle will
receive an environmental evidence, which contains the unique ID of the RSU
[25]. Let xe denote whether road segment e contains an RSU (i.e., xe = 1) or not
(i.e., xe = 0) and f ′ be the road tag sequence of f . f ′ is a subsequence of f , where
only the elements e of f with xe = 1 are kept. We say flows fi and fj are securely
distinguishable if their tag sequences are not in subsequence with each other:
f ′i ⊈ f ′j and f ′j ⊈ f ′i .
Our objective is to securely distinguish all flows in F by deploying aminimum

number of RSUs on E. The optimal RSU placement problem can be formulated
as follows:

min
∑
e∈E

xe

s.t. f ′i ⊈ f ′j , ∀i, j, i ≠ j
xe ∈ {0, 1}

In the environmental evidences, RSU tags (i.e., RSUi) show the spatial rela-
tionship among different flows [26], and the time-bounded random numbers
(i.e., Ri(T)) issued from different RSUs offer temporal relationships to indicate
the direction of each flow. Note that, in practice, a flow may contain multiple
vehicles, and each vehicle will save a series of on-road data records, from the
beginning to the end of the flow, as one data unit.

29.4.4.2 Properties

Theorem 29.1 The optimal RSU placement is NP-hard.

Proof : For each pair of flows fi and fj, we define a distinguish set asdij = {ek|ek ∈
fi, ek ∉ fj}, which gives a set of possible locations on which deploying RSUs can
distinguish flow fi from fj. Due to the requirement of non-subsequence relation,
dij ≠ dji.Thewhole distinguish set for all flows is D = {dij,∀i, j, i ≠ j}.We say dij
is covered by an RSU placement set d′ = {e|xe = 1} if ∃e ∈ d′ such that e ∈ dij.
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The optimal RSU placement problem is to find an optimal set d∗ = {e|xe = 1}
such that every element dij ∈ D is covered by d∗. Clearly, it is a variation of the
classic maximum independent set problem [27], which is NP-hard.

Note that the optimal placement of RSUs only under the constraints of
full coverage and full distinguishability is also an NP-hard problem [28]. But
from the consideration of securities, we must consider the constraint about
non-subsequence. As any two flows in F are distinct and any flow is not the
subsequence of others, an optimal RSU placement always exists. In the worst
case, one can simply install RSUs on every road stretch, and then all flows are
securely distinguishable. In addition, we have the following bounds on the
minimum and maximum numbers of RSUs.

Theorem 29.2 The minimum number of roadside stations, which can pro-
vide distinguishability to F , must be no less than ⌈log 2m⌉, where m is the
cardinality of F .

Proof : We prove it by contradiction. Suppose there is an optimal placement
using ⌈log 2m⌉ − 1 stations. We give these stations an order and use a binary
number with length ⌈log 2m⌉ − 1 to represent whether a flow received the cor-
responding tags. There are totally 2⌈log 2m⌉−1 possible values of this number.
Let k = ⌈log 2m⌉, thenwe have 2k−1 < m ≤ 2k . Because 2⌈log 2m⌉−1 = 2k−1 < m,
there must exist at least one pair of flows, fi and fj, having received a same set of
tags. In other words, fi and fj are indistinguishable. Contradiction occurs, and
therefore, the minimum number of roadside stations should be greater than or
equal to ⌈log 2m⌉.
The result shows the limit of binary coding to distinguish m flows.

Theorem 29.3 The minimum number of roadside stations, which can pro-
vide distinguishability to F , must be no more than min

(
m(m−1)

2
, |EF |

)
, where m

is the number of flows and EF is the edge set of F .

Proof : In the worst case, for every pair of flow, we need to build a new road-
side station to distinguish them.Therefore, there are at most m(m−1)

2
stations. In

addition, for the given flow set F = {f1, f2,… , fm}, since fi ≠ fj,∀fi, fj ∈ F , the set
of the optimal solution used edges must be a subset of EF = {e|e ∈ fi,∀fi ∈ F}.

