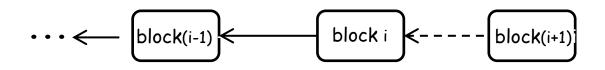
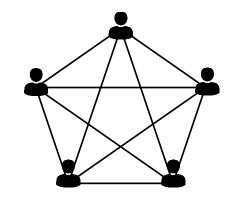
On Game-theoretic Computation Power Diversification in the Bitcoin Mining Network

Suhan Jiang and Jie Wu Dept. of Computer and Information Sciences Temple University, USA




Bitcoin Mining

- Proof-of-Work (PoW) based blockchain mining
 - Blockchain is a digital ledger maintained by a P2P network
 - Mining is a process of adding new blocks
 - Adding a block is a puzzle solving race on miners' computing power

Mining incentive

- Each block will be rewarded with R
- Network difficulty D
- Prob. of adding a block: W_i = computing rate

Solo Mining Vs Pooled Mining

Solo mining

- A miner performs the mining operations alone
- Pros: incur no extra fee
- Cons: generate more erratic income

Pooled mining

- A group of miners cooperate on mining and share rewards
 - a trusted operator is responsible for identifying members' contributions and distributing rewards accordingly.
- Pros: generate steadier income
- Cons: pay service fee to the pool operator

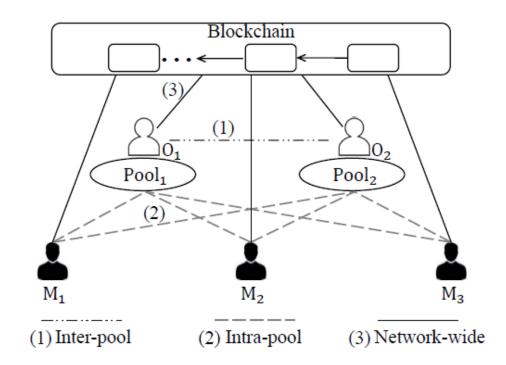
Current situation

miners tend to join mining pools for low risks and steady incomes.

Classic Policies in Mining Pools

Member contribution identification

- Share-based proofness
 - Share is a potential block solution
 - Contribution is measured based on the number of submitted shares
- Share difficulty
 - Longer solving time under a higher share difficulty
 - Determined by the pool operator
 - Affect the operator's service cost as well as its member's benefits.


Member service fee

- In the form of a reward cutting rate
 - High cutting rate discourages miners' participation
 - Low cutting rate cannot cover the operator's service cost

Three competitions in the Bitcoin mining network

Inter-pool game

- Pool operators compete to attract miners
- Intra-pool game
 - All pool members
 compete for pool rewards
- Network-wide game
 - Among all solo power and pooled power

A Hierarchical Bitcoin Mining Network

Operator-side Problem

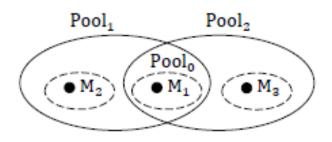
 How to determine its fee rate and difficulty level in order to attract more mining power?

Miner-side Problem

 When facing multiple pools, each risk-averse and profit-driven miner considers how to allocate his power to different pools and solo mining?

Operator-Miner Interaction: A Stackelberg Game

- M operators are leaders
- N miners are followers


Virtual Pools

Assuming M = 2 and N = 3

- M₁'s local view: three pools in total
 - Solo mining, treated as a virtual pool Pool₀
 - Pool₁ and Pool₂
- Global view: five pools in total
 - Two are real pools (solid eclipses)
 - Three (dashed eclipses) are virtual pools

Adding virtual pools

- Separate a miner's dual roles of
 - Being an operator as well as
 - being a member when he mines solo
- Each virtual pool is exclusive to a miner, which charges no service fee and sets share difficulty as network difficulty

