
Secure and Efficient Multi-Attribute Range Queries
based on Comparable Inner Product Encoding

Qin Liu†∗, SiXia Wu†, Shuyu Pei†, Jie Wu‡, Tao Peng§, and Guojun Wang§
†College of Computer Science and Electronic Engineering, Hunan University, P. R. China, 410082

‡Center for Networked Computing, Temple University, Philadelphia, PA 19122, USA
§ School of Computer Science and Educational Software, Guangzhou University, P. R. China, 510006

∗Correspondence to: gracelq628@hnu.edu.cn

Abstract—Encryption, a powerful tool for data security, has
been widely applied to protect sensitive data stored on untrusted
cloud servers. One important problem in such an environment
is how to support advanced query predicates, such as range
queries, over an encrypted data set in an efficient and secure way.
Order-preserving encryption (OPE) produces ciphertexts that
preserve the order of their plaintexts and performs range queries
directly on ciphertexts. However, ideally secure OPE schemes are
inefficient (interactive and stateful), because they either ask for
extensive client-to-server interactions or require a large persistent
client storage that relates to the size of the data set. In this paper,
we propose a comparable inner product encoding (CIPE) scheme
to support multi-attribute range queries over encrypted data. Our
main idea is to encode data and query values as encrypted vectors
so that order comparison is realized by calculating the vector’s
inner product. Compared with existing OPE schemes, our scheme
has the following merits: 1) High efficiency. It allows a client to
retrieve data of interest in one round without maintaining any
local state. 2) Enhanced security. It achieves ideal security while
effectively resisting inference attacks that existing OPE schemes
are vulnerable to. Extensive experiments conducted on a real-
world, large-scale data set verify the effectiveness of our scheme.

Keywords—Cloud computing, order-preserving encryption,
multi-attribute range queries, security, efficiency.

I. INTRODUCTION

Nowadays, data creation is occurring at an alarming rate,
which is overwhelming the data-processing capabilities and
data storage capacities of traditional platforms. Cloud comput-
ing that enables ubiquitous and on-demand access to a shared
pool of configurable computing resources has overwhelming
advantages over traditional platforms. As an emerging trend,
companies and organizations have begun to outsource their
massive data sets to cloud servers to lessen the burden on
local data storage improve the quality of service [1]–[3].

Application scenario. In order to offer better after-sales
services, air-conditioning manufacturer X outsources customer
data set D to Amazon EC2 so that its service engineers
can search customers reported breakdowns in their physical
proximity anytime and anywhere using mobile devices with
geo-positioning capabilities (e.g., GPS). Assume that each data
record Di ∈ D that contains a specific customer’s profile (e.g.,
name, contact information, and purchase date) is associated
with two-dimensional geographic coordinates (xi, yi). To re-
trieve detailed information about customers within M meters,
a service engineer located at (x′, y′) first generates a rectangle
B, where the center is (x′, y′) and the edge length is 2M .
He then sends a range query Q = [bl, bu] to a cloud server,

Fig. 1. Application scenario. The rectangle of dashed red edges is a query.

where bl = (x′ − M, y′ − M) and bu = (x′ + M, y′ + M)
denote B’s lower-left corner and upper-right corner, respec-
tively. Once receiving Q, the cloud server compares each
data record’s coordinates with bl and bu and returns those
falling within B. For example, given a customer data set D as
shown in Fig. 1, Bob located at (380, 460) generates a query
Q = [(330, 410), (430, 510)] to retrieve customer information
within 50 meters, and the cloud server returns {D2, D3}.

Motivation. In the above scenario, the customer data is of
high commercial values and is relevant to customers’ privacy.
To prevent unsolicited data access, sensitive data should be
encrypted before outsourcing. However, data encryption makes
evaluating various query predicates against ciphertextes a chal-
lenging problem. This is even harder for range queries where
comparisons need to be performed based on ciphertexts.

Challenge. Order-preserving encryption (OPE) [4]–[9]
produces ciphertexts that preserve the order of their plaintexts
and allows order comparison on ciphertexts in the same way
as plaintexts. While this makes OPE useful when performing
range queries on ciphertexts, it also limits security. As shown
in [10]–[12], almost of all existing OPE schemes are vulnerable
to inference attacks even if they are ideally secure like [6]–
[8]. Additionally, Lewi et.al [13] show that all ideal OPE
schemes are inefficient (interactive and stateful); they either
ask for extensive client-to-server interactions or require a large
persistent client storage that relates to the size of the data
set. Other techniques that support compute-then-compare are
too expensive to implement, such as order-revealing encryption
(ORE) [13]–[17] and homomorphic encryption [18], [19].

Our contributions. In this paper, we focus on supporting
multi-attribute range queries over an encrypted data set, where
each data record is described with many attributes, and for each
attribute, a range query is generated to filter search results.
To achieve ideal security in a non-interactive and stateless
way, we propose a comparable inner product encoding (CIPE)
scheme that encodes each attribute value a associated with
a data record and each attribute value b in a query as two

vectors p and q, respectively, such that the inner product of p
and q, denoted as p · q, has the same sign as that of (b− a).
Meanwhile, vectors will be encrypted with a secure k-nearest
neighbor scheme (KNN for short) [20], thus, the order of two
plaintexts can be quantified by judging the sign of the inner
product of their encrypted vectors.

KNN with splitting and randomization mechanisms enables
index indistinguishability and trapdoor unlinkability, but has
failed to resist linear analyses [23]. Therefore, we first provide
a basic CIPE construction, CIPE0, which is secure in the
known ciphertext model. Then, we provide an advanced con-
struction, CIPES , to resist chosen plaintext attacks inherit
from KNN. Compared with existing OPE schemes, our CIPE
scheme has the following merits: 1) High efficiency. It allows
a client to retrieve data of interest in one round without
maintaining any local state. 2) Enhanced security. It can resist
inference attacks that existing OPE schemes are vulnerable to.
Our main contributions are summarized as follows:

• We propose a CIPE scheme to achieve efficient and
secure multi-attribute range queries on encrypted data.

• Two constructions are provided to achieve ideal secu-
rity in different security models.

• We evaluate the performance of our CIPE scheme on
a real-world, large-scale data set. Experiment results
demonstrate that our scheme is extremely efficient for
secure range queries. At best, it needs only around
1.4 seconds on average while performing two-attribute
range queries on 1 million encrypted data records.

II. PRELIMINARIES

A. System Model

Our system model consists of three different parties: a data
owner, a client, and cloud servers. The data owner possesses
a proprietary data set D, where each data record is described
by multiple attributes. For data security, the data owner first
builds a set of secure indexes I from D , and then uploads the
encrypted data set and the secure indexes (C, I) to a cloud
server. In order to retrieve detailed information about data
records matching query Q, an authorized client first obtains the
trapdoor TQ (i.e., the encrypted query) from the data owner,
then submits TQ to the cloud server. The cloud server will
evaluate TQ over the secure indexes I and returns search
results CQ to the client.

B. Adversary Model

The data owner and the client, collectively referred to as
cloud users, are assumed to be fully trusted. The cloud server is
the potential adversary and is assumed to be honest but curious.
In other words, the cloud server always correctly executes a
given protocol, but still attempts to learn additional information
about the stored data and the received message. In terms of the
information available to the cloud server, we mainly consider
the following models used in existing work [20]:

Known ciphertext model. The cloud server only knows
the encrypted data set, the secure indexes, the submitted
trapdoors, and the returned search results.

