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Abstract—With the continuous evolution of attack methods,
cyber attacks have become more distributed and complex, em-
ploying techniques such as multi-stage network attacks (MSA).
Monitoring tools generate numerous alerts during these attacks,
but the high dimensionality and diverse features of alert data
often result in poor detection performance. Manual analysis
of MSAs is time-consuming, leading to limited labeled data.
Additionally, changes in attack types and new domains cause
Intrusion Detection Systems (IDSs) to perform poorly, presenting
a significant challenge known as domain shift. In this paper, we
address these issues by proposing a multi-stage network attack
detection algorithm that enhances MSA detection through the
analysis of high-dimensional alerts and the integration of various
alert aspects. Our algorithm incorporates multiple facets includ-
ing semantic similarity, anomaly scores, and feature extraction
to identify relevant entities, detect intricate relationships, and
uncover hidden patterns, enhancing the detection of multi-stage
network attacks. The model was tested successfully using the
DARPA 2000 and ISCX 2012 datasets, with completeness and
soundness measured to evaluate its effectiveness.

Index Terms—Alert correlation, Bert, Intrusion Detection Sys-
tem (IDS), multi-stage attack(MSA), Prototypical Network(PTN).

I. INTRODUCTION

A Network Intrusion Detection System (NIDS) is a crucial
network security technology for detecting intruder attacks.
Different intrusion detection methods are needed across var-
ious environments, requiring multiple IDS implementations
within a security domain for optimal results [1]. However,
there are some open issues with intrusion detection over
networks. First, deploying diverse sensors enhances cover-
age but introduces challenges in interpreting reports, often
generating a flood of low-level alerts with over 90% false
positives, overwhelming analysts and leading to missed critical
alerts. For heterogeneous sensors, a correlation engine should
identify when reports from multiple sensors refer to the same
incident. By organizing related alerts, correlation engines
can reduce alert volume and enhance detection capabilities,
providing a more comprehensive attack overview. Second,
not all attacks are simple to detect for IDS. Multi-Stage
Network Attacks (MSAs) involve a series of steps targeting
a network, with each step appearing harmless independently
but dangerous when combined [2]. For MSAs, not only do all
single-step attacks need to be identified, but the relationships
between each step also need to be inferred, which makes it
more difficult to describe the similarities between attacks. A
MSA with its stages is shown in Fig. 1. In this example,

Fig. 1: Multi-stage attack.

an MSA begins with DNS probing, followed by privilege
escalation, Trojan installation, lateral movement, and culmi-
nating in a disruptive attack like DDoS. Detecting MSAs
is challenging because it requires identifying both individual
steps and their interrelationships. The high-dimensional alert
data from IDS, containing positive, false, and irrelevant alerts,
complicates MSA detection [3]. Traditional machine learning
models struggle with clustering this data and accounting for
the non-linear, variable-timed nature of multi-step attacks.

Existing methods often struggle with false and incomplete
alert correlations due to raw alerts. Those methods often
fail to consider the complexity and high dimensionality of
MSA alert data, leading to inefficiencies in detection. The
timestamp of each step is important, similar to word order in a
sentence. Additionally, the number of attack types is limited,
like vocabulary size in NLP. Therefore, using BERT (Bidi-
rectional Encoder Representations from Transformers) [4] to
find semantic similarities between alerts, helping the IDS to
detect multi-stage attacks more accurately. Semantic similarity
techniques in NLP can identify similarities between different
stages of an attack.

One major issue is domain shift, where IDS models trained
on specific rules do not perform well under different config-
urations, highlighting the need for adaptable and robust IDS.
Prototypical networks are particularly useful in this context
because they can generalize well to new domains with very
limited available labeled data by learning a metric space
where data points from the same class are clustered together.
This allows the IDS to maintain high performance even
when the operational environment changes, thereby addressing
the domain shift challenge effectively. Our paper proposes
a new approach that considers multiple aspects of alerts,
including alert messages, potential alert stages, and some



extracted features within the dataset. Our algorithm leverages
NLP to extract semantic embeddings from alert messages
and determine the corresponding potential alert stages. These
embeddings are then integrated with the anomaly scores, some
extracted features to effectively detect MSAs. To address
domain shift, these concatenated embeddings are subsequently
passed through a prototypical network, ensuring a reliable IDS.
Our main contributions are summarized as follows:

• We proposed a NIDS that leverages NLP to extract
semantic embeddings from raw alert messages using
BERT, enhancing detection accuracy and reducing false
positives.