The results show two worst cases: (i) one station is needed to separate every
pair of flows for a total number of m flows, and (ii) each edge has one station
in place.
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Algorithm 1 Distinguishability-Oriented Greedy (DOG) Approximation
1: Construct distinguish set {dij}
2: while D ≠ Ø do
3: Select one edge d∗ ← d∗ ∪ {ei} covered most number of sets in {dij}
4: Update {dij} by removing the sets which have been covered

29.4.4.3 Approximation for the Optimal RSU Placement
Algorithm 1 is a Distinguishability-Oriented Greedy Algorithm, which always
selects the edge covering the most number of elements in the remaining set.
However, unlike the maximum independent set problem, in the optimal RSU
placement problem, the constructed tag sequence of each flow cannot be the
subsequence of any other flow’s tag sequence. To approximate the optimal
result, we first construct the overall distinguish set D for all flows, which is
given by Algorithm 2, lines 3–5. Consider that for the flows satisfying dij ⊆ di′j′ ,
when an optimal set d∗ covers dij, it must also cover di′j′ . In other words,
the RSU placements satisfying dij must also provide both distinguishability
and coverage for di′j′ . Therefore, in Algorithm 2, lines 7–10, we eliminate the
subsequence relations from D. For the remaining elements of D, assuming di,
if it contains one and only one edge, then this edge e must be associated with
an RSU; otherwise, the corresponding flows related with the di will not be
securely distinguished or fully covered. We call these types of edges requisite
edges, and lines 12–17 create the optimal RSU placement set d∗ by including
all requisite edges. The overall distinguish set D is updated by eliminating all
elements that are covered by the constructing set d∗. Finally, from lines 20
to 26, within the resulting set D, we construct d∗ by greedily selecting the
edges covering the largest number of remaining elements in D. The process
stops when all elements of D are covered by d∗, and d∗ gives the approximated
optimal locations for placing RSUs.
Let’s consider an example inTable 29.1 and Figure 29.3. For the six flows, their

pairwise distinguish sets are shown in Table 29.2. We eliminate any dij from
D if ∃di′j′ ∈ D s.t. di′j′ ⊆ dij. The resulting D = {{1, 7}, {4}, {7, 5}, {2, 8}, {6},
{8, 3}, {5, 8}, {7, 2}}. Since some dij values only contain e4 or e6, they are the
requisite edges of the given flows.Therefore, at the third part of Algorithm2, we
create d∗ = {4, 6} and update D to {{1, 7}, {7, 5}, {2, 8}, {8, 3}, {5, 8}, {7, 2}}.
Find the remaining edges in D, which are ED = {1, 2, 3, 5, 7, 8}, and com-
pute the edges’ appearing times in D: |Q(e1)| = 1, |Q(e2)| = 2, |Q(e3)| = 1,|Q(e5)| = 2, |Q(e7)| = 3, and |Q(e8)| = 3. e7 and e8 appear the most times;
we randomly select e7, and d∗ becomes {4, 6, 7}. Updating D, ED, and Q(e),
we have D = {{2, 8}, {8, 3}, {5, 8}}, ED = {2, 3, 5, 8}, |Q(e2)| = 1, |Q(e3)| = 1,|Q(e5)| = 1, and |Q(e8)| = 3. Since e8 has the highest appearing frequency, we
put another RSU on e8, d∗ = {4, 6, 7, 8}. After another round of updating, D
becomes an empty set and Algorithm 2 terminates. The final optimal edges for
deploying RSUs are e4, e6, e7, and e8.
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Algorithm 2 RSU Optimal Placement Approximation
1: D ← Ø, d∗ ← Ø
2: /* Construct distinguish set: lines 2-5 */
3: for ∀fi, fj ∈ F do
4: dij ← {e|e ∈ fi, e ∉ fj}, dji ← {e|e ∈ fj, e ∉ fi}
5: D ← D ∪ {dij, dji}
6: /* Eliminate subsequence relation: lines 6-10 */
7: Sort D = {d1, d2,… , dk} s.t. |di| ≥ |dj| if i < j
8: for i ← 1… k do
9: if ∃dj ⊆ di, j> i, dj ∈ D then

10: D ← D∖{di}
11: /* Include requisite edges in d∗: lines 11-17 */
12: for ∀di ∈ D do
13: if |di| == 1 then
14: d∗ ← d∗ ∪ di, find e s.t. e ∈ di
15: for ∀dj ∈ D do
16: if e ∈ dj then
17: D ← D∖{dj}
18: /* Find other elements of d∗ by a greedy scheme: lines 18-26 */
19: while D ≠ Ø do
20: Create edge set ED ← {e|∃d ∈ D, e ∈ d}
21: For ∀ek ∈ ED, compute Q(ek) ← {d|∃d ∈ D, ek ∈ d}
22: Find ei ∈ ED s.t. |Q(ei)| ≥ |Q(ej)| for ∀ej ∈ ED, i ≠ j
23: d∗ ← d∗ ∪ {ei}
24: for ∀dj ∈ D do
25: if ei ∈ dj then
26: D ← D∖{dj}

Theorem 29.4 By deploying RSUs on the edges found by Algorithm 2, the tag
sequences of any two flows fi, fj ∈ F surely satisfy f ′i ⊈ f ′j .