Known background model. The cloud server can know
additional background information besides that in the known

ciphertext model. The background refers to the keyword,
frequency and the distribution among the file collection, which
can be used to infer certain (plaintext, ciphertext) pairs.

While data privacy can be preserved through standard
symmetric encryption, e.g., AES, our privacy objective is to
protect cloud users’ privacy in the following aspects:

• Attribute secrecy. The cloud server cannot deduce at-
tribute values from either secure indexes or trapdoors.

• Index indistinguishability and trapdoor unlinka-
bility. Given a set of secure indexes (or a set of
trapdoors), the cloud server cannot decide whether
they are generated for the same attribute value or not.

C. Design Goals

Our design goals are to offer advanced search services in
cloud computing by simultaneously achieving the following:

• High efficiency. The client can retrieve data of inter-
ests in one round without keeping any local storage.

• High scalability. Multi-attribute range queries can be
effectively performed on a large-scale data set.

• Enhanced security. With ideal security, the proposed
scheme can effectively resist inference attacks.

• Enhanced privacy. Our privacy objectives are pre-
served under chosen plaintext attacks.

D. Secure k-Nearest Neighbor Scheme

Given a vector v, its i-th element is denoted by v[i]. Let
notations “�” and “ ·” denote matrix multiplication and vector
inner product, and let M−1 and MT denote the inverse and
transposed matrices of M, respectively. KNN tailored for our
CIPE scheme mainly consists of the following algorithms:

• GenKey(1κ) → sk : It takes a security parameter κ ∈
N as input and generates the secret key sk = (M1,M2, S),
where M1,M2 ∈ Rd×d are invertible matrices and S is a bit
string of d bits. Note that d ≥ κ is large enough to prevent
brute force attacks (e.g., d = κ = 128) and that the number
of 0s is approximately equal to the number of 1s in S.

• EncI(p, sk) → p′ : It splits index vector p ∈ Rd into
two vectors, (p|α|,p|β|): for i = 1 to d, if the i-th bit of S
equals 1, p[i] is randomly split into p|α|[i] and p|β|[i] such
that p|α|[i] +p|β|[i] = p[i]; otherwise, both p|α|[i] and p|β|[i]
are set to p[i]. The encrypted index is a pair of vectors p′ =
(p′

|α|,p
′
|β|) where (p′

|α| = MT
1 � p|α|,p′

|β| = MT
2 � p|β|).

• EncQ(q, sk) → q′ : It splits query vector q ∈ Rd into
two vectors, (q|α|,q|β|): for i = 1 to d, if the i-th bit of S
equals 0, q[i] is split into q|α|[i] and q|β|[i] such that q[i] =
q|α|[i] + q|β|[i]; otherwise, both q|α|[i] and q|β|[i] are set to
q[i]. The encrypted query is a pair of vectors q′ = (q′

|α|,q
′
|β|)

where (q′
|α| = M−1

1 � q|α|,q′
|β| = M−1

2 � q|β|).

• Cal(p′,q′) → v : It calculates v = p′
|α|·q′

|α|+p′
|β|·q′

|β|
as the result. Note that the output of the KNN.Cal algorithm
equals the inner product of p and q:

p′
|α| · q′

|α| + p′
|β| · q′

|β|
= (MT

1 � p|α|) · (M−1
1 � q|α|) + (MT

2 � p|β|) · (M−1
2 � q|β|)

= pT
|α| � q|α| + pT

|β| � q|β| = p · q

TABLE I. SUMMARY OF NOTATIONS

D A set of n data records {D1, . . . , Dn}
Ai A set of m attribute values (ai1 , . . . , aim) of Di

Ii A multi-attribute secure index (Ii1 , . . . , Iim) of Di

Qj A multi-attribute range query (Qj1 , . . . , Qjm)
Qjk

A range query [bjk,l
, bjk,u

] on the k-th attribute in query Qj

TQj
A multi-attribute trapdoor (TQj1

, . . . , TQjm
) of Qj

pik
An index vector of the k-th attribute’s value aik

qjk,φ
,Qjk,φ

A query vector/matrix of bjk,φ
for φ ∈ {l, u}

III. OVERVIEW

A. Notations and Definitions

For x, y ∈ N and x < y, we write notations [x] and [x ∼ y]
to represent the set of integers in {1, . . . , x} and {x, . . . , y},
respectively. The most relevant notations are shown in Table I.

Attribute. The data set D = {D1, . . . , Dn} is described
by m attributes (A1, . . . , Am), where each attribute Ak takes
its numerical value from a specified domain Dk for k ∈ [m].
Therefore, each data record Di ∈ D is actually associated
with m attribute values Ai = (ai1 , . . . , aim) based on which a
multi-attribute secure index Ii = (Ii1 , . . . , Iim) is built, where
Iik is a secure index on attribute value aik for k ∈ [m].
The primary role of attributes is making comparisons at the
time of query. Therefore, there is no need to use authentic
attribute values. In our CIPE scheme, all attribute values can
be preprocessed by order preserving functions like [21].

Query. We mainly consider a multi-attribute range query
Qj = (Qj1 , . . . , Qjm), where Qjk = [bjk,l

, bjk,u
] is a range

query on attribute Ak with the lower bound bjk,l
and the upper

bound bjk,u
for k ∈ [m]. Given Qj , a multi-attribute trapdoor

TQj
= (TQj1

, . . . , TQjm
) is created where TQjk

is a trapdoor
of Qjk for k ∈ [m]. The boolean formulas connecting different
dimensions are “AND” operators. That is, each range query in
Qj further narrows search results. We define a data record Di

matching a query Qj , denoted as Di �� Qj , as follows:

Definition 1 (Matching). Given Di associated with (ai1 , . . . ,
aim) and Qj = (Qj1 , . . . , Qjm), where Qjk = [bjk,l

, bjk,u
],

we have Di �� Qj if for k ∈ [m], aik ≥ bjk,l
and aik ≤ bjk,u

.

B. The Definition of CIPE

A CIPE scheme consists of the following algorithms:

• KeyGen(1κ) → SK : The data owner takes the security
parameter κ as the input and outputs a secret key SK.

• SecureInx(Ai, SK) → Ii : Given a set of attribute
values Ai, the data owner builds a multi-attribute secure index
Ii for data record Di with secret key SK. The collection of
secure indexes built for data set D is set to I = {I1, . . . , In}.

• Trapdoor(Qj , SK) → TQj : Given a multi-attribute
range query Qj , the data owner builds a multi-attribute trap-
door TQj with secret key SK.

• Search(Ii, TQj) → {0, 1} : The cloud server evaluates
the trapdoor TQj on the secure index Ii, and outputs 1 if
Di �� Qj . Otherwise, it outputs 0.

Definition 2 (Correctness of CIPE). Given a secret key SK
generated by the KeyGen algorithm, a secure index Ii output
by the SecureInx algorithm, and a trapdoor TQj

output by
the Trapdoor algorithm, our CIPE scheme is correct if the
Search(Ii, TQj) algorithm outputs 1 if Di �� Qj .