• We utilize integrating some extracted features, potential
alert stages, anomaly scores, and obtained semantic em-
bedding of alert messages to improve the system’s ability
to detect multi-stage attacks with higher accuracy.

• We addressed the domain shift problem in IDSs by im-
plementing a few-shot learning methodology, specifically
using the Prototypical Network.

• We demonstrate the high performance of our method-
ology on real-world datasets in both within-dataset and
cross-dataset scenarios.

II. PRELIMINARY AND RELATED WORK

A. Natural Language Processing (NLP)
NLP technology is essential for understanding and analyz-

ing natural language. As NLP has matured, its use in cyber-
security has increased, particularly in binary code similarity
comparison, where binary code is represented as vectors using
techniques like word2vec [5]. NLP involves tasks such as
lexical analysis or tokenization, sentence analysis, semantic
analysis, and information extraction. Transformer-based mod-
els like BERT [4], GPT-2 [6], and XLNet [7] dominate the
field of Large Language Models (LLMs) [8], [9] in NLP.
BERT is highly effective in finding semantic similarity [10]
between texts by understanding the context and meaning of
words within sentences [11].

Lira et al. [12] proposed a model demonstrating the ca-
pability of LLMs to identify normal and anomalous traffic
from 23 different types of attacks with higher accuracy and a
lower false positive rate than other researched models. Their
model processes and comprehends large volumes of network
log data, autonomously learns and adapts to evolving net-
work behavior, and effectively differentiates between regular
activities and potential threats. In the context of cyber attack
scenario reconstruction, semantic similarity techniques can
identify similarities between incident reports, facilitating the
detection of common attack patterns and tactics.

B. Multi-Stage Attack (MSA)
MSAs are among the most critical security threats in cy-

berspace, defined as a series of steps involving at least two
actions taken by one or more attackers targeting a specific
network [2]. MSAs consist of multiple steps through which at-
tackers infiltrate various networks and systems. Unlike single-
stage attacks, detecting MSAs is challenging because each

stage often appears harmless when executed alone [13] [14].
However, the combined execution of these steps results in a
highly dangerous attack, posing significant risks to industries
and individuals. Analyzing MSA events involves extracting
high-level security events from low-level alert logs. Each step
in an MSA is related, with the previous step often leading
to the next. By analyzing the early stages, it is possible to
predict subsequent attack events and proactively prevent major
damage [15], [16].

Wang et al. [17] propose a multistage network attack
detection algorithm based on a Gaussian mixture hidden
Markov model and transfer learning. Mao et al. [18] addressed
the problem of numerous redundant features in the high-
dimensional alert data by leveraging IDS alerts corresponding
to abnormal traffic to correlate attacks, reconstruct MSA sce-
narios, and discover attack chains. They introduced a Graph-
based Fusion Module that uses risk assessment and time
information to create a weighted attack scenario, enhancing
reconstruction accuracy. Hu et al. [19] propose an attack
graph-based alert correlation approach to capture network con-
nectivity and vulnerabilities, mapping alerts to the attack graph
to derive and cluster attack sequences. Their approach detects
unreported true negative alerts and merging broken scenarios.
Haas et al. [20] introduce GAC, which clusters alerts and
connects clusters based on host communication to form a
complete attack. However, GAC can only identify predefined
scenarios and ignores detailed IDS alert information.

III. METHODOLOGY

Network-based IDSs generate a high volume of low-quality
alerts, and it arise from the inability of alert generation
rules to distinctly differentiate between normal and malicious
activities, leading to numerous alerts that do not represent
genuine security threats. Additionally, IDSs may miss certain
attacks. As mentioned earlier, IDSs generate individual alerts
for each step of a MSA. Therefore, to detect MSAs, it is crucial
to identify alerts related to each potential stage.

Definition 1. Attack Stage:
The attacker’s attack actions are implemented step by step.

A whole attack scenario includes multiple stages and each
stage has its characteristics.

