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Abstract Detecting road potholes and road roughness
levels is key to road condition monitoring, which im-
pacts transport safety and driving comfort. We propose

a crowdsourcing-based road surface monitoring system,
simply called CRSM. CRSM can effectively detect road
potholes and evaluate road roughness levels using hard-

ware modules mounted on distributed vehicles. These
modules use low-end accelerometers and GPS devices to
obtain vibration patterns, locations, and vehicle veloc-

ities. Considering the high cost of onboard storage and
wireless transmission, a novel light-weight data min-
ing algorithm is proposed to detect road surface events

and transmit potential pothole information to a central
server. The server gathers reports from multiple vehi-
cles, and makes a comprehensive evaluation on road

surface quality. We have implemented a product-quality
system, and have deployed it on 100 taxies in the Shen-
zhen urban area. The results show that CRSM can de-

tect road potholes with 90% accuracy, with nearly zero
false alarms. CRSM can also evaluate road roughness
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levels correctly, even with some interferences from small
bumps or potholes.
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1 Introduction

Road surface conditions have been a public concern in
modern society. City municipalities have paid million-
s of dollars to detect, maintain, and repair the road-

ways each year. A study by the U.S. Department of
Transportation has shown that road conditions are an
essential factor of highway quality [3]. One of the main

road surface condition metrics is the density of road
potholes, which can cause serious damage, and should
be repaired as early as possible. In addition, the rough-

ness level of road surfaces is also an important metric
that reflects the condition of road health. This paper
seeks to evaluate these two metrics in an efficient way,

following a crowdsourcing approach.

Our basic observation is that accelerometers will ex-
perience significant vibration when the vehicle is pass-
ing an “abnormal” section of road (e.g., potholes, man-

holes, and expansion joints), thus producing abnormal
readings compared to data from smooth road surfaces.
We only store and transmit data associated with these

abnormal events to a central server. Meanwhile, we
try to establish a relationship between the road sur-
face roughness level and acceleration signal. According

to the Technical Code of Maintenance for Urban Road
CJJ36-2006 [25], one of the industry standards in Chi-
na, we provide a low-cost solution for road roughness

detection.
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We describe the design and implementation of a

crowdsourcing-based road surface monitoring system,
simply called CRSM. It can detect road potholes and
evaluate road roughness levels with our hardware mod-

ules installed on distributed vehicles, which are wire-
lessly connected to a central server. A CRSM module
consists of an accelerometer and a GPS module to i-

dentify road vibration and obtain location and vehicle
velocity. To minimize storage and transmission costs,
a light-weight data mining algorithm, namely i-GMM

(improved Gaussian Mixture Model), is proposed to de-
tect road surface events, and transmit pothole informa-
tion to the server. CRSM also presents a road roughness

classification algorithm to determine the road rough-
ness level. Experimental results show that CRSM can
detect road potholes with 90% accuracy, with nearly

zero false alarms. CRSM can also evaluate road rough-
ness levels correctly, even with some interferences from
small bumps or potholes.

The highlight of CRSM is its practicality. The sys-
tem has been deployed on 100 taxies in the Shenzhen
urban area, and has operated for more than two years,
providing useful information for the Transportation Bu-

reau of Shenzhen Municipal Government. The system
has also been tested in the Highway Traffic Testing
Field of Ministry of Transportation in Beijing. CRSM

makes the following contributions to the community of
vehicular networking and services:

– An architecture of a crowdsourcing-based road sur-

face monitoring system for both pothole detection
and road surface roughness evaluation;

– Algorithms for event detection and pothole identifi-

cation, improving on previous techniques;
– An online algorithm for road surface roughness e-

valuation in compliance with industry standards;

– A comprehensive evaluation of the system that brings
us lessons on the design of related services and sys-
tems.

The remainder of this paper is organized as follows.
Section 2 provides a brief overview of previous work-
s. Section 3 gives an overview of our system architec-

ture. Section 4 and Section 5 discuss the methods of
road pothole detection and road roughness level classi-
fication, respectively. Section 6 presents our evaluation

on real taxies. Section 7 discusses future work. Finally,
Section 8 concludes this paper.

2 Related work

In this section, we give a brief review of related work
on pothole detection and road roughness level classifi-

cation.

2.1 Road pothole detection

Many road pothole detection solutions have been pro-
posed in this literature. In [1], citizens are encouraged to
share and upload the pothole information to public on-

line websites. Various sensors such as 3D laser scanning
devices, along with 3D reconstruction algorithms, are
used to measure the size of road potholes [11, 12, 14].

They capture the 3D digital models of road surface
with a real-time laser scanner, and apply the stereo-
vision technique to extract potholes. In [7,27], cameras

are installed on vehicles to record road videos, from
which road conditions are inferred with three layer feed
forward neural networks. These pothole detection tech-

niques are not convenient enough for deployment, or
are too expensive for wide adoption.