C. Security Definition

As in [13], [17], we utilize a leakage function L to capture
what is being revealed during the search process. Let κ ∈ N be
the security parameter, we consider a simulation-based game
between a probabilistic polynomial-time (PPT) simulator Sim
and a PPT adversary Adv as follows:

• REALAdv(κ) : The challenger runs KeyGen(1κ) to
generate secret key SK. Adversary Adv outputs D and
receives I = {I1, . . . , In} from the challenger so that for
i ∈ [n], Ii ← SecureInx(Ai, SK). Adv makes a polynomial
number of adaptive queries Q = (Q1, . . . ,Qq) and for each
query Qj ∈ Q, Adv receives a trapdoor TQj from the
challenger such that TQj ← Trapdoor(Qj , SK). Finally, Adv
outputs V = (I,T), where T = (TQ1 . . . , TQq).

• SIMAdv,Sim,L(κ) : Adversary Adv outputs D. Given D,
simulator Sim generates and sends I to Adv. Adv makes a
polynomial number of adaptive queries Q = (Q1, . . . ,Qq).
Given a leakage function L, Sim returns an appropriate
trapdoor TQj

for each query Qj ∈ Q. Finally, Adv outputs
V = (I,T), where T = (TQ1 . . . , TQq).

Definition 3 (Security of CIPE). Our CIPE scheme is secure
with leakage function L if for all PPT adversaries Adv, there
is a PPT simulator Sim such that |Pr[REALAdv(κ) = 1]−
Pr[SIMAdv,Sim,L(κ) = 1]| is negligible.

As defined in [4], indistinguishability under an ordered
chosen attack (IND-OCPA), the ideal security of OPE, intu-
itively says that ciphertexts must not leak anything besides
orders of the plaintexts. Therefore, the best-possible notion of
simulation-security is secure with respect to leakage function
L = {(i, j, Search(Ii, TQj)|i ∈ [n], j ∈ [q]}. The outputs of
the Search algorithm reveal order of plaintexts.

IV. COMPARABLE INNER PRODUCT ENCODING (CIPE)
A. Main Idea

Our CIPE scheme is built on top of the index vector
encoding algorithm (Alg. 1) and the query vector encoding
algorithm (Alg. 2). The main idea of both algorithms is to
encode a data value a and a query value b as vectors, so that
the sign of vector inner product is the same as that of (b− a),
and it can be used to determine whether a data record matches
a query or not. In a single-attribute data set (the subscript k in
aik , bjk,φ

, Qjk , pik , and qjk,φ
for φ ∈ {l, u} is omitted), vector

pi is constructed for attribute value ai in data record Di and
given a range query Qj = [bjl , bju], vectors qjl and qju are
constructed for bjl and bju , respectively; we have Di �� Qj

if pi · qjl ≤ 0 and pi · qju ≥ 0. When extended to a data
set with m attributes, vector pik is constructed for the k-
th attribute’s value aik in data record Di, and given a range
query Qjk = [bjk,l

, bjk,u
] on the k-th attribute, vectors qjk,l

and qjk,u
are constructed for bjk,l

and bjk,u
, respectively. We

have Di �� Qj if pik ·qjk,l
≤ 0 and pik ·qjk,u

≥ 0 for k ∈ [m].

As the simplest construction for a single-attribute data set,
given an even number d, a random bit string L of length d
(where the number of 0s equals the number of 1s) is generated.
For attribute value ai in data record Di, a d-dimensional vector
pi is constructed such that pi[ι] = ai if the ι-th bit of L is 1
and pi[ι] = 1 if the ι-th bit of L is 0. Given a range query
Qj = [bjl , bju], two d-dimensional vectors qjl and qju are
constructed such that qjl [ι] = qju [ι] = −1 if the ι-th bit of

Algorithm 1 Index Vector Encoding

Require: attribute value aik associated with data record Di

for i ∈ [n] and k ∈ [m], two bit strings L1 and L2 of d
2

bits, and a shuffle function σ
Ensure: index vector pik ∈ Rd

1: for ι ∈ [d2] do
2: if the ι-th bit of L1 equals 1 then
3: set pik [ι] = aik
4: else
5: set pik [ι] = 1
6: generate a vector C = (c1, . . . , c d

4
) where cι ∈ C is

randomly chosen from R+ ∪ {0} and
∑ d

4
ι=1 cι > 0.

7: set x = y = 1
8: for ι ∈ [d2 + 1 ∼ d] do
9: if the (ι− d

2)-th bit of L2 equals 1 then
10: set pik [ι] = aikcx and x = x+ 1
11: else
12: set pik [ι] = cy and y = y + 1
13: shuffle elements in pik with σ

L is 1; qjl [ι] = bjl and qju [ι] = bju if the ι-th bit of L is 0.
Since pi ·qjl =

d
2 (bjl−ai) and pi ·qju = d

2 (bju−ai), we have
Di �� Qj if pi · qjl ≤ 0 and pi · qju ≥ 0. For example, given
d = 4 and L = (1100), for D1 and D2 with attributes a1 = 3
and a2 = 6, we have p1 = (3, 3, 1, 1) and p2 = (6, 6, 1, 1),
respectively. For Q1 = [2, 5], we have q1l = (−1,−1, 2, 2)
and q1u = (−1,−1, 5, 5). Hence, we have p1 · q1l = −2,
p1 · q1u = 4, p2 · q1l = −8, and p2 · q1u = −2. The results
are in accordance with the fact that D1 �� Q1 and D2 	�� Q1.

Although all vectors are encrypted with KNN for attribute
secrecy, the simplest construction above will leak the following
information besides order: 1) The distance between attribute
values. The result of the inner product is multiples of the
distance between attribute values. The larger the distance, the
larger the result. 2) The equality of attribute values. Given
two data records with the same attribute value, results of
vector inner products will be equal. With such information, the
adversary may infer the similarities between two data records.
To hide such sensitive information, we multiply each inner
product with a random positive number sampled from R+.

B. Basic Construction

Given a security parameter κ ∈ N, and a secure KNN
scheme KNN = (GenKey,EncI, EncQ,Cal) as described
in Section II-D, our basic CIPE construction is as follows:

• KeyGen0(1
κ) → SK : The data owner runs

KNN.GenKey(1κ) to generate sk. Assume that η ∈ N is
large enough so that d = 2η+2 ≥ κ. She then randomly
chooses two bit strings L1 and L2 of d

2 bits, and in both
strings, the number of 0s equals the number of 1s. She
chooses a permutation σ on [d], and sets the secret key as
SK = (sk, σ, L1, L2).

• SecureInx0(Ai, SK) → Ii : For attribute value aik
associated with data record Di ∈ D where k ∈ [m], the data
owner constructs a vector pik ∈ Rd by running Alg. 1. To
generate encrypted vectors, she runs KNN.EncI(pik , sk) to
output p′

ik
= (p′

|α|ik ,p
′
|β|ik) for k ∈ [m]. Finally, she sets

Ii = (Ii1 , . . . , Iim), where Iik = p′
ik

for k ∈ [m].

Algorithm 2 Query Vector Encoding

Require: attribute value bjk,φ
associated with query Qj for

k ∈ [m] and φ ∈ {l, u}, two bit strings L1 and L2 of d
2

bits, and a shuffle function σ
Ensure: query vector qjk,φ

∈ Rd

1: generate a vector C = (c1, . . . , c d
4
) where cι ∈ C is

randomly chosen from R+ ∪ {0} and
∑ d

4
ι=1 cι > 0.