We categorize alerts into four attack stages: scan, exploit,
get-access-privilege, and post-attack, as shown in Table I. Note
that not all alerts are associated with MSAs. The purpose of
stage clustering is to identify the potential stage of an alert
if it were to be part of an MSA. The scan is the first step
in an attack, aiming to probe and collect information through
various methods to prepare for subsequent attacks. The exploit
stage involves the actual attack process, which may include ex-
ploiting vulnerabilities or running malicious documents on the
victim host. When the attack is successful, the attacker needs
to obtain the necessary permissions to control the victim host
and perform further attacks, marking the get-access-privilege
stage. Finally, after successfully compromising a host, the



TABLE I: Alert Stages.

No. Alert Stage Alert Types
1 Reconnaissance or Scan IP address scan, Port scan, Version scan, Vulnerability scan, Social engineering
2 Exploit Malicious file in network traffic and host, Command injection, Vulnerability attack
3 Get Access SSH login, RDP login, shell connect
4 Post-Penetrate or Post-Attack Data transfer, command & control, backdoor communication

TABLE II: Categorization of Different Network Threats

Stage Alerts Tag

Reconnaissance
or Scan

scan behavioral unusually fast terminal server traffic potential scan or infection (outbound)
scan suspicious inbound to postgresql port 5432

Fast Terminal Scan
PostgreSQL Inbound Scan

Exploit imap fetch overflow attempt
exploit echo command attempt

HP Power Manager Overflow
Echo Command Exploit

Get Access web server /bin/sh in uri possible shell command execution attempt
trojan possible metasploit payload common construct bind api (from server)

Shell Command Execution
Metasploit Payload

Post-Penetrate
or Post-Attack

policy incoming basic auth base64 http password detected unencrypted
trojan blue bot ddos blog request

Unencrypted HTTP Password
Blue Bot DDoS Request

TABLE III: Alerts related to the reconnaissance or scan stage.

Stage Alerts Tag

Reconnaissance or Scan

info observed dns query to .biz tld
scan nmap os detection probe

scan potential ftp brute-force attempt response
et scan suspicious inbound to mssql port 1433

et info dynamic dns query to a suspicious no-ip domain
et info dotted quad host dll request

DNS Query to .biz TLD
Nmap OS Detection Probe
FTP Brute-Force Attempt

MSSQL Inbound Scan
Dynamic DNS Query

DLL Request to Quad Host

attacker conducts follow-up actions such as information theft,
categorized as post-attack. The actions of the attacker at each
stage are detailed in Table I. Steps are according to the kill
chain model [21]. Table II shows two alerts for each stage of
an attack along with their associated tags. For simplicity, we
use tags instead of lengthy alert messages. Table III provides
more detailed alerts related to the reconnaissance stage and
their respective tags.

For an anomaly detection system, it is crucial to address
both within-dataset detection and domain shift detection for
comprehensive coverage and adaptability. Ignoring these can
reduce performance and increase false positives or negatives,
undermining system reliability.

Definition 2. Within-Dataset Detection:
Identifying anomalies within a single dataset where data

distribution remains the same.

Definition 3. Domain Shift Detection:
Identifying anomalies in datasets when data distributions

change over time.

Detection within a dataset focuses on identifying anomalies
when the model is trained and tested on the same dataset,
ensuring consistent data distribution and unchanged statistical
properties. This makes it straightforward to detect outliers
based on the learned model. Domain shift detection, on the
other hand, addresses identifying anomalies when the model
is trained on one dataset and tested on another. This involves
changing data distributions over time or across domains,
complicating detection, and introducing different attack types.

The overview of CrossAlert is shown in Fig. 2 which con-
tains three main modules. The diagram illustrates a framework
for detecting multi-stage network attacks by leveraging IDS
alerts. Raw alerts generated by IDS sensors are first processed
through feature extraction to obtain Basic and Sequence-based
features. Feature extraction module extracts Basic features
from raw alerts, Sequence-based features from alert sequences.
These features are then fed into an anomaly detection module
that processes the data, generating anomaly scores that in-
dicate potential threats. The core of this framework utilizes
BERT (Bidirectional Encoder Representations from Trans-
formers) [4] to analyze the semantic similarity between alert
messages and obtain rich and meaningful embedding from
alert messages. In this model, the alert messages undergo
an initial tokenization process and are then transformed into
vector representations via an embedding layer. Positional
embeddings are then added to these token vectors, providing
the model with information about the order of tokens in
the sequence. These token representations are subsequently
passed through multi-head attention mechanisms to capture
complex dependencies and contextual relationships between
words. The obtained vectors are further processed by feed-
forward layers to generate the final embeddings for each token.
Due to the high dimensionality of these representations, Prin-
cipal Component Analysis (PCA) is applied to compress the
embeddings, making them more manageable while retaining
essential information.

