
Crowdsourcing-Based Musical Predictions

Nicholas Boyd

Department of Computer Science

Saint Joseph’s University

Philadelphia, PA, USA 19131

Email: nb619430@sju.edu

Wei Chang

Department of Computer Science

Saint Joseph’s University

Philadelphia, PA, USA 19131

Email: wchang@sju.edu

Jie Wu

Department of Computer

& Information Sciences

Temple University

Philadelphia, PA, USA 19121

Email: jiewu@temple.edu

Abstract—Data is becoming more and more valuable as tech-
nology advances. Through crowdsourcing organizations are able
to collect large amounts of data at an effective rate with little
cost. This paper proposes a crowdsourcing-based music playing
system, where the next song to play is determined by the listening
preferences of realtime online users. Unlike conventional radio
play system, where songs are randomly selected, our system
selects songs which satisfies the listening preferences of a majority
of users, who are currently online. Our system consists of two
important components: a predictor, which estimates a user’s
listening preferences based on his features, and a decision maker,
which selects the next song to play based on a majority vote. In
order to find out the relationship between user features and
listening preferences, K-means algorithm is adopted. A large
amount of real data is collected via online surveys, and extension
simulations show that our system can effectively selects a proper
song for its online audience.

Index Terms—Crowdsourcing, Clustering, Mobile Networks

I. INTRODUCTION

Crowdsourcing offers a new way of getting large amounts

of data for next to nothing, by employing people from all over

the world. Jeff Howe describes the process of crowdsourcing

as a “new pool of cheap labor: everyday people using their

spare cycles to create content or solve problems”[1]. Figure 1

shows how the basic framework of crowdsourcing allows the

labor force of everyday people to complete a series of tasks

for a wide range of companies and purposes.

Fig. 1. Simple Crowdsourcing Framework

Users with smart devices- Through the use of internet-

capable smart devices, users or workers are able to partic-

ipate in crowdsourcing tasks, by entering their results in a

crowdsourcing platform like Amazons Mechanical Turk[2][3]

or TopCoder[4].

Collecting Data- Platforms use a wide variety of question

types to get different types of data from a users. For example,

if a company is looking to get an answer in a specific range,

they may prompt the worker with a multiple-choice survey.

Processing Data- After the data is collected, the platform

may need to sort or group data to make the dataset more us-

able and organized. Popular sorting and clustering techniques

include K-Means clustering and Hierarchical Clustering[5].

End User/Requester with Usable Data- After the data has

been sorted, the End User/Requester has access to a dataset

that can be used for a wide range of things, such as marketing,

feedback to make changes to a game or program, or to study

for research.

With the huge increase in wireless network, a framework

that is able to reach many people on a range of devices is

necessary in the modern world. Using this framework, many

companies have been able to find effective solutions to a wide

range of problems for little or no cost. This paper uses a

modified version of this framework that will make musical

predictions based on preferences of listeners who are currently

tuned in to a radio station. After these musical predictions

are made, crowdvoting techniques will be utilized to build a

dynamic queue of songs. This process will be completed using

clustering techniques that are applied to the set of user data

that is collected.

Our main contributions for this paper are summarized as

follows:

1) We propose a crowdsource-based musical platform,

where songs are selected based on active user/listener

feedback and preference;

2) We apply the K-Mean clustering algorithm to better

learn the relationship between user/listener preference

and song choice;

3) We collect a real dataset through popular platforms like

Spotify and Google Forms;

4) We conduct extensive real data-driven experiments that

test our proposed solutions.

This paper will be divided into multiple sections: Section

II, Related Work, will outline papers, platforms, and examples

that integrate similar methods and techniques, implementing

a wide range of data collection methods. Section III, Crowd-

sourcing With Music, will describe the modified crowdsourcing

framework that is used. Through this framework we will then

describe how we collected and processed the data using pop-

ular music platforms, including problems encountered while

collecting the data, an overview of clustering techniques that

were applied, and the results of the simulations that shows

which songs a radio station should play. Section IV, Simula-

tions, will outline the data processing methods used, as well

as the results from the simulations. Finally, section V, Future

Work, will outline work that still needs to be done to take this

framework from a test setting to real world implementation.

This section ends by discussing common security risks with

the overall process of crowdsourcing, and how they need to

be kept in mind as this project moves forward.

II. RELATED WORK

A. Popular Platforms

Crowdsourcing platforms have been around for quite some

time, offering users a range of monetary prizes and rewards

for completing tasks as easy as answering a survey, to some-

thing as difficult as writing code for government agencies.

Working with these platforms allows us to see similarities

and differences with how these sites manage and facilitate

problem solving from the requester/end user to the workers.

Some of the most popular crowdsourcing platforms are Ama-

zon’s Mechanical Turk, TopCoder, InnoCentive, iStockPhoto,

Threadless and Crowdflower. Although these platforms may

ask questions that appear to be simple, with little application

to a real world problem, there are many examples of large

companies using crowdsourcing to solve real-world issues.

One example of this is using user reviews to make adjust-

ments to their product that can greatly improve performance.

PLAYERUNKNOWN’S BATTLEGROUNDS[6] is one of the

most popular games with over 300,000 daily players, and is

one of the first games in the battle-royale genre, relying heavily

on user feedback[7] for new content and overall development.

The process of how this game makes frequent adjustments

directly based on user preference. Our project takes a similar

overall process, but instead of making weekly updates, our

framework will change in real time as new users tune-in.

B. Similar Approaches To Processing and Collecting Data

Similar problems have been tackled by other papers, for

example, “Making Many People Happy: Greedy Solutions For

Content Distribution”[8] by Jie Wu, et al. outlines how greedy

algorithms can be used in maximum coverage problems.