2: set x = y = 1
3: for ι ∈ [d2] do
4: if the ι-th bit of L1 equals 1 then
5: set qjk,φ

[ι] = −cx and x = x+ 1
6: else
7: set qjk,φ

[ι] = bjk,φ
cy and y = y + 1

8: for ι ∈ [d2 + 1 ∼ d] do
9: if the (ι− d

2)-th bit of L2 equals 1 then
10: set qjk,φ

[ι] = −1
11: else
12: set qjk,φ

[ι] = bjk,φ

13: shuffle elements in qjk,φ
with σ

• Trapdoor0(Qj , SK) → TQj : Given range query Qjk =
[bjk,l

, bjk,u
] where k ∈ [m], the data owner first constructs

vectors qjk,l
,qjk,u

∈ Rd for the lower bound bjk,l
and the

upper bound bjk,u
, respectively, by running Alg. 2. To generate

encrypted vectors, she runs algorithm KNN.EncQ to output
q′
jk,l

= (q′
|α|jk,l

,q′
|β|jk,l

) and q′
jk,u

= (q′
|α|jk,u

,q′
|β|jk,u

),

respectively. Finally, she sets TQj = (TQj1
, . . . , TQjm

) where
TQjk

= (q′
jk,l

,q′
jk,u

) for k ∈ [m].

• Search0(Ii, TQj) → {0, 1} : For k ∈ [m], the
cloud server runs vk,l ← KNN.Cal(p′

ik
,q′

jk,l
) and vk,u ←

KNN.Cal(p′
ik
,q′

jk,u
) to calculate the inner products of en-

crypted vectors. It outputs 1 if vk,l ≤ 0 and vk,u ≥ 0 for
k ∈ [m]. Otherwise, it outputs 0.

Example 1. Consider the application scenario shown in
Fig. 1, where Bob issues query Q = ([b1,l, b1,u], [b2,l, b2,u]) =
([330, 430], [410, 510]) to retrieve matched data records in
D = {D1, . . . , D5}. Sample index/query vectors are shown
in Fig. 2-(a)2-(b). For example, p11 encoding attribute value
300 for D1 is constructed as follows: Given L1 = “1100”,
we set p11 [1] = p11 [2] = 300 and p11 [3] = p11 [4] = 1.
Then, we generates a vector C = (c1, c2) = (0.1, 0). Given
L2 = “0011”, we set p11 [5] = c1 = 0.1, p11 [6] = c2 = 0,
p11 [7] = c1×300 = 30, and p11 [8] = c2×300 = 0. The query
vectors are constructed in a similar way as the index vectors
except that bit strings have the opposite effect and randomness
are in the first half part of a query vector. The results in Fig. 2-
(c) show that {D2, D3} satisfies the query condition.

C. Correctness Analysis

Since permutation has no influence on the result of the
inner product, we simply assume that σ(ι) → ι for ι ∈ [d].
For ι ∈ [d2], if the ι-th bit of L1 is 1, we have pik [ι] = aik
and qjk,φ

[ι] = −cx; otherwise, we have pik [ι] = 1 and

qjk,φ
[ι] = bjk,φ

cx. Let vectors v1 = (pik [1], . . . ,pik [
d
2])

and w1 = (qjk,φ
[1], . . . ,qjk,φ

[d2]) denote the first half part
of elements in pik and qjk,φ

, respectively. Since −cx and
cxbjk,l

come in pairs (lines 3-7 in Alg. 2), we have v1 ·w1 =

Fig. 2. Working process of CIPE0. Suppose that d = 8, σ(ι) → ι for ι ∈ [d], and bit strings L1 = “1100” and L2 = “0011”.

(
∑ d

4
x=1 cx)(bjk,φ

− aik). For ι ∈ [d2 +1 ∼ d], if the (ι− d
2)-th

bit of L2 is 1, we have pik [ι] = aikcx and qjk,φ
[ι] = −1;

otherwise, we have pik [ι] = cx and qjk,φ
[ι] = bjk,φ

.

Let vectors v2 = (pik [
d
2 + 1], . . . ,pik [d]) and w2 =

(qjk,φ
[d2 + 1], . . . ,qjk,φ

[d]) denote the second half part of
elements in pik and qjk,φ

, respectively. Similarly, cx and
aikcx come in pairs (lines 8-12 in Alg. 1). Therefore, we

have v2 · w2 = (
∑ d

4
x=1 cx)(bjk,φ

− aik) and pik · qjk,φ
=

(ξik + εjk,φ
)(bjk,φ

− aik), where ξik =
∑ d

4
x=1 cx and εjk,φ

=∑ d
4
x=1 cx. In our construction, (c1, . . . , c d

4
) and (c1, . . . , c d

4
)

are random numbers from R+ ∪ {0} and the total number of
non-zero numbers is larger than 0. This means that ξik , εjk,φ

∈
R+ are random positive numbers independent with regard to
attribute values and that the sign of pik · qjk,φ

is determined
by the sign of (bjk,φ

− aik). Therefore, CIPE0 is correct.

D. Security Proof

Theorem 1. CIPE0 is secure with leakage function L in the
known ciphertext model.

Proof. We first consider the the security of our scheme
in the single-attribute setting, where a data record Di or a
query Qj is associated with only one attribute. We adopt a
simulation-based proof similar to the one used in [13], [17].
Let Adv be an adversary, and let Sim be a simulator that can
simulate an output V ′ = (I ′,T′) with leakage function L.

• Sim randomly picks two invertible matrices M′
1,M

′
2 ∈

Rd×d, a bit string S′ of length d, and a permutation σ′ on [d].
Sim sets SK ′ = (sk′, σ′) where sk′ = (M′

1,M
′
2, S

′).

• To generate I ′, Sim generates a pair of d-dimensional
vectors p′

i for i ∈ [n] as follows: 1) It constructs a d-
dimensional vector pi where each element is initialized to 0. 2)
It chooses two random numbers ci ∈ R+ and ai ∈ R and sets
pi[1] = ciai, pi[2] = ci, pi[3] = 1, and pi[4] = ai. While gen-
erating random attribute values, the order of a1, . . . , an should
be consistent with that of attribute values in D. 3) It shuffles
elements in pi with σ′. 4) It runs KNN.EncI(pi, sk

′) to
output p′

i. Therefore, I ′ = {p′
1, . . . ,p

′
n}.

• To generate T′, Sim constructs two pairs of d-
dimensional vectors (q′

jl
,q′

ju
) for j ∈ [q] as follows: 1) It

constructs two d-dimensional vectors qjl and qju , where each
element is initialized to 0. 2) It constructs empty sets R. For i ∈
[n], if Di �� Qj , it puts ai in set R. 3) It chooses two random
numbers c̄jl ∈ R+ and bjl ∈ R such that a− < bjl ≤ minR,
where minR is the minimal attribute value in R and a− is the

first attribute value in {a1, . . . , an} smaller than minR. It sets
qjl [1] = −1, qjl [2] = bjl , qjl [3] = c̄jlbjl , and qjl [4] = −c̄jl .
4) It chooses two random numbers c̄ju ∈ R+ and bju ∈ R such
that maxR ≤ bju < a+, where maxR is the maximal attribute
value in R and a+ is the first attribute value in {a1, . . . , an}
larger than maxR. It sets qju [1] = −1, qju [2] = bju ,
qju [3] = c̄jubju , and qju [4] = −c̄ju . 5) It shuffles elements
in qjl and qju with σ′. 6) It runs KNN.EncQ(qjl , sk

′) and
KNN.EncQ(qju , sk

′) to output q′
jl

and q′
ju

, respectively.
Therefore, T′ = {(q′

1l
,q′

1u), . . . , (q
′
ql
,q′

qu)}.