Finally, the compressed embeddings are concatenated with
the obtained anomaly score, the Basic and Sequence-based
features, and then fed into a neural network that classifies the



Fig. 2: CrossAlert:An Alert-based NIDS for Multi-Stag Attacks over Different Domains.

alerts to detect multi-stage attacks. This approach enhances
the accuracy of intrusion detection by identifying hidden
patterns and relationships within the alert data, reducing false
positives, and improving the overall detection of complex
attack scenarios. This framework addresses several challenges
in cybersecurity, such as the high dimensionality of alert
data, the prevalence of false positives, and the difficulty in
correlating alerts from diverse sources. By combining feature
extraction, anomaly detection, semantic analysis with BERT,
dimensionality reduction with PCA, and classification with
neural networks, the framework provides a robust solution for
detecting and mitigating multi-stage network attacks.

A. Phase 1: Alert Preprocessing and Feature Extraction

The goal is to transform the text-style alert data generated
in Phase 1 into data that can be used by machine learning
algorithms. The main part of this step in the framework is
feature extraction, where the raw alerts are processed to derive
both Basic features (the fundamental attributes that are inde-
pendent of the alert sequence) and Sequence-based features
(features derived from the alert sequence and capture temporal
or contextual information). These extracted features are crucial
for understanding the alert data in a more structured manner. In
multi-step attack detection, the inter-correlation between alerts
is crucial. Therefore, CrossAlert takes advantage of both Basic
and Sequence-based features to calculate anomaly scores.
Feature 1 and 2 are Source IP (SIP) and Destination IP (DIP).
In these features, instead of using one-hot encoding which
leads to sparse high-dimensional vectors, we used frequency
encoding. These features represent participants in the alert,
either an attacker or a victim. Feature 3 is attack stage.
The attack stage of an alert provides information about the
progression of the attack in the MSA process. We divide the
MSA process into four stages: reconnaissance, exploitation,
get access privilege, and post-penetration. Stages of a MSA
are shown in Table I. In the next section, we will explain how
we derive the potential attack stage from the alerts.

Sequence-based features are extracted from a sequence of
alerts triggered by a MSA. An alert sequence refers to a
collection of alerts that share the same (SIP, DIP) within a
specific time interval, arranged in chronological order. While
an individual alert might seem low-risk when considered in

isolation, within the context of an MSA, it could escalate to
a critical level, necessitating a more thorough analysis. To
improve the detection rate of multistep attacks, we extract
Sequnece-based features to capture these relationships. Fea-
ture 5 and 6 are defined as the number of alerts with the same
alert message generated by the same SIP and DIP, respectively,
across all alerts. Feature 7 is also defined as the count of
alerts with the same alert message generated by the same
combination of both SIP and DIP. These features measure how
many alerts share the same attacker or victim with the alert in
sequence. A large number of such alerts could indicate either
false positives from normal behavior or concentrated attacks
on a single target.

B. Phase 2: Semantic Embedding with BERT

The semantic description of alerts can be seen as a sequence
of statements, and if the context of two alert descriptions is
similar, it can be considered that they have similar semantics.
In MSAs, the attacker’s actions are intentional, and the alerts
from attack stages also exhibit certain characteristics. Similar
attack methods result in similar alert information. Therefore,
by learning alert semantic representations from a large number
of alert sequences, it is possible to effectively represent alerts.

We leverage the power of Encoder Representations from
Transformers (BERT) which is a powerful language model
that excels in understanding the semantics of text. BERT is
utilized to analyze the semantic similarity between different
alert messages. This involves converting the alert messages
into rich embeddings through a series of steps: tokenization,
initial embedding via embedding layer, positional embedding,
multi-head attention, and feed-forward layers to capture the
sequential nature of the data, as shown in Fig. 2.

1) Tokenization and Vector Representation: BERT takes a
sequence as an input and tokenize it using WordPiece [4] and
will add special tokens such as [CLS] as the first token of
every sequence and then convert each token into a dense vector
representation via WordPiece embeddings [22] with a 30, 000
token vocabulary.