Recently, accelerometers have been increasingly u-
tilized in road condition monitoring. Normally, a vehi-

cle vibrates more than normal when passing potholes,
contraction joints, manholes, expansion joints, etc. The
vibration can be effectively captured by an onboard ac-

celerometer. Given an accelerometer and a GPS device,
we can identify a road vibration situation and its cor-
responding location [26]. This method needs to sense,

store, and upload all the acceleration and GPS data to
a central server for further processing, such as Pothole
Patrol [10], BusNet [13], Nericell [19]. However, the

high demand for data storage and data transmission
remains a challenging issue.

2.2 Road roughness level classification

Information of road surface roughness is important for
evaluating the health status of roads. Xu et al. [24]
present a criterion of road roughness based on power

spectral density of vehicle vibration. Semiha et al. [20]
study the random vibration characteristics of the quar-
ter car model to describe vehicle vibration. Zhang et

al. [28] discuss a roughness measurement system based
on a laser range finder. Dyer et al. [9] describe how to es-
timate an international roughness index from noisy pro-

filograph measurements. Hostettler et al. [4] summarize
the current equipment for road condition measuremen-
t, composed of accelerometers, distance instruments,

graphic displays, or some other instruments. These road
condition evaluation systems are highly expensive, cost-
ing 8,000 to 220,000 dollars for a single vehicle.

3 Overview

In this section, we first present the system architec-

ture of CRSM along with the corresponding hardware
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Fig. 1: CRSM system architecture.

design. Then we describe the software architecture of
road pothole detection and road roughness level classi-
fication.

3.1 System architecture

CRSM uses a set of hardware devices installed on ve-

hicles for data collection and a central server for multi-
source data fusion. The system architecture is depicted
in Figure 1.

Each onboard hardware module is mainly composed

of a microcontroller (MCU), a GPS module, a three-
axis accelerometer, and a GSM module. When the ve-
hicle is traveling, the accelerometer reads continuous

acceleration data, the GPS module outputs the accu-
rate time, location, and velocity of the vehicle, the M-
CU executes algorithms to extract useful data, and the

GSM module transmits the results to the central server.

More specifically, the onboard module is designed
with low-end hardware to facilitate wide adoption in the

city. We use a client microprocessor with limited CPU
capacity and storage, and a low-end MEMS accelerome-
ter. In detail, the client microprocessor is a 32-bit cortex

ARM chip STM32F103 with 72MHz maximum system
clock and 256KB memory, which is not sufficient for
common algorithm complexity demand and storage de-

mand. The MEMS motion module, LIS33DE, is adopt-
ed as the three-axis accelerometer. It has a 100Hz sam-
pling frequency with a 2g dynamic measurement scale.

The GPS receiver is the vehicle-mounted HM-CZ02 G-
PS sensor with 1Hz sampling frequency. Finally, the
GSM module is equipped with a common commercial

SIM card.

The GSM traffic presents a major cost in the sys-
tem. In our system, for example, the GSM data budget
is no more than 30 MB per month. We therefore can-

not transmit the raw data to the central server, as the
data is too large in size. Because of this, we transmit
only useful information, which is determined by a light

weight online data mining algorithm.

Fig. 2: CRSM software architecture.

3.2 Software architecture

The software architecture of CRSM is presented in Fig-
ure 2, which consists of five layers, namely the sensor

layer, the reasoning layer, the transport layer, the fu-
sion layer, and the application layer. The bottom three
layers are deployed at the client side, where sensor data

are acquired, analyzed, and transferred. The top two
layers are executed at the server side, where data from
multiple sources are fused to generate comprehensive

results.

In the sensor layer, raw GPS and accelerometer read-
ings are periodically collected by onboard hardware sen-
sors, which are updated at rates of 1 Hz and 100 Hz,

respectively. The sampled data are primarily analyzed
by an online data mining method in the reasoning lay-
er. Specifically, an i-GMM-based event detection algo-

rithm is executed to find potential pothole locations,
and a road roughness classification algorithm is used to
extract road roughness level information. Then, these

results are packed and transmitted to the central server
by a GSM module in each vehicle.

The central server gathers data from the distribut-
ed vehicles, and obtains a comprehensive conclusion in
the fusion layer. For road pothole detection, it applies

four pothole filters to remove irrelevant events in the
received data, employs an EEMD-based pothole extrac-
tion method to eliminate interfering events such as de-

celerating belts, and combines the outcome of multiple
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vehicles’ pothole detection results. For road roughness

detection, road roughness level results are merged with
a data fusion method. Finally, a pothole map and a
road roughness level map are built to show the global

road surface health in the application layer.

4 Road pothole detection

The CRSM system selectively reports useful data to

the central server by discarding acceleration data on
smooth roads. First, we design an event detection al-
gorithm to identify “abnormal” vibrations. Then the

central server will further analyze the data from multi-
ple vehicles to obtain more accurate results.