Proof : We prove the theorem by contradiction. Assume that there is at least
one pair of flows fi, fj ∈ F , whose tag sequences satisfy f ′i ⊆ f ′j . There are totally
three conditions that may cause a subsequence relation: (i) f ′i = Ø, (ii) f ′i = f ′j ,
and (iii) f ′i , f ′j ≠ Ø, f ′i ≠ f ′j , f ′i ⊆ f ′j . For the given flow set F , any two flows are
unique and non-sequence fi ⊈ fj, and, therefore, there is at least one pair of
edges ei and ej satisfying ei ∈ fi, ei ∉ fj, ej ∈ fj, and ej ∉ fi. According to the def-
inition of distinguish sets, we have dij ∩ dji = Ø, ei ∈ dij ≠ Ø, and ej ∈ dji ≠ Ø.
Since Algorithm 2 requires d∗ ∩ d ≠ Ø for ∀d ∈ D, the resulting set d∗ must
contain edges e∗i and e∗j such that e∗i ∈ dij and e∗j ∈ dji, which also means that
neither f ′i nor f ′j can be empty; it is impossible for condition (i) to occur. Since
dij ∩ dji = Ø, f ′i must possess at least one tag e∗i , which f ′j does not contain. So,
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Table 29.2 The construction of dij for flows in Figure 29.3.

dij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 {1, 7} {1, 7, 6} {7, 5} {6} {1, 5, 6}

i = 2 {4} {6} {4, 5} {4, 6} {5, 6}

i = 3 {4, 8, 3} {8, 3} {4, 5, 3} {4} {5, 8}

i = 4 {2, 8} {1, 2, 8} {1, 2, 6} {2, 6} {1, 8, 6}

i = 5 {8, 3} {1, 7, 8, 3} {1, 7} {7, 5, 3} {1, 5, 8}

i = 6 {4, 2, 3} {7, 2, 3} {7, 2} {4, 7, 3} {4, 2}

both conditions (ii) and (iii) cannot happen. As a result, by using Algorithm 2,
any two flows must satisfy f ′i ⊈ f ′j .

29.4.4.4 Extension: Optimal RSU Placement with Package Loss
In the real world, moving objects such as trucks can block the communication
line of sight between an RSU and cars [13]. Therefore, wireless signal-based
environmental evidences may fail to be delivered to the passing vehicles. Miss-
ing an RSU’s signal may cause location verification or the data retrieval of a
vehicle flow to fail. For example, in Figure 29.2, losing the tags from RSUb or
RSUc will cause the system to be unable to determine whether the correspond-
ing vehicles were traveling along the upper or the lower path, especially when
the paths have a similar length.
The package loss rates on different road stretches may not be the same due

to their traffic densities and topographies.We denote ri as the package loss rate
for each RSU that is placed on the road stretch ei, and bi is used to represent
the billing (i.e., cost) for deploying an RSU on ei. Multiple RUSs can be placed
on the same road stretch tomitigate package losses. For vehicles, receiving sev-
eral RSUs’ environmental evidences on a road stretch is functionally equivalent
to obtaining a single tag in the ideal model, where package loss rate is zero.
Moreover, we assume that the tag losses for different RSUs are independent
of each other. Let ki ∈ {0, 1, 2,…} denote the number of RSUs placed on the
road stretch ei. Then, the probability of the tag delivery on ei can be calculated
as 1 − rki

i , and the corresponding deploying cost is bi × ki. Since vehicles may
receive multiple environmental evidences on one road stretch, we redefine the
road tag sequence as the following: f ′ is a subsequence of vehicle flow f , where
only the elements ei of f with ki > 0 are kept.
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The problem of optimal station placement with tag loss is defined as fol-
lows: using a minimal RSU deployment costs such that every different vehicle
flow is theoretically distinguishable and that the average recognizing probabil-
ity on-road stretches, on which RSUs are deployed, is no less than a predefined
threshold.The problem of optimal station placement with tag loss can be refor-
mulated as the following:

min
∑
ei∈E

(bi × ki)