2) Positional Embedding: The BERT model utilizes the
transformer architecture [23], which is permutation invariant,
meaning the order of input tokens does not affect the model’s
output. To provide the model with information about the



Fig. 3: t-SNE for different stages without prior knowledge.

position of each token, BERT employs positional encoding.
This technique incorporates the position of tokens through
sinusoidal functions, defined as follows:

PE(pos, 2i) = sin
( pos

100002i/d

)
(1)

PE(pos, 2i+ 1) = cos
( pos

100002i/d

)
, (2)

where pos is the position of the token, i is the dimension
index and d is the dimension of the embeddings. Obtained
embeddings from the first two steps are fed into BERT’s
architecture, enabling it to capture rich contextual relationships
within the text.

3) Multi-Head Attention: The multi-head attention mecha-
nism allows the model to focus on different parts of the alert
message simultaneously. We denote the obtained embedding
of one alert message from the first two steps by X ∈ RL×d,
where L is the sequence length and d is the embedding dimen-
sion. BERT consists of multiple layers of multi-head attention,
in which a new embedding for each token is obtained. We
denote the final embedding for layer l as E(l). In each head
of the first multi-head attention layer, initially three different
representations of X are obtained, called Q (Query), K (Key),
and V (Value), through linear projection using three trainable
matrices WQ

i ,WK
i ,WV

i with dimensions Rd×dk as follows:

Q = XWQ
i , K = XWK

i , V = XWV
i

Then, for each head:

headi = softmax
(
(QWQ

i )(KWK
i )T /

√
dk

)
VWV

i . (3)

Next, the heads are concatenated and multiplied by another
trainable matrix WO:

MultiHead = Concat(head1, head2, . . . , headh)W
O.

In order to obtain the final embedding, residual connec-
tion [24], layer normalization (LN) [25] and Feed Forward
Neural Network (FNN) have been utilized as follows:

E(1) = LN(FNN(out) + out), out = LN(MultiHead +X),

where E(1) is the final embedding for the first multi-head
attention layer. This new embedding will then serve as the
input for the second multi-head attention layer, and so on.

Fig. 4: t-SNE for different stages with prior knowledge.

BERT model has been pretrained on the massive corpus
of text data in two tasks: Masked Language Model and Next
Sentence Prediction. Then it has been fine-tuned on 11 NLP
tasks. Pretraining and fine-tuning makes BERT model capable
of understanding the context of words in a sentence by consid-
ering the entire sequence bidirectionally. The high-dimensional
embeddings generated by BERT are then processed using
PCA. PCA reduces the dimensionality of the embeddings,
making them more manageable for further processing while
retaining the most important information. This step is crucial
for handling the complexity and volume of alert data.

In Fig. 3 which is a t-SNE [26] plot, the data points
representing different stages (Stage 0, Stage 1, Stage 2, and
Stage 3) are scattered across the plot without clear boundaries
between them. This figure indicates that BERT, without fine-
tuning on cybersecurity task, struggles to distinguish between
the different stages of alert messages. The clusters for each
stage are not well-defined, and there is significant overlap
between the stages. This scattering suggests that BERT has
difficulty understanding and categorizing the alerts accurately,
leading to a mixed and less interpretable clustering.

To solve this issue we need to fine-tun BERT on a cy-
bersecurity task to make the BERT model specialized in this
field. Our data did not have any labels regarding alert stage.
We manually labeled 20% of it to determine the alert stage.
Then we fine-tuned BERT with a classifier head on this data
and obtained embeddings for all the alerts and apply t-SNE on
those to get a 2D embedding. Finally, we performed clustering
on these compressed embeddings. Now, we need to determine
which stage of a multistage attack each of these clusters
corresponds to. To do this, we use the labeled 20% to see
which samples belong to which cluster, and thus, all members
of that cluster will correspond to that stage.

Fig. 4 shows t-SNE plot where BERT has been fine-tuned
with labeled data, data points form distinct and well-separated
clusters for each stage. Each stage has clearly defined clusters
with minimal overlap. This indicates that BERT, equipped
with prior knowledge, can effectively differentiate between
the stages, resulting in clearer and more distinct groupings
of alerts. The enhanced clustering demonstrates BERT’s im-



Fig. 5: Similarity heatmap for alert of Scan stage.

proved understanding and categorization of the alert messages
when it has access to labeled data.