The indistinguishability of indexes and trapdoors is based
on the indistinguishability of KNN and the introduced random-
ness. As shown in the correctness analysis, the outputs of the
Search0 algorithm look like random values that reveal only
the order information between data attribute values and query
attribute values. Therefore, we claim that no PPT adversary
can distinguish V ′ from V . Our basic construction CIPE0 is
built based on the single-attribute setting, and it is secure with
leakage function L in the known ciphertext model. �
E. Discussion

How to hide distance and equality information. In our
construction, pik · qjk,φ

= (ξik + εjk,φ
)(bjk,φ

− aik), where
k ∈ [m] and φ ∈ {l, u}. Since ξi,k, εjk,φ

∈ R+ may be
any positive numbers, the results of the inner products have
no direct relation to the distance between bjk,φ

and aik . For
example, in Fig. 1, D2 with x-coordinate value 350 has the
minimal distance between 330. However, the result of p21 ·q1,l

in Fig. 2 is −98, the absolute value of which is the second
largest. Therefore, random positive numbers are helpful to
conceal distance information. Furthermore, given two data
records Di and Di′ with the same attribute value on Ak,
i.e., aik = ai′k , we have pik · qjk,φ

	= pi′k · qjk,φ
, as long

as ξik 	= ξi′k where k ∈ [m] and φ ∈ {l, u}. For example,
the attribute values of A1 for D4, D5 in Fig. 1 are the same
(i.e., both x-coordiate values are 450). However, in Fig. 2,
p41 · q1,l = −72 and p51 · q1,l = −144; their inner products
generate different results. Therefore, the equality of attribute
values will not be leaked due to random positive numbers.

Resistant to ciphertext only attacks (COA). The work
that is most similar to our basic CIPE construction can be
found in [24]. In their scheme, a data value ai and a query
value bj are encoded as vectors pi and qj , respectively, such
that pi ·qj = ξiεj(bj −ai) where ξi, εj ∈ R+ are randomness
introduced into pi and qj respectively. However, as proven
in [25], their scheme is vulnerable to COA:

pi · qj

pi · qj′
=

ξiεj(bj − ai)

ξiεj′(bj′ − ai)
=

εj
εj′

× (bj − ai)

(bj′ − ai)
(1)

Algorithm 3 Query Matrix Encoding

Require: s ∈ [2 ∼ d], r, t ∈ R for r + t > 0, query vector
qjk,φ

∈ Rd for k ∈ [m] and φ ∈ {l, u}
Ensure: query matrix Qjk,φ

∈ Rd×s

1: construct a matrix Qjk,φ
∈ Rd×s and initialize each

element of Qjk,φ
with 0

2: for ι ∈ [d] do
3: set rqjk,φ

[ι] at a random position of the ι-th row of
Qjk,φ

with the constraint of Condition 1
4: fill the remaining elements in the ι-th row of Qjk,φ

with
random numbers with the constraint of Condition 2

Given bj > bj′ , function
εj
εj′

× (bj−x)
(bj′−x) is strickly increasing,

and thus the order of an arbitrary pair of data values can be
obtained by comparing the result of Eq. 1. In CIPE0, pi·qj =
(ξi + εj)(bj − ai), where neither ξi nor εj can be eliminated
by calculating Eq. 1 or by other operations. Therefore, the
adversary cannot obtain an univariate function to initiate COA.

How to achieve vectors of constant length. The length
of vectors in CIPE0 grows linearly with the number of
attributes m. To create constant-length vectors, our main idea
is to divide a d-dimensional vector into m sub-vectors, where
the k-th sub-vector of length d

m is built for attribute Ak.
For k ∈ [m], we run Alg. 1 (resp. Alg. 2) for the k-th
sub-vector, then we encrypt it with algorithm KNN.EncI
(resp. KNN.EncQ). However, d must be large enough so that
each sub-vector contains sufficient randomness. Furthermore,
a larger m introduces more false positives to the search results,
since the combined effect of m sub-vectors may conceal the
mismatching of a single one. Therefore, there is a tradeoff
using this improvement.

How to achieve design goals. 1) High efficiency. The
Trapdoor0 algorithm generates trapdoors purely based on
current queries and the Search0 algorithm is independently
run by the cloud server. Therefore, our scheme is stateless
and non-interactive. 2) High scalability. The most expensive
operation in the Search0 algorithm is determining the vector
inner product, which costs only 1.4 microseconds to calculate
the inner product of two 128-dimensional vectors. While
conducting experiments on a massive data set, we build an R-
tree like that in [22] to achieve a faster-than-linear search time.
3) Enhanced security. The main reason that OPE schemes are
vulnerable to inference attacks is that their ciphertexts reveal
either order or frequency information about the underlying
plaintexts immediately. In our scheme, ciphertexts are random
vectors leaking nothing about corresponding plaintexts, and
plaintext order is not exposed until a range query is performed.
Therefore, it can effectively resist inference attacks (Our last
design goal, enhanced privacy, is achieved in Section V).

V. ADVANCED CIPE (CIPES)
A. Main Idea

From the construction of KNN [20], we know that the inner
product of an index vector and a query vector can be calculated
from their encrypted forms: p · q = p′

|α| · q′
|α| + p′

|β| · q′
|β|,

where only d variables are unknown to the cloud server, i.e., d
elements of the index vector p. As proven in Yao et al. [23],
an adversary with d query vectors, and their encryptions can
recover index vectors by solving linear equations.

To resist chosen plaintext attacks, we extend query vectors
to random query matrices, thereby adding noises to the results
of inner product. The hardness for initiating such attacks
comes from the negligible probability of constructing d correct
equations. For all index vectors we have:

p · q 	= p′
|α| · q′

|α| + p′
|β| · q′

|β|. (2)

Let M[i][j] denote the element at the i-th row and the j-th
column of matrix M, and let M[i][∗] (M[∗][j]) denote a vector
of elements in the i-th row (j-th column) of M. Our solution
is based on the following key techniques:

Encoding query matrices. Given two random numbers
r, t ∈ R such that r + t > 0, a query vector qjk,φ

generated
by Alg. 2 is encoded as a d× s matrix Qjk,φ

by Alg. 3. For
ι ∈ [d], Alg. 3 sets qjk,φ

[ι] at a random position of the ι-th
row of Qjk,φ

and fills other positions with random numbers
while the following conditions are satisfied:

Condition 1. Each column of matrix Qjk,φ
contains at least

one element of vector qjk,φ
.

Condition 2. The sum of the random numbers at the ι-th
row, denoted as δι, is equal to tqjk,φ

[ι].