4.1 Event detection

Event detection is a process for identifying potential
potholes on the road surface [21]. An onboard accelerom-

eter can sense vehicle vibrations by examining the z-axis
acceleration. Normally, the vibration on abnormal road
sections is greater than that on smooth sections, so an

abrupt increase of z-axis acceleration often signifies a
pothole.

The Z-peak method declares an event if the current
z-axis acceleration is larger than a predefined threshold.
However, a vehicle’s vibration and acceleration vary

greatly on different roads, and at different driving veloc-
ities. It is therefore impossible to determine a universal
threshold that applies to all possible situations.

To address this problem, we introduce a Gaussian

Mixture Model (GMM) algorithm for event detection.
The GMM can learn the background signal online, with-
out needing to train parameters for different road con-

ditions beforehand; this differs greatly from previous
methods. Furthermore, we propose an i-GMM algorith-
m to overcome the drawbacks of the GMM.

4.2 The Gaussian Mixture Model (GMM)

The z-axis acceleration signal captured from a smooth

road may be fitted by a Gaussian distribution. An ex-
ample of empirical z-axis acceleration is shown in Fig-
ure 3, which confirms this hypothesis. The Gaussian

distribution with mean µ and variance σ2:

η(x|µ, σ2) =
1√
2πσ

e−(x−µ)2/2σ2

, (1)

can be dynamically updated from historic information.
In our situation, the magnitude of vibration caused by

a pothole is much greater than that caused by a smooth
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Fig. 3: Distribution of the z-axis acceleration from a smooth
road.

road surface. So a signal X is considered as a pothole
if it deviates widely from the mean µ of the smooth

road. That is to say, X is a pothole signal if the abso-
lute difference of X and µ is greater than a predefined
threshold Mth times the standard variance σ, that is∣∣∣∣X − µ

σ

∣∣∣∣ > Mth. (2)

Otherwise, X is considered to be a smooth road sig-
nal, and its mean µ and variance σ will be learned as

follows:

µ′ = (1− δ)µ+ δX

σ′2 = (1− δ)σ2 + δ(X − µ)2

δ = αη(X|µ, σ2),

(3)

where α is a learning rate, and δ is α time probability

density function learnt from the past signals.

The above method is the single Gaussian model,
which is only a rough approximation of the background

signal. A better solution with improved accuracy is giv-
en by the Gaussian Mixture Model (GMM), which uses
K Gaussian distributions to fit the background signal-

s [15, 21], as is evident from the multiple peaks in Fig-
ure 3. An intuitive idea is that acceleration signals are
generated by various sources and errors which follow

their respective Gaussian distributions. So the GMM
assigns a weight ωk to each of the K Gaussian distri-
butions ωkη(µk, σ

2
k, ωk) following

∑K
k=1 ωk = 1.

Consider a newly sampled signal X. The GMM first
updates the parameters of each Gaussian distribution
to best fit X, and then estimates X as a background

signal or an event.

4.2.1 Online update

If the signal X matches any of the K Gaussian distri-
butions, it means that the current GMM is robust for
X. Suppose η(µk, σ

2
k, ωk) is a matched distribution. We

add its weight and update its mean and variance as
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follows:

µ′
k = (1− δ)µk + δX

σ′2
k = (1− δ)σ2

k + δ(X − µk)
2

ω′
k = (1− α)ωk + α

δ = αη(µk, σ
2
k, ωk),

(4)

In this case, an unmatched distribution holds the

same mean and variance, but its weight will be de-
creased. Its parameters are updated as follows:

µ′
k = µk

σ′2
k = σ2

k

ω′
k = (1− α)ωk.

(5)

If the signal X does not match any of the K Gaus-

sian distributions, it shows that the current GMM is
not robust for X. The least probable distribution (with
the lowest ωk) is replaced with a new distribution to

better fit the current signal X. This new distribution
takes on the current signal X as its mean value, with a
predefined high variance and a low weight.

k = argmin
k

ωk

µ′
k = X

σ′2
k = σ2

0

ω′
k = ω0,

(6)

where weights are normalized so that
∑K

k=1 ω
′
k = 1.

4.2.2 Background model estimation

After online update, we would like to determine whether
the current signalX is an event. Among theK Gaussian

distributions, we are interested in distributions which
are most likely to be produced by the background. Intu-
itively, these distributions have the highest weights and

lowest variances. At the same time, the less probable
distributions will be downplayed.

Next, the K Gaussian distributions are ordered by

ω′
k/σ

′
k, so the most likely distributions are placed on

top. Then, the top B distributions are selected as the
background model,

B = argmin
b

(

b∑
k=1

ω′
k > T ), (7)

where T is a predefined threshold to determine how

many distributions are used to represent the current
background.