s.t. f ′i ⊈ f ′j , ∀i, j, i ≠ j

1 − rki
i > 𝜏, ∀ki ≠ 0

ki ∈ {0, 1, 2,…}, ∀ei ∈ E

The approximation algorithm for the optimal RSU placement problem with
package loss is given inAlgorithm 3. Since the requisite edgesmust be deployed
with RSUs in order to provide a full distinguishability, the beginning parts of
Algorithms 2 and 3 are the same. However, for the construction of the remain-
ing part, Algorithm 2 always selects the edge covering the most number of
distinguish sets in the remaining D, while Algorithm 3 picks the one with the
least cost per set coverage. Algorithm 3 line 4 computes the total costs B(ek) for
achieving the required RSU-based recognizing probability on edge ek . In line
5, it finds out the distinguish sets Q(ek) that would be covered after the edge
ek has been selected. The final set d∗ is constructed by using the edge with the
lowest B(ei)∕|Q(ei)| value, where | ⋅ | is the cardinality of a set.
29.4.4.5 Performance Analysis
In this section,we test the performance of theRSUplacement algorithms,Algo-
rithms 2 and 3. We use Figure 29.3 as the regional map, which consists of 8
road stretches, and use the 6 flows in Table 29.1 as the given flows within the
region.
We first test Algorithm 2. First, we consider the impotentness for the deploy-

ing locations of RSUs. In Figure 29.5, we gradually increase the number of
RSUs, which are deployed within the given region and compare the difference
of RSU tag-based distinguishability by using the deploying strategies of Algo-
rithm 2 and a random approach, which randomly selects several road stretches
to install RSUs. In order to measure the distinguishability among flows, we
propose a concept, called securely distinguishable rate (SDR). Recall that, for
any pair of vehicular flows fi and fj, if their RSU tag sequences satisfy f ′i ⊈ f ′j ,
then we say fi and fj are securely distinguishable. Similarly, SDR computes the
percentage of securely distinguishable flow pairs out of all possible pairs, and
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Algorithm 3 RSU Placement with Package Loss
1: Algorithm 2 lines 1-17.
2: while D ≠ ∞ do
3: Create edge set ED ← {e|∃d ∈ D, e ∈ d}
4: For ∀ek ∈ ED, compute B(ek) ← bi × ⌈ log(1−𝜏)

log ri
⌉

5: For ∀ek ∈ ED, compute Q(ek) ← {d|∃d ∈ D, ek ∈ d}
6: Find ei ∈ ED s.t. B(ei)

|Q(ei)
| ≤ B(ej)

|Q(ej)| for ∀ej ∈ ED, i ≠ j
7: d∗ ← d∗ ∪ {ei}
8: for ∀dj ∈ D do
9: if ei ∈ dj then

10: D ← D∖{dj}
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Figure 29.5 Securely
distinguishable rate (SDR).

simulation results are shown in Figure 29.5. From the figure, we can see that
the SDR values of both random scheme and Algorithm 2 are initially very close
to each other when only few RSUs are used; however, with the growth of the
RSU numbers, the SDR of Algorithm 2’s deployment significantly and quickly
goes up to 100%. Since different road stretches possess diverse impotentness
for flows’ distinguishability, the deploying locations of RSUs must be carefully
selected.
In Figure 29.6, we randomly assign a tag loss rate to each road stretch and

check the impact of RSU construction costs on the deployment locations.
In this part of simulation, we first let all stretches have the same deploying
costs, and then, we intentionally add some random extra costs on the critical
edges, which are selected by Algorithm 2. The average extra costs are 25% and
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Figure 29.6 Alternate
deploying rate (ADR).

70 75 80 85 90 95

0

20

40

60

80

100

A
D

R
 (

%
)

Success receiving rate (%)

 Uniform cost

 Extra 25% 

 Extra 50%

50%, respectively. For observing the change of the deployment locations, we
further propose another concept, called alternate deploying rate (ADR), which
counts the percentage of Algorithm 3’s results using an alternate deployment
other than the previous Algorithm 2’s result. The greater the ADR is, the
more impacts of construction costs on the RSU deployment. In Figure 29.6,
we gradually increase the minimal tag acceptance rate 𝜏 and the ADR values
under different construction costs. Figure 29.6 clearly shows that, with an
increasing 𝜏 , more and more cases drop the previous deploying result (i.e.,
Algorithm 2) and turn to use some cheaper stretches for achieving a fully
secure distinguishability.

29.4.5 Time Synchronization among Roadside Units

In reality, someRSUs, especially the ones deployed in less-traveled regions,may
not be able to access the Internet. For using the environmental evidence-based
verifiable data indexing in smart city, some special cars are used to periodically
collect the historically used RSS time sequence {p} from these RSUs and reas-
sign the random number-related parameters (T0,ui,Δui) to them. Although
the verification process of the evidence of presence in these regions takes more
time, the whole environmental evidence-based system works normally.
The functionality of our system is based on a crucial assumption that all

RSUs are time synchronized. For most regions, this requirement can be easily
achieved, as long as there are Internet connections or GPS signals. In practice,
RSUs are usually cheap devices without high-accuracy atomic clocks [29]. So,
theremay be time drifting issues for the RSUswithout any network connection,
which inevitably results in time inconsistency among vehicles and RSUs. Recall
that, for avoiding an environmental evidence being modified by attackers, the
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Figure 29.7 Clock
synchronization problem
among RSU stations. All
four roadside stations are
not synchronized. The
system can never tell
whether vehicle A or B
passed the shadowed
region first.