Fig. 5 visualizes the similarity between alert messages of
the same stages in a multistage attack. For this figure, we
considered the alert messages in Reconnaissance or Scan stage.
We utilized the fine-tuned BERT to obtain the embedding for
these alerts and compute the cosine similarity between them.
Each cell in the matrix represents the correlation between two
types of alert messages, with values ranging from 0 to 1. High
values, closer to 1, indicate a strong similarity, while lower
values suggest a weaker relationship.

We performed the same analysis between alert messages
from different and same stages of an attack, illustrated in
Fig. 6. Notably, HP Overflow and Echo Command exhibit
a very high correlation, suggesting these alerts frequently
occur together, likely within the same stage. On the other
hand, Fast Terminal Scan and HP Overflow show a very low
correlation, indicating these alerts are less likely to be observed
together, potentially occurring in different stages. Additionally,
Unencrypted Password and DDoS Request have a significant
correlation, suggesting a potential relationship between these
alerts in similar stages. This heatmap effectively highlights the
relationships and patterns between various alerts, aiding in the
understanding of multistage attack behaviors and improving
the efficiency of detection systems

C. Phase 3: Anomaly Score

The Basic and Sequence-based features are fed into an
anomaly detection module to calculate the anomaly score
for each alert. We incorporate various and novel features to
provide the isolation forest algorithm with sufficient context.
This module uses sophisticated algorithms to analyze the
features and detect deviations from normal patterns, which
are indicative of potential security threats. The output of this

Fig. 6: Similarity heatmap for alerts.

module is a set of scores that quantify the likelihood of an
alert being part of an ongoing attack. In our methodology, we
employed the isolation forest [27] algorithm. This algorithm
is an unsupervised anomaly detection technique that employs
multiple decision trees to compute anomaly scores, which
are then averaged. Each decision tree recursively partitions
the alert messages by randomly selecting a feature and a
split value within the feature’s range, aiming to isolate the
anomalous alerts. In the isolation forest algorithm, each tree
assigns higher anomaly scores to alerts that can be isolated
with shorter path lengths or with fewer splits.

D. Phase 4: Classification

The reduced embeddings are fed into a neural network. This
neural network is designed to classify the alerts, effectively de-
tecting multi-stage attacks. By analyzing the embeddings, the
neural network can identify hidden patterns and relationships
that signify an ongoing multi-stage attack. This integrated
approach enhances the accuracy of intrusion detection systems
by reducing false positives and providing a comprehensive
understanding of complex attack scenarios.

Algorithm 1 provides the pseudocode for the Cross-Alert
methodology for training a classifier to detect MSAs given
alerts in chronological order {a1, a2, . . . , aN}, with a few
labeled alerts. Initially, we manually determine the alert stage
for a small subset of alerts and fine-tune a BERT model with
a classifier head (BERTClassifier) using these alerts. For each
aler ai, we extract Basic and Sequence-based features (Fi) and
determine its alert stage (Si) using the fine-tuned BERT model.
We then train an isolation forest on the features and alert
stages in an unsupervised manner. The trained isolation forest
provides an anomaly score (ANi) for each alert. For each alert
ai, we create a window of alerts [ai−5, . . . , ai, . . . , ai+5] to
obtain a rich embedding (Ei) from the BERT model. Finally,



Algorithm 1 Cross-Alert Algorithm

1: Input {a1, a2, . . . , aN}: Alerts in chronological order,
{(as1 , ys1), . . . , (asM , ysM )}: Subset of labeled alerts

2: Output Trained Classifier fW with parameters W
3: B ←Manually determine the alert stage of very few alerts
4: Fine-tune BERT model with a classifier head over B
5: for each alert ai in {a1, a2, . . . , aN} do
6: Fi ← EXTRACTFEATURES(ai)
7: Si ← BERTCLASSIFIER(ai) ▷ Alert stage
8: Ei ← BERTEMBEDDING([ai−5, . . . , ai, . . . , ai+5])
9: end for

10: Train Isolation Forest on {(F1, S1), . . . , (FN , SN )}
11: for each alert ai in {a1, a2, . . . , aN} do
12: ANi ← ISOLATIONFOREST(ai) ▷ Anomaly score
13: end for
14: Randomly initialize network parameters W
15: L← 0 ▷ Initialize the loss
16: while Accuracy is improving do
17: for each labeled alert do
18: Pi ← CLASSIFIER(Ei, Fi, Si, ANi)
19: L← L+ CrossEntropy (Pi, yi)
20: end for=
21: Perform Adam optimizer on W to minimize L
22: end while

we concatenate the semantic embedding, alert stage, anomaly
score, and extracted features, and pass them to a classifier (fW )
to detect MSAs. This classifier is trained using the labeled
alerts {(as1 , ys1), . . . , (asM , ysM )}. The sigmoid output of the
classifier provides the likelihood Pi of the class labels for
each alert. Using this output and the ground truth label (yi),
we calculate the CrossEntropy loss and update the model
parameters with the Adam optimizer [28].