The way to determine matching. Given a d-dimensional
index vector pik output by Alg. 1 and two d×s query matrices
Qjk,l

and Qjk,u
output by Alg. 3, two intermediate vector

Rk,l,Rk,u ∈ Rd is obtained by calculating pT
ik

� Qjk,l
and

pT
ik
�Qjk,u

, respectively. Given the sum of elements in Rk,l and
Rk,u, denoted as γk,l and γk,u, respectively, we have Di �� Qj

if γk,l ≤ 0 and γk,u ≥ 0 for k ∈ [m].

B. Advanced Construction

The main differences between CIPE0 and CIPES lie in
the algorithms TrapdoorS and SearchS as follows:

• TrapdoorS(Qj , SK) → TQj
: She chooses a random

integer s ∈ [2 ∼ d] and two random numbers r, t ∈ R
such that r + t > 0. Given query Qjk = [bjk,l

, bjk,u
]

where k ∈ [m], the data owner generates query vectors
qjk,l

,qjk,u
∈ Rd by running Alg. 2. Then, she constructs

query matrices Qjk,l
,Qjk,u

∈ Rd×s based on qjk,l
,qjk,u

by
running Alg. 3. For ι ∈ [s], she runs algorithm KNN.EncQ to
encrypt the ι-th column of matrix Qjk,l

and Qjk,u
, and outputs

Q′
jk,l

= (Q′
|α|jk,l

,Q′
|β|jk,l

) and Q′
jk,u

= (Q′
|α|jk,u

,Q′
|β|jk,u

),

respectively. Finally, she sets TQj = (TQj1
, . . . , TQjm

) where
TQjk

= (Q′
jk,l

,Q′
jk,u

) for k ∈ [m].

• SearchS(Ii, TQj) → {0, 1} : For k ∈ [m], the cloud

server computes Rk,l = p′T
|α|ik �Q

′
|α|jk,l

+p′T
|β|ik �Q

′
|β|jk,l

=

pT
ik
�Qjk,l

and Rk,u = p′T
|α|ik �Q

′
|α|jk,u

+p′T
|β|ik �Q

′
|β|jk,u

=

pT
ik

� Qjk,u
It calculates the sum of each vector by setting

γk,l =
∑s

ι=1 Rk,l[ι] and γk,u =
∑s

ι=1 Rk,u[ι]. It outputs 1 if
γk,l ≤ 0 and γk,u ≥ 0 for k ∈ [m]; otherwise, it outputs 0.

C. Correctness Analysis

The correctness of CIPES is based on the assumption that
the introduced randomness in a query matrix will not impact
the positive and negative property of results. Given an index
vector p and a query vector q, a query matrix Q of q is output
by Alg. 3. Let xi,j denote the element in the i-th row and j-
th column of matrix Q for i ∈ [d], j ∈ [s]. The intermediate
vector in the SearchS algorithm can be derived as follows:

Fig. 3. Working process of CIPES . In sample matrices Q1,l (Q1,u), the boxes filled with blue color contain elements in query vector rq1,l (rq1,u).

R = pT �Q = (p ·Q[∗][1], · · · ,p ·Q[∗][s])
= (
∑d

i=1
p[i]xi,1,

∑d

i=1
p[i]xi,2, · · · ,

∑d

i=1
p[i]xi,s)

The flag value γ can be calculated:

γ =
∑d

i=1
p[i]xi,1 + · · ·+

∑d

i=1
p[i]xi,s

= p[1](x1,1 + · · ·+ x1,s) + · · ·+ p[d](xd,1 + · · ·+ xd,s)
(3)

Based on Condition 1-2, Eq. 3 can be converted to Eq. 4:

γ = p[1](rq[1] + δ1) + · · ·+ p[d](rq[d] + δd)

= p[1](rq[1] + tq[1]) + · · ·+ p[d](rq[d] + tq[d])

= (r + t)(p[1]q[1] + · · ·+ p[d]q[d]) = (r + t)p · q
(4)

Since (r + t) > 0, the sign of the flag value γ is the same as
that of p · q, and our advanced construction is correct.

Example 2. Given query vectors q1,l and q1,u as shown in
Fig. 2-(b), sample query matrices Q1,l and Q1,u are shown in
Fig. 3-(a) and Fig. 3-(b), respectively. For q1,l, we set r = 0.3
and t = −0.21 and have

∑
(pT

i1
� Q1,l) = 0.09(pi1 · q1,l)

for i ∈ [5]. For q1,u, we set r = 2 and t = −0.6 and have∑
(pT

i1
� Q1,u) = 1.4(pi1 · q1,u) for i ∈ [5]. Therefore, the

results in Fig. 3-(c) are consistent with those in Fig. 2-(c).

D. Security Proof

Theorem 2. CIPES is secure with leakage function L in the
known background model.

Proof (sketch). The purpose of extending a query vector to
a random matrix is to add random noises to the search results
so that Eq. 2 holds for all index vectors. First, we show the
security of the flag value γ as follows: from Eq. 4, we know
that γ = (r + t)p · q, where (r + t) is a random positive
number having nothing to do with vectors. Both (r + t) and
p ·q may be non-integer values. Therefore, it is impossible for
the adversary Adv to decompose p · q from γ.

In CIPES , query matrices output by the TrapdoorS
algorithm are encrypted with KNN, and algorithms KeyGenS

and SecureInxS are constructed in the same way as the
algorithms in the basic construction. Therefore, the privacy
objectives we define in Section II-B are preserved in CIPES .
Our main security concern is that the SearchS algorithm leaks
an intermediate vector R, which may be used to infer certain
sensitive information about underlying data sets and submitted
queries. We show the security of the intermediate result R
as follows: for ι ∈ [s], the ι-th element of R is the result
of the inner product of p and Q[∗][ι]. In our construction,
each column of a matrix contains (d− s+ 1) query values at
most and (s− 1) random numbers at least. Although the sum
of the random numbers at each row is related to the query
value (δι = tq[ι]), the random numbers in each column are

independent from both the index and query vectors. Therefore,
Adv cannot infer any useful information from R directly.
Now, let us consider Adv constructing linear equations from
an arbitrary combination of R[1], . . . ,R[s]. If Adv adds up
R[i], . . . ,R[j] where i, j ∈ [s] and |i − j| < s − 1, the
number of unknown variables is larger than the number of
linear equations. If Adv adds up R[1], . . . ,R[s], it obtains
the flag value γ, whose security we have already proved.
Therefore, our advanced CIPE construction is secure. �
E. Discussion

Resistant to known plaintext attacks (KPA). As proven
in [25], the scheme in [24] is also vulnerable to KPA. Given
two query values b0, b1, the adversary Adv obtains âiai =
aiα − β + âib1 from Eq. 1, where âi =

pi·q0

pi·q1
= ε0

ε1
× b0−ai

b1−ai
,

α = ε0
ε1

, and β = αb0. Given three data values a0, a1, a2, Adv
can obtain α, β by solving linear equation:

(α, β, b1)

(
a0 a1 a2

−1− 1− 1
â0 â1 â2

)
= (â0a0, â1a1, â2a2) (5)

Then, Adv recovers plaintexts ai by calculating ai =
b1âi−b0α

âi−α . In CIPE0, neither ξi nor εj can be cancelled by
calculating Eq. 1 or by other operations, and the number of
unknown variables grows as the number of linear equations
grows. Therefore, Adv cannot calculate Eq. 5 to initiate KPA.