Finally, the current signal x is estimated with the

B selected distributions. Similar to the single Gaussian

model, X is considered as an event if all these B distri-

butions η(µ′
k, σ

′2
k , ω′

k) satisfy

Mk =

∣∣∣∣X − µ′
k

σ′
k

∣∣∣∣ > Mth, (8)

where Mth is a predefined event detection threshold.
Otherwise, X is not considered as an event.

4.3 Two drawbacks of the GMM

When we used the GMM for event detection, we found

two drawbacks caused by the variation in velocity.

4.3.1 Drawback 1: fixed event detection threshold

In practice, the vehicle vibration is highly affected by

the driving velocity. For example, when driven at a high
velocity, the vehicle vibrates greatly and our onboard
accelerometer will generate higher vibration amplitude.

In fact, Watts et al. [18] have carried out a set of exper-
iments on ground vibration levels with different vehicle
velocities, and pointed out that vehicle vibration level

and driving velocity are roughly in a linear relation-
ship when velocities are between 15 km/h and 45 k-
m/h. Thus, we can view z-axis accelerations as roughly

proportional to vehicle velocities.
Suppose a vehicle moves at a high velocity on a s-

mooth road, causing z-axis acceleration to vary greatly.

When we apply the GMM on this smooth road, un-
matched distributions keep their means and variances,
and matched distributions update their means and vari-

ance as follows:

µ′
k = (1− δ)µk + δX

σ′2
k = (1− δ)σ2

k + δ(X − µk)
2

δ = αη(µk, σ
2
k, ωk),

(9)

In our experiments, accelerometers have a 100 Hz
sampling rate, so even a short segment of road will gen-
erate highly redundant raw data. In this case, we should

not set the learning rate α too high, otherwise the
GMM keeps little historical information and becomes
highly unstable. Generally, we initialize the learning

rate α to 0.03. Clearly, the probability density func-
tion η(µk, σ

2
k, ωk) is less than 1, and we have δ < α and

1− δ ≫ δ.

When the vehicle is traveling on a smooth road, the
mean of Gaussian distribution µk is at the same order
of magnitude as the current signal X. Hence, we can

deduce that (1 − δ)µk ≫ δX and µ′
k ≈ (1 − δ)µk. In

other words, the matched distributions decrease their
means with a small slope 1− δ. For simplicity, we may

consider their means as a constant C1 in a short time
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Fig. 4: Event identification at a high velocity.

interval. Similarly, we can conclude that the matched
distributions decrease their variance with a small slope

1− δ, and can be approximated with a constant C2 in
a short time interval.

According to Equation 8, it follows the event detec-

tion expression

Mk =

∣∣∣∣X − µ′
k

σ′
k

∣∣∣∣ ≈ ∣∣∣∣X − C1

C2

∣∣∣∣ . (10)

Here, Mk is roughly linear with the acceleration sig-
nal X, and then is approximately proportional to the

vehicle velocity V , too.
Suppose the vehicle is traveling at a high velocity,

then the GMM event detection expression Mk becomes

larger. This causes false alarms whenMk is greater than
the fixed threshold Mth. Figure 4 shows the z-axis ac-
celeration and event detection expression on a smooth

road surface. We see that Mk (solid line in Figure 4(b))
is very similar to the z-axis acceleration (Figure 4(a)).
We also observe that Mk is several times greater than

the predefined threshold Mth (red dashed line in Fig-
ure 4(b)), which causes false alarms.

For similar reasons, a low traveling velocity leads to

missed events when a fixed event detection threshold is
applied.

4.3.2 Drawback 2: fixed learning rate

The GMM uses a fixed learning rate α to update the
mean, variance, and weight of each Gaussian distri-
bution, as if the current signal and historical infor-

mation were equally important. However, this rule no
longer applies when the vehicle’s velocity changes. For
instance, when the vehicle’s velocity increases greatly,

the z-axis acceleration will also increase, which result-
s in a more significant deviation from historical data.
With a fixed learning rate, it will take a longer time to

learn and build accurate Gaussian distributions [5].
To deal with this problem, we need to increase the

GMM learning rate and bias the learning process to-

ward the current signal. Similarly, we should increase

the learning rate when the velocity decreases greatly,

while we should use a small learning rate when the ve-
hicle velocity remains almost the same.

In summary, we conclude that a large learning rate
is suitable for significant velocity changes, and a small

learning rate is suitable for small velocity changes.

4.4 i-GMM

To overcome the GMM’s drawbacks, we propose an im-
proved GMM (i-GMM) algorithm to accommodate the
variability of velocity.

4.4.1 Event detection threshold

With a fixed event detection threshold, a high veloci-
ty will produce more false alarms, and a low velocity

will increase missed events. For this reason, the event
detection threshold is controlled by a parameter which
is roughly linear with the current velocity. The above

event detection rule is modified as follows:

The current signal X is considered as an event only
if all the B distributions η(µ′

k, σ
′2
k , ω′

k) satisfy

Mk =

∣∣∣∣X − µ′
k

σ′
k

∣∣∣∣ > Mth · V

Vth
, (11)

where V is the current velocity, and Vth is a velocity
threshold.

