

IEEE CGC 2012, November 1-3, Xiangtan, Hunan, China

Dynamic Grouping Strategy in Cloud Computing

Presenter : Qin Liu^a

Joint work with Yuhong Guo^b, Jie Wu^b , and Guojun Wang^a

^a Central South University, China
^b Temple University, USA

Cloud computing model

 Cloud computing has emerged as a new type of commercial paradigm due to its overwhelming advantages, such as flexibility, scalability, and cost efficiency

K-Mean-based Dynamic Grouping (KMDG)

 Classify n queries into k groups in the case of k proxy servers, so that each group size equals to n/k and the number of returned files is minimized.

•NP-Hard problem——Heuristic grouping strategy

• Basic strategy: KMDG (based on K-Means)

•Extensions:

KMDG1-Robust version
 KMDG2-Relax the constraint of equal group size

IEEE CGC 2012, November, Xiangtan, China

System model

The cloud, many users, and many proxy servers Query router (QR)

Aggregation and distribution machines (ADMs)

Parameter analysis

•The expected value of the number of returned files can be calculated with Eq.1

$$\sum_{j=1}^{k} t \cdot (1 - (1 - \gamma/d)^{\hat{S}_j}),$$
 (1)

d: the number of keywords in the dictionary γ : the average number of keywords in a file k: the number of groups/proxies t: the number of files in the cloud \hat{S}_{j} (grouping cost): the average number of keywords in the j-th combined query

K-Mean-based Dynamic Grouping (KMDG)

IEEE CGC 2012, November, Xiangtan, China

Definitions

Group seed. For $1 \le j \le k$, the group seed s_j is the center and first member of group g_j .

Distance. The distance between query Q_i and query Q_j , denoted as $Dist(Q_i, Q_j)$, is the number of increased 1s for Q_i after combining with Q_j .

For example, if $Q_1 = \langle 11100000 \rangle$ and $Q_2 = \langle 11000000 \rangle$, $Dist(Q_1, Q_2) = 0$, and $Dist(Q_2, Q_1) = 1$.

Nearest neighbor. Given a query Q_j , query Q_i with the minimal distance from Q_j is called as Q_j 's nearest neighbor.

Suppose each query denotes a node

Given *n* queries

IEEE CGC 2012, November, Xiangtan, China

 An improvement: First choose a random node as the seed. For the *i-th* seed, choose the one with the total maximal distance with all *i-1* seeds

Step 1. Randomly choose k queries as the seed

IEEE CGC 2012, November, Xiangtan, China

 Closet: the minimal number of increased 1s after being combined with the seed

• s1=1100, s2=0011, s3=1001, s4=0101; Q=1100

closet to the seed into a group

IEEE CGC 2012, November, Xiangtan, China

 After choosing k seeds, grouping process is performed in the same way in next round

Step 3. Randomly choose a query in a group as the seed in the next round

IEEE CGC 2012, November, Xiangtan, China

Algorithm

Algorithm 1 KMDG

- 1: Construct a set, *CandiQ*, with the universal user queries
- 2: Randomly choose k distinct queries from CandiQ as seeds s_1, \ldots, s_k for groups g_1, \ldots, g_k , and remove them from CandiQ

{Runs the following process multiple rounds}

- 3: while CandiQ is not empty do
- 4: **for** j = 1 to k **do**
- 5: $Neighbor_j$ is a subset of CandiQ that accommodate s_j 's nearest neighbors
- 6: Choose a random element $Q_i \in Neighbor_j$ into g_j and remove it from CandiQ
- 7: Initialize CandiQ with the universal user queries
- 8: for j = 1 to k do
- 9: Randomly choose a query from g_j as the seed s_j for the next round and remove it from CandiQ

Example

Sample Queries

$Q_1 = \langle 11100000 \rangle \Rightarrow (A,B,C)$	$Q_5 = \langle 00000111 \rangle \Rightarrow (F,G,H)$
$Q_2 = \langle 11000000 \rangle \Rightarrow (A,B)$	$Q_6 = \langle 00000011 \rangle \Rightarrow (G,H)$
$Q_3 = \langle 11000000 \rangle \Rightarrow (A,B)$	$Q_7 = \langle 00000011 \rangle \Rightarrow (G,H)$
$Q_4 = \langle 00010000 \rangle \Rightarrow (D)$	$Q_8 = \langle 00001000 \rangle \Rightarrow (E)$