The impact of parameter s. The number of columns s
in query matrix mainly impact the performance of algorithms
TrapdoorS and SearchS . As shown in Fig. 4, the larger the
s, the higher the cost. In terms of security level, even if s = 2,
the adversary Adv cannot obtain any useful information from a
single column of R directly. We believe that even for this low
value of s, there is a sufficient measure of security provided.

VI. EVALUATION

In this section, we evaluate the performance of our CIPE
scheme in terms of computational and communication costs.
To show the effectiveness of our scheme, we compare it with
the ideally secure OPE scheme proposed in [6] (denoted by
mOPE), which requires O(log n) rounds of communication.

A. Parameter Setting

Experiments are conducted on a local machine running
the Microsoft Windows 7 Ultimate operating system with an
Intel Core i5 CPU running at 3.3GHz and 32GB memory.
The programs are implemented in Java compiled using Eclipse
4.3.2. In terms of mOPE, AES-ECB-128 is employed for data
encryption with 192-bit ciphertexts (i.e., 128 bits for an AES
ciphertext and 64 bits for a mutable encoding).

To validate the feasibility of our CIPE scheme in practice,
we conduct a performance evaluation on Gowalla data set

1 20 40 60 80 100
0

1

2

3

4x 106

n (× 104)

SecureInx(d=128)
SecureInx(d=256)
mOPE

(a) Index generation time.

1 16 32 48 64
0

0.02

0.04

0.06

0.08

0.1

s

d=128
d=256
mOPE

× 103

(b) Trapdoor generation time.

1 20 40 60 80 100
0

2

4

6

8

n (× 104)

Search0(d=128)
Search0(d=256)
SearchS(d=128,s=2)
SearchS(d=256,s=2)
mOPE

× 103

(c) Search time.

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

M

Search0(d=128)
Search0(d=256)
SearchS(d=128,s=2)
SearchS(d=256,s=2)
mOPE

× 103

(d) Search time.

1 16 32 48 64
0

1

2

3

4

5

6x 104

s

d=128
d=256
mOPE

(e) Search time.
Fig. 4. Comparison of the execution time (ms) between CIPE and mOPE. (a) The time for the encryption of n indexes. (b) The time for the generation
of a trapdoor for matrix of s columns. (c) The time for searching n files with fixed M = 25. (d) The searching time for rectangles of size M with fixed
n = 1, 000, 000. (e) The searching time for query matrices of s columns with fixed n = 1, 000, 000 and M = 25.

from the SNAP project1; this includes a total of 6,442,890
location check-ins collected from 196,591 users. We extract
n = [10, 000 ∼ 1, 000, 000] distinct data from Gowalla data
set, where each data is described by m = 2 attributes, i.e., the
(latitude, longitude) pair. For security considerations, the size
of the vectors is set to d = {128, 256} for both CIPE0 and
CIPES . In CIPES , the number of matrix columns s is set
to [2 ∼ 64]. We evaluate the search efficiency with rectangles
of different sizes (the edge length M is set to [5 ∼ 50]). At
least 20 random 2-dimensional range queries are generated and
evaluated on each size to minimize deviation.

B. Experiment Results

Computational costs. To analyze computational complex-
ity, we only consider the most expensive operations related
to matrices in our constructions. In terms of key generation,
both algorithms, KeyGen0 and KeyGenS , generate two d×d
invertible matrices, the complexity of which is O(d2). In our
experiments, the costs of both algorithms under the settings
d = 128 and d = 256 are about 31ms and 47ms, respectively.

To generate secure indexes, the costs of SecureInx0 and
SecureInxS , collectively called SecureInx in Fig. 4-(a), are
the same. For j ∈ [m], SecureInx runs the KNN.EncI
algorithm to generate a pair of d-dimensional vectors, the
complexity of which is O(d2). Therefore, the cost of building
n indexes for a m-dimensional data set is O(nmd2). The
experiment results are consistent with our analysis results. For
example, when d increases from 128 to 256, the execution time
increases from 682s to 3,062s for encrypting n = 1, 000, 000
indexes; when d = 128 and n ranges from 10,000 to 1,000,000,
the execution time costs from 6s to 682s. Compared with
mOPE scheme, the performance of our SecureInx algorithm
is slightly worse. For example, the execution time to encrypt an
attribute value is about 0.04ms in mOPE, and about 0.2ms and
0.4ms in our scheme when d = 128 and d = 256, respectively.
However, the data encryption is a one-time cost.

The Trapdoor0 algorithm runs the KNN.EncQ algorith-
m to generate m pairs of d-dimensional encrypted vectors, the
complexity of which is O(md2). For TrapdoorS , we encrypt
each column separately, and thus its complexity is O(smd2).
As shown in Fig. 4-(b), the execution time for generating a
trapdoor is very fast. For example, when s = 1, the execution
time is equivalent to that of Trapdoor0 and is about 0.8ms
and 1.7ms when d = 128 and d = 256, respectively.

The Search0 algorithm runs the KNN.Cal algorithm to
calculate vector inner products with a complexity of O(md).

1http://snap.stanford.edu/data/loc-gowalla.html

The SearchS algorithm runs the KNN.Cal algorithm for
each column, and its cost is O(mds). If we evaluate a trapdoor
on the data set sequentially, the cost to find all matched data
records for the algorithms Search0 and SearchS is O(nmd)
and O(nmds), respectively. To accelerate the query speed, we
build a 4-ary R-tree from n data records, where the leaf node
points to a data record, and each non-leaf node represents a
rectangle. Inspired by the work in [22], mutable encoding is
used to label paths in the R-tree. Given a search rectangle
B we test whether rectangles in non-leaf nodes intersect with
B and test whether data records in the leaf nodes fall within
B. Therefore, the search cost is also impacted by the size
of search rectangle M . The experiment results are shown in
Figs. 4(c)-(e). These figures show that our Search algorithm
(which calcultes inner products) is more efficient than mOPE
(which performs AES decryption) in most cases; they also
show that a faster-than-linear search time is achieved and that
either a larger M or a larger s incurs a larger execution time.

Communication costs. In both algorithms, SecureInx0

and SecureInxS , an attribute value is encoded to a pair
of d-dimensional vectors. Therefore, the cost of transmitting
n indexes for a m-dimensional data set is O(nmd). In the
search phase, the Trapdoor0 algorithm encodes an attribute
value to a pair of d-dimensional vectors and the TrapdoorS
algorithm encodes an attribute value to a pairs of d × s
matrices. Their costs are O(md) and O(msd), respectively.
The cost of the transmission of trapdoors is trivial (e.g., about
12KB in Trapdoor0 when d = 256). Therefore, Table II only
lists the comparison results of index sizes (compressed sizes)
before and after building a R tree. Since each element in a
vector/matrix is 8 bytes, our scheme incurs more communi-
cation costs than mOPE that generates a ciphertext of 128-bit
length. However, this is a one-time cost that can be further
reduced using existing compression techniques (e.g. 7zip can
save communication costs by 30%). With the ever increasing
availability of the bandwidth, it takes less than 10 minutes to
complete the transmission over a 100Mbps network.