E. Detection in domain shift via Prototypical Network

In the case of domain shift in our dataset, we are dealing
with a more challenging problem. To deal with that, we will
use Prototypical Network (PTN) [29] in the classification
phase to perform few-shot classification. PTNs are designed
to learn a metric space where classification is achieved by
measuring distances to the prototype representations of each
class. In training our PTN, we start by generating multiple
tasks from our source task. This process involves creating
support sets and query sets for each task. After defining the
tasks, we process the support set through the neural network,
which is a crucial step as it converts the input data into
embeddings. These embeddings are high-dimensional vectors
that represent the features of each input. We then calculate
prototypes for each label within the support set. The training
process involves comparing the embeddings from the query set
with these prototypes, with the goal of minimizing the distance
between the query embeddings and the corresponding class
prototype. Here, we choose the Feed Forward Neural Network
as our embedding function for PTN.

IV. EXPERIMENTAL

We evaluate our proposed approach CrossAlert on real-
world datasets. Alerts are needed to test this method, but there
is currently no dataset composed entirely of alerts. Therefore,
we first use IDS to generate alerts based on the traffic packet
and logs in the dataset [30]. We use attack detection rules that
can generate alerts as the evaluation set, including snort rule
sets, as well as rules collected from Github. The datasets used
in the experiments are described as follows:

• DARPA 2000: It comprises two multistage attack sam-
ples, LLDOS 1.0 and LLDOS 2.0, both generated using
the same experimental network. In this dataset, there are
51 MSAs out of 750 alerts.

• UNB ISCX IDS 2012 datase. It contains both normal and
malicious network traffic activity of seven days. There are
four attack scenarios in the entire dataset: infiltrating the
network from inside, HTTP denial of service, DDoS, and
brute force SSH. This dataset comprises 12, 463 alerts, of
which only 107 are MSAs.

Both datasets are PCAP data and we deploy Snort 2.9 with
Emerging Threats rules to generate alerts. For consistency,
we assumed four stages for each multi-stage attack according
to Table I. We evaluated our methodology in two scenarios:
within-dataset and domain shift. For the within-dataset case,
we considered two baselines. Baseline1 is our CrossAlert
methodology without incorporating the BERT embedding and
potential alert stage. This baseline utilizes only the Basic
and Sequnece-based features along with the anomaly score as
inputs to the neural network. Baseline2 employs a framework
based on the isolation forest. Here, we determine a threshold
using grid search on our training data, and using the obtained
anomaly score and this threshold, we classify the alerts. In the
case of domain shift, we considered the Baseline2 along with
CrossAlert algorithm in a zero-shot scenario. In this setting,
we only train our methodology on the source dataset without
seeing any data from target dataset. For all methodologies, we
divided our data into training and testing sets. The training
data comprises less than 10% of the total data, presenting
a significant challenge due to its limited size. To evaluate
all models, we utilized three metrics: precision, recall, and
F1-score for the MSA label. We repeated each experiment
multiple times and reported the average metric value.

A. Effect of Features

Table IV presents a comparative analysis of three different
feature sets as input for the isolation forest (Baseline2)—Basic
features, Sequence-based features, and a combination of Basic
and Sequence-based features to perform anomaly detection
across two datasets. The analysis clearly indicates that incor-
porating both Basic and Sequence-based features significantly
enhances the performance of anomaly detection models, as
evidenced by the higher Precision, Recall, and F1-scores
across both datasets. Note that the metric values obtained by
the isolation forest are still not acceptable, as the isolation



TABLE IV: Summary of features contribution to initial alert ranking in anomaly detection.