4.4.2 Learning rate update

Based on the above discussion, the learning rate is re-
lated to the change of velocity. A high learning rate is

used for significant velocity changes, and a small learn-
ing rate is used for small velocity changes. Hence, the
learning rate is considered as a linear function of the ve-

locity changes. The learning rate at the moment t can
be adjusted as follows:

αt = αmin + (αmax − αmin) · |△Vt| /Vtc

△Vt =

{
Vt − Vt−1, |Vt − Vt−1| <= Vtc

Vtc, |Vt − Vt−1| > Vtc,

(12)

where αmin and αmax are the minimum and maximum
learning rates; △Vt is the velocity change at time t; Vtc

is a velocity threshold; Vt and Vt−1 are velocities at t
and t−1 moments, respectively. The learning rate is set
to the maximum value αmax, when the velocity change

is greater than a predefined velocity threshold Vtc.
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4.5 Pothole filters

The CRSM system uses an i-GMM for event detection.

Our central server will gather, clean, and fuse event
data from the multiple vehicles.

Many disturbance events may be mistaken for road
potholes, for example, upon opening or closing the ve-
hicle panels, small bumps, expansion joints, contraction

joints, and high velocity vibration. We therefore apply
pothole filters to remove anomalous events:

– Velocity filter: it removes events with a zero or very
low velocity, for example, when opening or closing
the vehicle panels. It rejects events when the veloc-

ity is lower than a threshold TV .
– Z-axis acceleration filter: it removes events with low

z-axis acceleration peaks, such as those caused by
small bumps. It refuses events whose z-axis acceler-

ation is lower than a threshold TZ .
– X-z acceleration ratio filter: it deletes events with a

small ratio of x-axis acceleration to z-axis accelera-

tion, for example, those caused by expansion joints
and contraction joints. It discards events whose x-z
acceleration ratio is lower than a threshold TXZ .

– Velocity vs. z-axis acceleration ratio filters: it re-
moves events with a high ratio of velocity to z-axis
acceleration, mainly caused by high velocity vibra-

tion. It rejects events whose velocity vs. z accelera-
tion ratio is higher than a threshold TV Z .

4.6 Pothole Extraction

Decelerating belts cause vibrations similar to those by
potholes. Pothole filters and data fusion cannot effec-

tively distinguish these events. Normally, decelerating
belts are longer than potholes in width. This means that
a vehicle will pass a pothole on a single side, while it

will be pressed on both sides when passing a decelerat-
ing belt. Therefore, there are different vibration energy
distributions between the tires.

CRSM employs a signal processing algorithm, name-
ly ensemble empirical mode decomposition (EEMD) based

pothole extraction algorithm. EEMD deals with the
issue of mode mixing and mode splitting by adding
white noise to the original signal, which makes it suit-

able for nonlinear and non-stationary time series anal-
ysis [22,23].

First, decelerating belt and pothole acceleration sig-
nals are decomposed with EEMD into several intrinsic
mode functions (IMFs):

x(t) =
N∑

k=1

pk + rN+1 (13)
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(a) Decelerating belts.
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Fig. 5: Four EEMD energy ratios with different events.

where x(t) is the z-axis acceleration; pk and rN+1 are
the kth IMF component and the residual error compo-

nent, respectively; N is the total number of IMFs.

Next, the most significant four EEMD energy com-

ponents are extracted and normalized withEk = P 2
k /

∑N
k=1 P

2
k ,

where Ek is the kth energy components. Figure 5(a)
shows the EEMD energy ratios of the leading four com-

ponents from ten different decelerate belts. It can be
seen that the second component makes a dominant con-
tribution. A comparison group of the EEMD energy ra-
tios of ten different potholes is plotted in Figure 5(b),

which suggests that the first and second components
have comparable weight in some cases.

Finally, energy entropy is proposed to describe the
different energy distributions with H = −

∑N
k=1 Ek ·

logEk. For a decelerating belt being pressed on both

tires, its vibration focuses on only several frequencies,
with less energy uncertainty and smaller energy entropy
than a pothole. Therefore, decelerating belts can be re-
moved when the energy entropy is less than a predefined

threshold Th.

4.7 Data fusion

After pothole extraction, the central server gathers mul-
tiple vehicles’ pothole detection results. Next, it counts
reports of each potential potholes. Finally, it declares a

pothole when the report count is larger than a threshold
P ; otherwise, it marks these pothole detection results
as false alarms.

5 Road surface roughness classification

In this section we describe an online data mining algo-

rithm to classify road surface roughness into four levels.
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5.1 Distributed road roughness classification

5.1.1 International roughness index

International Roughness Index (IRI) is the most wide-
ly used metric for evaluating road roughness in high-

way transportation. According to the highway safety
research institute, IRI is defined as the responses of the
quarter car model [8,20]. It reflects the global vibration

of the road, which can be measured by an accelerome-
ter.