VII. RELATED WORK

Existing research most related to ours can be found in OPE
and ORE. OPE guarantees that Enc(x) > Enc(y) if x > y,
allowing for performing range queries directly on the cipher-
texts. Agrawal et al. [21] first introduce OPE, which relies on
heuristics, but lacks a formal security analysis. Subsequently,
Boldyreva et al. [4] define the formal notion of IND-OCPA as
the ideal security for OPE, in which the ciphertexts reveal no
additional information beyond the order of plaintexts. Since
then, a lot of work has been conducted to construct ideally
secure OPE schemes. For example, Papa et al. [6] construct

TABLE II. COMPARISON OF INDEX SIZES

n(×104)
Linear search R-tree

d = 128 d = 256 mOPE d = 128 d = 256 mOPE

1 91.2MB (32.2MB) 190MB (67.6MB) 673KB (269.2KB) 138.8MB (49MB) 290MB (102.4MB) 1.003MB (410.736KB)
5 464MB (188MB) 974MB (391MB) 3.29MB (1.316MB) 703.36MB (289MB) 1.45GB (595MB) 5.05MB (2.02MB)
10 935MB (380MB) 1.89GB (781MB) 6.58MB (2.632MB) 1.38GB (580MB) 2.9GB (1.157GB) 10.02MB (4.008MB)
30 2.71GB (1.084GB) 5.71GB (2.284GB) 19.7MB (7.88MB) 4.13GB (1.652GB) 8.69GB (3.476GB) 30.2MB (12.08MB)
50 4.55GB (1.82GB) 9.52GB (3.808GB) 32.9MB (13.16MB) 6.85GB (2.74GB) 14.38GB (5.752GB) 50.1MB (20.04MB)
75 6.72GB (2.688GB) 14.2GB (5.68GB) 49.3MB (19.72MB) 10.08GB (4.032GB) 21.5GB (8.6GB) 74.7MB (29.88MB)
100 9.07GB (3.628GB) 18.8GB (7.52GB) 65.8MB (26.32MB) 13.63GB (5.452GB) 28.5GB (11.4GB) 99.2MB (39.68MB)

TABLE III. COMPARISON WITH PREVIOUS WORK

Efficiency Scalability Security Privacy

Ref. [6]–[8] � �
Ref. [9] � � �
Ref. [14]–[16] � � �
Ref. [13], [17] � � �
Our CIPE scheme � � � �

a mutable OPE scheme which requires O(log n) interactions
between clients and servers where n is the number of data
records. As a trade-off, Kerschbaum et al. [7] reduce the
communication costs to O(1), but require O(n) client storage.
More recently, Kerschbaum et al. [8] introduce a notion of
frequency-hiding OPE (FHOPE) by introducing randomness to
ciphertexts. Roche et al. [9] improve the security and efficiency
of FHOPE by applying lazy indexing and partial ordering
techniques. However, existing ideally secure OPE schemes are
inefficient (either stateful or interactive). Besides efficiency,
as shown in [10]–[12], almost all existing OPE schemes are
vulnerable to inference attacks even if they are ideally secure.

The notion of ORE, in which a function takes two ci-
phertexts as inputs and outputs the ordering of the underlying
plantexts, is first introduced by Boneh et al. [14]. However,
all existing constructions of ORE that achieve ideal security
rely on very strong cryptographic primitives [14]–[16], such
as multilinear maps and obfuscate functions. Therefore, these
approaches are far from practically viable. Very recently,
Chenette et al. [17] provide an efficient ORE construction
based on pseudorandom functions. However, their scheme
resorts to weaker security which leaks information beyond
order, i.e., the index of the first bit position that differs between
two plaintexts. Lewi et al. [13] construct an ORE scheme with
improved security by leaking only the first block that differs
between two plaintexts. However, the ciphertext length in their
scheme grows linearly with the plaintext domain. In summary,
the aforementioned schemes only partially address our design
goals. The comparison between our work and previous OPE
and ORE schemes is shown in Table III.

VIII. CONCLUSION

In this paper, we study the problem of multi-attribute
range queries on encrypted data, and we propose a CIPE
scheme to achieve secure and effective search services in cloud
computing. Experiment results demonstrate that our scheme is
extremely efficient for secure range queries on large-scale data
sets. As part of our future work, we will try to implement our
scheme directly in database management systems.

ACKNOWLEDGMENT

This work was supported in part by NSFC grants
61632009; and NSF grants CNS 1757533, CNS1629746, CNS
1564128, CNS 1449860, CNS 1461932, CNS 1460971, and
IIP 1439672.

REFERENCES

[1] M. Xiao, J. Wu, S. Zhang, and Y. Yu, “Secret-sharing-based secure user
recruitment protocol for mobile crowdsensing,” Proc. of INFOCOM,
2017.

[2] K. Xie, X. Li, X. Wang, G. Xie, J. Wen, J. Cao, and D. Zhang, “Fast
tensor factorization for accurate internet anomaly detection,” IEEE/ACM
Transactions on Networking, 2017.

[3] K. Xie, X. Li, X. Wang, J. Cao, G. Xie, J. Wen, D. Zhang, Z. Qin, “On-
line anomaly detection with high accuracy,” IEEE/ACM Transactions on
Networking, 2018.

[4] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving
symmetric encryption,” in Proc. of EUROCRYPT, 2009.

[5] A. Boldyreva, N. Chenette, and A. O’neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,” in
Proc. of CRYPTO, 2011.

[6] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in Proc. of S&P, 2013.

[7] F. Kerschbaum and A. Schröpfer, “Optimal average-complexity ideal-
security order-preserving encryption,” in Proc. of CCS, 2014.

[8] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in
Proc. of CCS, 2015.

[9] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “POPE:
Partial order preserving encoding,” in Proc. of CCS, 2016.

[10] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in Proc. of CCS, 2015.

[11] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed by
order-revealing encryption?,” in Proc. of CCS, 2016.

[12] P. Grubbs, K. Sekniqi, V. Bindschaedler, et al., “Leakage-abuse attacks
against order-revealing encryption,” in Proc. of S&P, 2017

[13] K. Lewi and D. J. Wu, “Order-revealing encryption: New constructions,
applications, and lower bounds,” in Proc. of CCS, 2016.

[14] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, et
al.,“Semantically secure order-revealing encryption: Multi-input func-
tional encryption without obfuscation,” in Proc. of EUROCRYPT, 2015.

[15] P. Ananth and A. Jain, “Indistinguishability obfuscation from compact
functional encryption,” in Proc. of CRYPTO, 2015.

[16] S. Kim, K. Lewi, A. Mandal, and D. J. Wu, “Function-hiding inner
product encryption is practical,” IACR Cryptology ePrint Archive, 2016.

[17] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical order-
revealing encryption with limited leakage,” in Proc. of FSE, 2016.

[18] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. of Eurocrypt, 1999.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
of STOC, 2009.

[20] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in Proc. of SIGMOD, 2009.

[21] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proc. of SIGMOD, 2004.

[22] B. Wang, Y. Hou, and M. Li, “Practical and secure nearest neighbor
search on encrypted large-scale data,” in Proc. of INFOCOM, 2016.

[23] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in Proc.
of ICDE, 2013.

[24] P. Karras, A. Nikitin, M. Saad, R. Bhatt, D. Antyukhov, S. Idreos,
“Adaptive indexing over encrypted numeric data,” in Proc. of SIGMOD,
2016.

[25] C. Horst, R. Kikuchi, and K. Xagawa, “Cryptanalysis of comparable
encryption in SIGMOD’16,” in Proc. of SIGMOD, 2017.