Datasets
Basic Features Sequence-based Features Basic and Sequence-based Features

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

DARPA 2000 0.41 0.28 0.34 0.51 0.42 0.46 0.64 0.54 0.58
ISCX 2012 0.33 0.15 0.21 0.44 0.22 0.29 0.51 0.37 0.45

(a) Scenario 1 - ISCX dataset (b) Scenario 2 - ISCX dataset (c) Scenario 1 - DARPA dataset (d) Scenario 2 - DARPA dataset

Fig. 7: Comparing the performance of detection models on different datasets. Scenario 1: training dataset with 10 MSAs and
100 normal labels; Scenario 2: training dataset with 20 MSAs and 200 normal labels.

(a) ISCX to DARPA (b) DARPA to ISCX

Fig. 8: Evaluation of detection models’ performance in domain
shift problem.

forest results in many false predictions. In the following
sections, we apply our methodology to address this issue.

B. Results for Within Dataset

We consider two scenarios in different training and testing
sets. Scenario 1 in which the training dataset contains 10
MSAs and 100 normal labels, and scenario 2 in which the
training dataset contains 20 MSAs and 200 normal labels. We
then evaluated CrossAlert, Baseline1, and Baseline2, across
two datasets, in terms of different measurements, as illustrated
in Fig. 7. For the DARPA dataset, in the second scenario,
CrossAlert achieves the highest precision of 0.97 and F1-Score
of 0.83, whereas Baseline1 and Baseline2 lag behind signif-
icantly. Similar trends are observed with the ISCX dataset,
where CrossAlert maintains superior performance with a pre-
cision of 0.94 and F1-Score of 0.73. The results demonstrate
that CrossAlert provides more reliable and precise detection
capabilities compared to the baseline models, indicating its
effectiveness in identifying security threats across different
environments. Additionally, the results demonstrate that the
semantic embedding of the BERT model plays a vital role
in our methodology, as evidenced by the low performance of

(a) ISCX to DARPA (b) DARPA to ISCX

Fig. 9: Evaluation of PTN(k)-CrossAlert for different values
of k for ISCX to DARPA.

Baseline1. Our methodology effectively integrates information
from semantic embeddings, Basic and Sequnece-based fea-
tures, and anomaly scores to make accurate decisions.

C. Results for Domain Shift

In the domain shift scenario, we evaluated our methodology
with Prototypical Network, PTN(k)-CrossAlert, where the
model can only see k MSA and normal samples from the
target dataset in addition to the entire source dataset. We
conducted evaluations with ISCX as the source dataset and
DARPA as the target dataset (ISCX to DARPA), and vice
versa. We also considered CrossAlert in zero-shot learning
setting and isolation forest (Baseline2) as the baselines.

Fig. 8 displays the comparison of the model in terms of
different metrics in the domain shift scenario for both cases,
ISCX to DARPA and DARPA to ISCX. Results show that
our methodology with the PTN, seeing only 5 samples from
the target dataset, outperforms the baselines across all metrics
in both domain shift scenarios. The baselines perform poorly
due to the domain shift and varying attack types in these
two datasets. Our methodology effectively resolves the domain



shift by integrating semantic embeddings, Basic and Sequnece-
based features, and anomaly scores.

Fig. 9 illustrates the performance of our methodology,
PTN(k)-CrossAlert, as the value of k varies, allowing the
model to see different numbers of samples from the target
dataset. It can be observed that as the number of available
samples from the target dataset increases, the metric values im-
prove. With just 10 samples for ISCX to DARPA, we achieve
0.96 for precision and 0.86 for the F1-score. Compared to
Fig. 7(c), where we also had 10 samples, these metrics are
significantly better. This improvement is attributed to training
our model on source data from ISCX, which enabled our
model to learn more effectively how to detect multi-stage
attacks.

V. CONCLUSION

In this paper, we propose CrossAlert, a semantic-based
method that leverages NLP to extract semantic embeddings
from raw alert messages using BERT. These embeddings are
integrated with anomaly scores and various extracted features
to effectively detect MSAs. By passing the concatenated em-
beddings through a prototypical network, we provide a reliable
IDS. Our evaluations demonstrated that integrating both Basic
and Sequence-based features significantly enhances anomaly
detection performance. CrossAlert consistently outperforms
baseline models across different datasets and scenarios. Its
robust performance in domain shift scenarios, even with lim-
ited samples from the target dataset, highlights its precision
and reliability. As the number of target samples increases,
CrossAlert’s performance continues to improve, demonstrating
its adaptability and scalability in real-world applications.
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