Lou el al. [16] show that the empirical relationship
between IRI and standard deviation of vibration σ can

be approximated by the following regression equation:

IRI =
σ − 0.013

0.5926
, (14)

where σ is the standard deviation of the continuous

accelerometer from road vibration.

The relationship between the standard deviation and
the expectation can be described as follows:

σ2 = E2[x(t)] + E[x2(t)], (15)

where E[x(t)] represents the expectation of the contin-

uous accelerometer x(t).

5.1.2 Road roughness level classification

The technical Code of Maintenance for Urban Road
CJJ36-2006 [25] is an industry standard in China. This
industry standard indicates that road roughness levels

can be evaluated by a comprehensive comfortable driv-
ing metric, Riding Quality Index (RQI).

Generally, road roughness is classified into four lev-
els, namely, excellent, good, qualified, and unqualified,

with different RQIs and driving velocities. These eval-
uation standards for pavement roughness are listed in
Table 1.

Yang [25] shows that the relationship between RQI
and IRI can be described mathematically as:

RQI = 4.98− 0.34 · IRI. (16)

Additionally, the numerical value of RQIs normally vary
from 0 to 5. We set RQI to 0 when it is negative.

In the CRSM system, the onboard hardware devices

collect acceleration readings, calculate the standard de-
viation σ and IRI, classify road roughness into these
above four levels, and periodically transmit recent road

roughness levels to the central server.

Table 1: Evaluation standards of road roughness levels.

v(km/h) RQI Pavement roughness level

v>80

RQI>3.6 excellent

3.0<RQI<3.6 good
2.5<RQI<3.0 qualified
0<RQI<2.5 unqualified

40<v<80

RQI>3.2 excellent

2.8<RQI<3.2 good
2.4<RQI<2.8 qualified
0<RQI<2.4 unqualified

v<40

RQI>3.0 excellent
2.6<RQI<3.0 good
2.2<RQI<2.6 qualified

0<RQI<2.2 unqualified

5.2 Central server data fusion

The central server collects reports from these distribut-
ed CRSM hardware devices, and then makes a compre-

hensive evaluation of road roughness levels of different
road sections in a city region.

6 Evaluation

This section presents field test results of the CRSM
system and discuss its performance in different aspects.

6.1 Environments and Methodology

Our experiments were primarily conducted in the Shen-
zhen urban area. We selected 100 taxies and equipped

each of them with a CRSM device. To obtain ground
truth for our experiments, we used a camera to record
road surface videos for comparison. We also tested our

system on a car in Highway Traffic Testing Field of Min-
istry of Transportation in Beijing, which is a national
traffic testing environment in China. Unless stated ex-

plicitly, the results discussed in this section are with the
first scenario.

The CRSM module is attached to the right side of

the dashboard to sense the vibration. We need to place
the three-axis accelerometer in a particular direction,
where its x-axis is kept in the same direction as the driv-

ing direction, its y-axis in the corresponding horizontal
direction, and the its z-axis is in the vertical direction.
In practice, a GPS receiver often fails to work in urban

canyons with tall buildings and tunnels, which leads to
missed GPS data. Also, a GPS receiver normally need-
s around 40 seconds to obtain the first fix after being

powered on, during which time the produced positions
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may be wrong. Transmission errors can also cause tem-

porary data outage.

To solve these problems, we propose an effective

data cleaning algorithm. We first sort the raw data
in a time sequence, detect GPS bad zones with large
amounts of data missing or discontinuity, and remove

these bad zones directly. Then, we check transmission
errors and short GPS missing, and record the time in-
dexes. Next, we generate interpolated points in curves

to get continuous data. Finally, our data cleaning al-
gorithm results are organized as elements in the form:
<time, location, velocity, three-axis acceleration>. 1

6.2 Road pothole detection

6.2.1 i-GMM based event detection

There are several thresholds to be determined in the
i-GMM. As we cannot reduce false alarms and data

missing rate at the same time, there is always a trade-
off between them. In CRSM, we would like to keep the
information of potential potholes, even with some false

alarms. Actually, most false alarms can be removed by
pothole filters and data fusion in the central server. We
keep the missed event rate below 5% with the following

threshold setting: (i) Z-peak parameters: two different
thresholds Zth1 = 1, and Zth2 = 2.2. (ii) GMM param-
eters: Gaussian number K = 4, initial Gaussian mean

µ0 = 0, variance σ0 = 10, weight ω0 = 0.15, sum of
most likely distribution weight T = 0.7. (iii) i-GMM
parameters: maximum and minimum of learning rate

αmax = 0.04, αmin = 0.02, event detection threshold
Mth = 0.25, two different velocity thresholds Vth = 50,
and Vtc = 15.