Problem Formulation

Miner objective

Determine power allocation vector $m_i = (\beta_i^i)$ to **Problem 1** (OP_{MINER}). maximize $U_j = \sum_{i=0}^N u_j^i$, $\alpha = 0.4$ $\alpha = 0.7$ $\alpha = 1$ subject to $0 \le \beta_j^i < 1, \quad \sum_{i=0}^N \beta_j^i = 1$ 0.2 0.4 0.6 0.8 • Single pool utility: $u_j^i = Pr_i \cdot (p_j^i)^{\alpha_j}$ risk tolerance level of M_j Miner power ratio the probability of the payoff M_i can obtain when Pool_i finding a block Pool, successfully finds a block Single pool payoff: $p_{i}^{i} = r_{i}^{i} - c_{i}^{i} - v_{i}^{i}$ reward, cost, variance obtained in Pool,

Problem Formulation

- Operator objective
 - \bigcirc Determine share difficulty d_i and cutting rate f_i to
 - Problem 2 (OP_{OPERATOR}).

maximize $V_i = \bar{r_i} - \bar{c_i},$ where $\bar{c_i} \le b_i,$ where b_i represents O_i 's budget constraint.

- Expected reward: $\overline{r_i} = Pr_i \times R \times f_i$
- Communication cost: $\overline{c_i}$

Equilibrium in Stackelberg Game

Analysis method: backward induction

Theorem 1. A Nash equilibrium exists among all miners if all operators' strategies are fixed.

Theorem 2. A Nash equilibrium exists among all operators.

Theorem 3. A Stackelberg equilibrium exists among all operators and all miners.

Experiment

Part 1

- Miner-side Equilibrium Analysis
- Operator-side Equilibrium Analysis

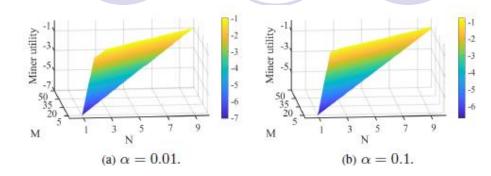
• Part 2

Time-varying Bitcoin Market Price

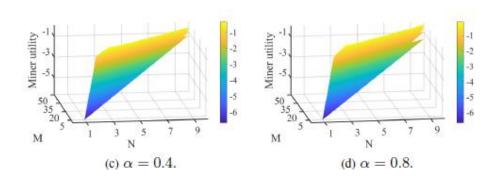
Comparison of Different Investment Methods

- Compare our method with some existing works
 - SN, SA, MR, MNO, MAO
 - Setting: 3 pool operators and 20 miners

Power ratio	SN	SA	MR	MNO	MAO
0.05	0.5482	0.5477	0.5578	0.5890	0.5719
0.10	1.0982	1.0964	1.1773	1.1780	1.1757
0.15	1.6446	1.6446	1.7334	1.7670	1.8007
0.20	2.1954	2.1929	2.3451	2.3560	2.4257
0.25	2.7411	2.7501	2.8068	2.9449	3.0507


TABLE III: Miner's average income under different investment methods.

Power ratio	SN	SA	MR	MNO	MAO
0.05	560	562	147	123	99
0.10	378	391	108	115	97
0.15	282	282	110	107	94
0.20	180	185	111	105	92
0.25	128	123	102	101	90


TABLE IV: Miner's variance under different investment methods.

Factors Affects Miner's Utilities

- Individual reasons
 - Computation power
 - Risk tolerance level
- External reason



the number of pools for miners to join in

Bitcoin Market Price and Equilibrium

- Bitcoin Market Price
 - Time-varying and follows a log-normal distribution

Setting: 3 pools in total and 100 homogeneous miners.

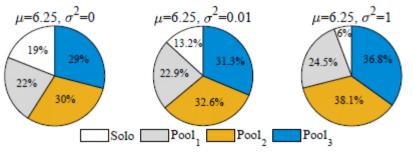


Fig. 6: Homogeneous miners' power allocation evolution.

5. Conclusion

- A Stackelberg game with two subgames
- A variance-involved power function to characterize risk-averse miners' utilities.
- Virtual pools are added to separate miners' dual role
- Impacts of time-varying Bitcoin Market Price
- Experiments to confirm theoretical analysis

Thank you

Q&A