	CandiQ	g1	g 2	g ₃	g 4
Round 1	$\begin{array}{ c c c c }\hline Q_3 & 11000000 \\ \hline Q_4 & 00010000 \\ \hline Q_7 & 00000011 \\ \hline Q_8 & 00001000 \\ \hline \end{array}$	Q_1 11100000 Min(Dist)=1 Neighbor_1={Q_4}	Q ₂ 11000000 Min(Dist)=0 Neighbor ₂ ={Q ₃ }	Q ₅ 00000111 Min(Dist)=1 Neighbor ₃ ={Q ₈ }	Q ₆ 00000011 Min(Dist)=0 Neighbor ₄ ={Q ₇ }
Round 2	NULL	Q ₁ 11100000 Q ₄ 00010000	Q ₂ 11000000 Q ₃ 11000000	Q ₅ 00000111 Q ₈ 00001000	Q ₆ 00000011 Q ₇ 00000011

IEEE CGC 2012, November, Xiangtan, China

KMDG1-Algorithm

• Each user generates 2 $\leqslant \alpha \leqslant$ k query copies with the constraint that α copies are in different

Algorithm 2 KMDG1 (Robust version of KMDG)

- 1: Construct a set, CandiQ, with $2 \le \alpha \le k$ query copies
- 2: Line 2 in Alg. 1

{Runs the following process multiple rounds}

- 3: while *CandiQ* is not empty do
- 4: **for** j = 1 to k **do**
- 5: $Neighbor_j$ is a subset of CandiQ that accommodate s_j 's nearest neighbors
- 6: Choose a random element $Q_i \in Neighbor_j$ and $Q_i \notin g_j$ into g_j and remove it from CandiQ
- 7: Initialize CandiQ with $2 \le \alpha \le k$ query copies

8: Line 8 to line 9 in Alg. 1

KMDG1-Example

	CandiQ	g1	g2	g ₃	g 4
Round 1	$\begin{array}{c} Q_1 \\ Q_1 \\ Q_2 \\ 11000000 \\ Q_3 \\ 11000000 \\ Q_4 \\ 00010000 \\ \end{array} \qquad \begin{array}{c} Q_5 \\ Q_5 \\ Q_5 \\ Q_6 \\ Q_6 \\ 00000011 \\ Q_7 \\ Q_8 \\ 00001000 \\ \end{array}$	$ \begin{array}{c c} Q_1 & 11100000 \\ Min(Dist)=0 \\ Neighbor_1 \\ = \{Q_2, Q_3\} \end{array} $	$ \begin{array}{c c} Q_2 & 11000000 \\ Min(Dist)=0 \\ Neighbor_2 \\ = \{Q_3\} \end{array} $	$ \begin{array}{r} Q_5 & 00000111 \\ Min(Dist)=0 \\ Neighbor_3 \\ = \{Q_{6,}Q_7\} \end{array} $	Q ₆ 0000011 Min(Dist)=0 Neighbor ₄ ={Q ₇ }
Round 2	$\begin{array}{c c} Q_1 & 11100000 \\ \hline Q_3 & 11000000 \\ \hline Q_4 & 00010000 \\ \hline Q_4 & 000010000 \\ \hline Q_4 & 000010000 \\ \hline \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} Q_5 & 00000111 \\ \hline Q_6 & 00000011 \\ \hline Min(Dist)=0 \\ Neighbor_3 \\ = \{Q_7\} \end{array}$	$\begin{array}{c c} Q_6 & 00000011 \\ \hline Q_7 & 00000011 \\ \hline Min(Dist)=1 \\ Neighbor_4 \\ = \{Q_8,Q_5\} \end{array}$
Round 3	$\begin{array}{c} Q_1 \\ Q_4 \\ 00010000 \\ Q_5 \\ 00000111 \\ Q_8 \\ 00001000 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c }\hline Q_6 & 00000011 \\\hline Q_7 & 00000011 \\\hline Q_8 & 00001000 \\\hline Min(Dist)=1 \\Neighbor_4 \\= \{Q_5\} \end{array}$
Round 4	NULL	$\begin{array}{c} Q_1 & 11100000 \\ Q_2 & 11000000 \\ Q_3 & 11000000 \\ Q_4 & 00010000 \end{array}$	$\begin{array}{c c} Q_2 & 11000000 \\ \hline Q_3 & 11000000 \\ \hline Q_4 & 00010000 \\ \hline Q_1 & 11100000 \end{array}$	Q5 00000111 Q6 00000011 Q7 00000011 Q8 00001000	$\begin{array}{c c} Q_6 & 00000011 \\ Q_7 & 00000011 \\ Q_8 & 00001000 \\ Q_5 & 00000111 \end{array}$

IEEE CGC 2012, November, Xiangtan, China

KMDG2-Algorithm

 Relax the constraint of equal group size to further reduce bandwidth

Friendliest neighbor. Given a set of queries in g_j , query $Q_i \nsubseteq g_j$, which is the nearest neighbor of s_j and causes the minimal cost after being grouped into g_j , is called the friendliest neighbors of group seed s_j .