RSUs’ messages are associated with a stations’ own time-bounded random
number. When the local clocks of RSUs are unsynchronized, not only the data
management server is unable to verify the authenticity of some location claims
in the proactive mode but also the inconsistency can cause data ambiguities or
disorder in the reactive mode.
Take Figure 29.7 as an example. First, the numerical relationship of two

RSUs’ time stamps may cause disorder in the interpretation of the real visiting
sequence. Suppose that the vehicle A consecutively received two environmen-
tal evidences {PCa, La} and {PCc, Lc}, respectively, from RSUa and RSUc
at times Ta and Tc, where PCi represents the physical clock of RSUi. Since the
car moved from RSUa to RSUc, the real generation time of the evidences must
satisfy Ta < Tc. However, due to unsynchronized time of RSUa and RSUc, the
time information embedded in the evidences may become PCa > PCc, which
could be interpreted as A driving from RSUc to RSUa. Second, the inconsistent
local clocks make data incomparable. Also in Figure 29.7, assume that RSUa
and RSUc are synchronized and so are RSUb and RSUd, but RSUa and RSUb
are not. Vehicle A moved from RSUa to RSUc, and vehicle B drove from RSUb
to RSUd. However, since the time is unsynchronized, we cannot determine
whether A or B passed the shadowed region first. In real life, the passing order
of a region is critical in criminal investigations. Therefore, the clocks of RSUs
must be synchronized.
Here, we use special vehicles to periodically synchronize the local clocks

between different RSUs. For each RSU, if no vehicle passes RSUi at physical
time t, then PCi is differentiable at t and dPC(t)∕dt > 0 [30]. If there is a car A
that passed RSUi at physical time t, then A contains PCi(t). A vehicle A’ from
RSUj arrives RSUi at time t, and the vehicle’s local time is PCj. The RSUi sets
PCi to max(PCi(t),PCj + Δt), where Δt is the traveling delay of a vehicle from
RSUj to RSUi. In the meantime, the special vehicles record the time difference
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max(PCi(t),PCj + Δt) − PCi(t) and historical RSS values, which will be used
for data verification and indexing at the central data management server.

29.5 Conclusion

Vehicular data provide a new perspective for many applications in smart city.
Unlike the conventional data, where each data is a discrete record, vehicular
data is usually a sequence of spatiotemporal records about the surround-
ings. Compared to location-based services or mobile social networks, the
moving trajectories of vehicles within a region are more predicable due to
traffic restrictions. Regarding the aspects of security and privacy, this unique
feature makes the construction of verifiable vehicular data indexes become
cheaper than that of a series of location proofs in a mobile social network,
which is strongly dependent on the cryptographic keys among different
participants. In this chapter, we propose a new management system by using
wireless signal-based environmental data to verify and index vehicular data.
Considering that many applications in smart cities are only interested in the
correctness of where and when data is collected, in our system, vehicles do
not possess any cryptographic key; instead, they simply listen and collect
the environmental evidences along their trajectories, and in our system, only
the recorded environmental evidences are used to verify/index the vehicular
data. In order to guarantee that the collected evidences of different vehicle
flows are unique, we deploy several roadside signal transmitters to generate
the environmental evidences. Considering the deploying costs and accuracy,
we further study the optimal placement problem and time synchronization
problem of the transmitters. We believe that the proposed environmental
evidence-based vehicular system can bring many new research opportunities
to smart cities.

Final Thoughts

In this chapter we discussed the concept of location proof for vehicular trajec-
tory data in smart cities.We overviewed the existing approaches for generating
the location proof for a single location spot and provided a set of surround-
ing environmental information, which can potentially be used to generate the
unpredictable, verifiable, and indexable location proofs. We also presented a
detailed framework by using the wireless signals from Road Side Units (RSUs)
to generate the location proof. And finally we discussed the optimal RSU place-
ment problem and the location–time synchronization problem among RSUs.
The concept of environmental evidence-based location proof for vehicular tra-
jectories provides a brand-new research direction in smart cities.
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Questions

1 What is the definition of location proof for vehicular trajectory data?

2 How does the conventional location proof disclose user’s location privacy?

3 What are the definitions of full distinguishability, full coverage, and secure
distinguishability?

4 What is the definition of the optimal RSU placement problem?

5 Why does the synchronization of RSUs’ local clocks matter?
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