Figure 6 shows the comparison of the Z-peak, GMM
event detection and the i-GMM event detection. Fig-

ures 6(a) and 6(b) are the z-axis acceleration and ve-
locity, respectively. Figures 6(c) and 6(d) are the event
detection results of Z-peak with threshold Zth = 1, Z-

peak with threshold Zth = 2.2, while Figures 6(e) and
6(f) are event detection results of the GMM and the i-
GMM, where each vertical line indicates an effect event.

We can see that Z-peak reports many events with a
low threshold, and fewer events with a high threshold.

It means that Z-peak is very dependent on current vi-
brations and predefined parameters, which are unable
to be updated with online learning. As can be seen from

1 There are various ways to deal with the problem of G-
PS signal being temporarily unavailable. For example, the
Siemens car navigation system uses Kalman filters and aux-
illiary sensors [17] for dead reckoning. To simplify the online
data mining algorithm, we have used a simple interpolation
method, instead of more sophisticated methods.

0 500 1000 1500 2000
−5

0

5

sample points

z−
ax

is
 a

cc
el

er
at

io
ns

 (
m

/s
2 )

(a) Z-axis acceleration.

0 500 1000 1500 2000
0

20

40

60

sample points

ve
lo

ci
tie

s 
(m

/s
)

(b) Velocity.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

sample points

Z
−

pe
ak

 e
ve

nt
 d

et
ec

tio
n 

(Z
th

=
1)

(c) Z-peak with Z th=1.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

sample points

Z
−

pe
ak

 e
ve

nt
 d

et
ec

tio
n 

(Z
th

=
2.

2)

(d) Z-peak with Z th=2.2.
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Fig. 6: Comparison of event detection results.

Figure 6(e), the GMM behaves well with online learning
progress, even with naive initial Gaussian parameters.
However, the GMM still has many false alarms for a

high velocity, with missing events at a small velocity,
while the i-GMM can solve this problem.

6.2.2 Pothole detection with four filters

The central server applies four pothole filters to remove
irrelevant events, and combines multiple vehicles’ pot-
hole detection results. Table 2 lists pothole events and

several disturbance events, as well as their occurrence
counts. Four potholes filters are used to remove these
spurious events later. Table 3 lists the true positive (T-

P) and false positive (FP) of each filter. Figure 7 shows
the cumulative density function (CDF) that describes
the feature of each filter.

Figure 7(a) presents the CDF of the velocity fil-

ter, which removes events with small velocities. For
TV = 16.3, it rejects all low velocity events with nearly
87.1% pothole detection accuracy and zero false alarm-

s. Figure 7(b) shows the CDF of the z-axis acceleration
filter, which discards events with small z-axis accelera-
tions like those from small bumps. With TZ = 1.82, it

achieves 87.1% pothole detection accuracy with 8.07%
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Table 2: Reported numbers of various events.

Event types Occurrences

Potholes 170

Low velocity events 133
Small bumps 51
Expansions 58

High velocity events 38

Table 3: The true positive (TP) and false positive (FP) of each
filter.

Filters TP FP

Velocity filter 148 0
Z-acceleration filter 148 13

X-z ratio filter 140 12
Velocity vs. z ratio filter 161 1
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Fig. 7: CDF of four pothole filters.

of false alarms. Figure 7(c) describes the CDF of the
x-z acceleration ratio filter, which removes events with
a small ratio of x-axis acceleration to z-axis accelera-

tion. With TXZ = 0.05, it acquires 82.4% pothole de-
tection accuracy with 7.89% of false alarms. Figure 7(d)
presents the CDF of the velocity vs. z-axis acceleration

ratio filter, which removes events with high velocity vi-
bration. With TV Z = 16, it obtains 94.7% pothole de-
tection accuracy with 0.62% false alarms.

With distributed vehicle data fusion, we can further
reduce false alarms which appear rarely in other vehi-

cles. In general, the CRSM system can achieve as high
as 90% pothole detection accuracy, with nearly zero
false alarms.

6.2.3 EEMD based pothole extraction

The central sever utilizes an EEMD-based pothole ex-

traction method to reject decelerating belts. The col-
lected accelerations are first decomposed with a fast
EEMD tool [22], and the energy entropies are deter-

mined with the most significant four energy compo-
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Fig. 8: EEMD energy entropy of potholes and decelerating
belts.

Fig. 9: Pothole map in the Longgang District, Shenzhen.

nents, as shown in Figure 8. With a energy entropy

threshold Te = 0.95, decelerating belts are removed
with 85% accuracy.