Algorithm 3 KMDG2

- 1: Line 1 to 2 in Alg. 1 2: **for** i = 1 to r **do**
- 3: while *CandiQ* is not empty do
- 4: for j = 1 to k do
- 5: $Friend_j$ is a subset of CandiQ that accommodate friendliest neighbors of s_j and \hat{S}_j is the related cost
- 6: \hat{S}_j is the minimal cost
- 7: Add a random query in $Friend_j$ to g_j
- 8: Line 8 to 10 in Alg. 1

KMDG2-Example

	CandiQ	g1	g2	g3	g4
d 1	Q ₃ 11000000 Q ₄ 00010000	Q ₁ 11100000	Q ₂ 11000000	Q ₅ 00000111	Q ₅ 0000011
Roun	Q ₇ 00000011 Q ₈ 00001000	Min(Cost)=3 Friend1={Q3}	Min(Cost)=2 Friend ₂ ={Q ₃ }	Min(Cost)=3 Friend ₃ ={Q ₇ }	Min(Cost)=2 Friend ₄ ={Q ₇ }
nd 2	Q ₄ 00010000	Q1 11100000	Q ₂ 11000000	Q ₅ 00000111	Q ₆ 0000011
Rou	Q ₈ 00001000	Min(Cost)=4 Friend ₁ ={Q ₄ ,Q ₈ }	Min(Cost)=3 Friend ₂ ={Q ₄ ,Q ₈ }	Min(Cost)=3 Friend ₃ ={Q ₇ }	Min(Cost)=2 Friend ₄ ={Q ₇ }
und 3	Q ₄ 00010000 Q ₈ 00001000	Q ₁ 11100000	Q ₂ 11000000 Q ₃ 11000000	Q ₅ 00000111	Q ₆ 00000011 Q ₇ 00000011
Roi		Min(Cost)=4 Friend ₁ ={Q ₄ ,Q ₈ }	Min(Cost)=3 Friend ₂ ={Q ₄ ,Q ₈ }	Min(Cost)=4 Friend ₃ ={Q ₄ ,Q ₈ }	Min(Cost)=3 Friend ₄ ={Q ₄ ,Q ₈ }
Round 4	Q ₄ 00010000	Q ₁ 11100000	Q ₂ 11000000 Q ₃ 11000000	Q ₁ 11100000	$Q_{5} 00000011$ $Q_{7} 00000011$ $Q_{2} 00001000$
_		Min(Cost)=4 Friend1={Q4}	Min(Cost)=3 Friend ₂ ={Q ₄ }	Min(Cost)=4 Friend₃={Q₄}	Min(Cost)=4 Friend ₄ ={Q ₄ }
Round 5	NULL	Q ₁ 11100000	Q ₂ 11000000 Q ₃ 11000000 Q ₄ 00010000	Q ₁ 11100000	Q ₅ 00000011 Q ₇ 00000011 Q ₈ 00001000

IEEE CGC 2012, November, Xiangtan, China

Parameters

 Simulations are conducted with MATLAB R2010a, running on a local machine with an Intel Core 2 Duo E8400 3.0 GHz CPU and 8 GB RAM

Summary of parameters

Notation	Description	Value
F	File size	500 KB
'n	Number of users in a batch	1-200
d	Number of keywords in the dictionary	100
t	Number of files stored in the cloud	1,000
k	Number of groups	5,10
r	Number of rounds	500
S_i	Number of 1s/keywords in Q_i	1-5
α	Number of query copies	2
γ	Number of keywords in each file	5

IEEE CGC 2012, November, Xiangtan, China

Load balancing

Comparison of imbalanced transfer-in bandwidth. X-axis denotes the number of users and Y-axis denotes the imbalanced transfer-in bandwidth (MB)

IEEE CGC 2012, November, Xiangtan, China

(c) d=200 and k=5

Comparison of imbalanced transfer-out bandwidth. X-axis denotes the number of users and Y-axis denotes the imbalanced transfer-out bandwidth (MB)

(d) d=200 and k=10

IEEE CGC 2012, November, Xiangtan, China

Thank you!