6.2.4 Final results

Based on the i-GMM based event detection algorith-
m, each CRSM device transfers less than 15 MB data
to the center server monthly. The central server gathers

pothole locations and counts from different vehicles. Af-
ter processing, the potholes are plotted in GoogleMap
with GPS locations. Here, the ArcGis [2] engine APIs

are used for geographic information processing.
Figure 9 shows a real pothole map in the Longgang

district of Shenzhen, where red circles represent road

potholes. For a better display, we use a density-based
clustering method to group nearby potholes, where the
group size is shown in the center of the red circle. For

example, a red circle with number five means that there
are five potholes near this location.

We also run our system on a car in the Highway

Traffic Testing Field of Ministry of Transportation in
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(a) A perspective view.

(b) Road with stone blocks. (c) Gravel road.

Fig. 10: Highway Traffic Testing Field of Ministry of Trans-
portation in Beijing.

Beijing. Figure 10 shows the perspective view and t-
wo typical roads, namely stone block roads and wash-

board roads, in this national traffic testing environment
in China. The vehicle equipped with a CRSM devices
traveled on a 18km long road with many potholes, cob-

blestones, ripples, stones, vehicle braking, high velocity
driving, turnings, and decelerating belts. In this trace,
CRSM detected 49 road potholes accurately, without

any false alarm. It is important to note that we used on-
ly a single vehicle in this field (due to restriction of field
usage and cost), which led to 9 potholes being missed.

We expect that when multiple vehicles are available,
CRSM can further reduce the error rate with our data
fusion technique.

6.3 Road roughness level classification

We collect acceleration data from actual roads with d-
ifferent characteristics: (I) smooth and clean roads with
little sand and gravel, (II) general roads with some sand

or small stones, (III) roads with small bumps, (IV)
roads with potholes.

Figure 11 shows the continuous z-axis accelerations

against sampling points on various types of roads, where
(a) to (d) stand for smooth roads, general roads, roads
with bumps, and roads with potholes, respectively.

As shown in Figure 11(a), the z-axis accelerations
on smooth roads are very regular, with only small fluc-
tuations in the middle. From Figure 11(b), we can see

that there are relatively larger amplitudes in the z-axis
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Fig. 11: Continuous z-axis accelerations of different road type-
s.

accelerations on general roads than on smooth road-
s. It might be caused by disturbances from small sand
or small stones on the road surface, though the overall

road condition is very good. Figure 11(c) presents the
z-accelerations on roads with bumps. We find some larg-
er fluctuations due to several small bumps. This road
is also considered to be qualified in spite of these dis-

turbances. Figure 11(d) shows the z-axis accelerations
data on roads with potholes. The acceleration data are
with great fluctuations, and we conclude that the ve-

hicles experience strong vibrations when passing these
potholes. The road condition is therefore unqualified in
general.

Distributed onboard modules transmit road rough-

ness levels to the central sever periodically. Then road
roughness is evaluated into levels with maximum report
times in our central server. Road roughness levels of var-

ious road types are listed in Table 4. These four road
types with different velocities are classified into levels
of excellent, good, qualified, and unqualified, which are

in conformity with the above discussion.

Experimental results show that the CRSM can eval-

uate road roughness levels correctly, even with some in-
terference from small bumps or potholes. Furthermore,
the CRSM onboard module consumes no more than 50

dollars in total, which is only 1/4400 to 1/160 of these
existing systems [4] with a cost of about 8, 000−222,000.
Therefore, CRSM is more affordable, and more likely to

be widely adopted in municipal engineering.
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Table 4: Road roughness levels of various road conditions.

Road type Velocity RQI Road roughness level

Smooth 37.15 3.52 excellent

General 63.86 3.12 good
Bumps 62.36 2.66 qualified
Potholes 37.50 1.14 unqualified

7 Future work

There are two types of events, decelerating belt, which

causes vibrations similar to those by potholes. We have
tried different algorithms to analyze the data in both
time and frequency domains, and found it is still diffi-

cult to draw a clear distinction. In our system, a single
decelerating belt can be filtered out with EEMD energy
ratio. However, manholes and continuous decelerating

belts generate similar vehicle vibrations as potholes, so
it is hard to identify them simply with acceleration in-
formation. In CRSM, we discover the geographic loca-

tions of manholes and decelerating belts from the urban
traffic database, and remove these two types of events
with their GPS information. However, this method does

not apply to village roads, which may not have the de-
sired information registered. We thus need to explore
more effective methods in our future work.

Furthermore, vibration signals vary greatly with many
factors such as vehicles’ loads, driving velocities, and
drivers’ habits. We will also study these factors and es-

tablish a comprehensive model in our future work.

8 Conclusion

In this paper, we have described the design and imple-
mentation of CRSM, a crowdsourcing-based road sur-

face monitoring system. It can monitor road potholes
and road roughness levels simultaneously, with distribut-
ed modules mounted on vehicles. Experimental result-

s show that CRSM can detect road potholes with up
to 90% accuracy, and nearly zero false alarms. CRSM
can also evaluate road roughness levels accurately, even

with some interferences from small bumps or potholes.
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