Comparing the results from local greedy algorithms, simple

local greedy algorithms and complex local greedy algorithms

this paper concludes that the use of a complex local greedy

algorithm performs best, not limiting its cluster centers to a

point that is in the dataset. Similar to our clustering technique,

the centers can be anywhere in the plot for more accurate

clusters.

Since our musical selection system will be available to a

wide range of devices on various platforms, data collection

will used be achieved in part through what Layla Pournajaf,

et al.[9] refer to as Mobile Crowd Sensing (MCS). A Mobile

Crowd Sensing network is a system of various smart devices

that interact through multiple signals and sensors (i.e. Wifi,

Bluetooth, or Cellular). This paper also describes “Oppor-

tunistic Sensing”, which is the process of crowdsourcing data

with little or no user involvement. Our system uses this

form of crowdsourcing because the musical data is collected

automatically, a large portion of this framework requires little

user involvement, only requiring the users to participate in

crowdvoting [10]. This little user involvement is important

when crowdsourcing because tasks with a large amount of

user involvement is sometimes not as accurate [11].

Another example can be found in “Progressive or Conserva-

tive: Rationally Allocate Cooperative Work in Mobile Social

Networks” by Wei Chang, et al.[12] that outlines how to assign

workload in a distributed crowdsourcing system. Similarly, the

framework in this paper is a centralized crowdsourcing system

that deals with similar distribution tasks.

III. CROWDSOURCING WITH MUSIC

The music industry is another place that can greatly benefit

from crowdsourcing, specifically, a radio station ability to

crowdsource music history from users/listeners to effectively

select a new song or make a recommendation that is similar to

the music taste of that same users/listeners. Using a modified

version of the simple crowdsourcing framework, we have

designed a bidirectional framework that would allow radio

stations and users to send their musical data to a platform

or sever that will be able to make recommendations that are

specific to the users who are tuned in at a given time. This

new framework will be focused around a server that is separate

from the suers and radio station that will take data from both

sides, process it, then send a song back to the pool of listeners

with the goal of making the audience as happy as possible at

any given moment.

A. Overview

Trying to find an effective process that focuses on the rela-

tionship between users/listeners and a radio station, our system

is a centralized crowdsourcing system that is designed to make

musical predictions by collecting and grouping songs that

users have frequently played (See Figure 2). These songs are

stored and grouped in a server, or ‘predictor’, that determines

the centers of a set number of clusters. This predictor then is

able to collect data on the side of the radio station, specifically,

previous songs the radio station has played. After the data on

both the users and the radio station is collected, they can then

be compared to see where the centers of the users clusters fall

in relation to the data from the radio stations in another service

called the ‘decision maker’. The ‘decision maker’ compares

the cluster centers from the users data, to the data from the

radio station. This comparison will make a list of possible

songs that could be played. Finally, the ‘decision maker’ will

send a song from this list out to the users.

Fig. 2. Modified Crowdsourcing Framework

B. Collecting The Data

In an ideal situation, users will have their music streaming

devices linked to the radio station through a server that will

be able to track what a user listens to, examine the songs and

break them into groups that will be compared to the songs a

radio station has played/will play to determine how closely the

new songs is to the group of songs the user has already played.

For our testing, we used the Last.fm[13] ‘scrobbling’ feature

paired with Spotify[14] to collect the data of a single user.

Last.fm’s ‘scrobbling’ is a 3rd party application that can run

in Spotify, recording every song that a user played and sends it

to their Last.fm account. After accessing the Last.fm account,

you are able to view the users top played songs, genres, artists

and albums. We broke down the users 50 most-listened to

songs through a Spotify’s “Sort Your Music” service[14] that

decompiles songs into a chart of various numerical values (See

Table 1 for example).

TABLE I
USER DATA COLLECTED FROM SORT YOUR MUSIC SERVICE

Title Artist BPM Energy Dance

Your Graduation Modern Baseball 185 90 40

Constant Headache Joyce Manor 99 89 41

Disappeared Sorority Noise 97 94 42

True Believers The Bouncing Souls 98 98 38

Nutshell Alice In Chains 136 56 38

For our simulations, we decided to limit the data to song

title, artist, Beats Per Minute (BPM), Energy, and Dance.

Spotify Define BPM, Energy, and Dance as: BPM- Beats Per

Minute how fast the song is. Energy- The energy of a song -

the higher the value, the more energetic the song. Dance- The

higher the value, the easier it is to dance to this song.

C. Clustering The Data

To process the large amount of data that our framework

will be collecting from the users and radio station, we are

using the K-Means Clustering algorithm to cluster the data into

K clusters. Having many advantages, the K-Means clustering

algorithm was chosen based on its ease of implementation and

its ability to consistently clusters large amounts of data in a

reliable way. K-Means is a partition-based algorithm [5] that

partitions a set of data into a specified number of clusters.

These clusters are calculated by comparing the distance of

surrounding points to K center points, and the closest center

will determine what cluster the point will be put under. After

the point is classified in a cluster, the center is recalculated

based on all points in a cluster, and the process is repeated

recursively until all points are classified.

While K-Means produces quality results, we faced several

issues while trying to apply K-Means to our musical data.

We originally conducted surveys that asked the user about

favorite genre of music, but found that since musical genres are

discrete rather than continuous, applying K-Means to this set

of data yielded meaningless results. To solve this, we decided

to decompile the songs using Spotify’s “Sort Your Music”

service several, numerical categories. Since these were now

numerical values, K-Means was able to cluster songs into

meaningful groups.

80 100 120 140 160 180 200

2
0

4
0

6
0

8
0

1
0
0

Songs From User & Recommendation Zones

BPM

E
N

E
R

G
Y

60 80 100 120 140 160 180

2
0

4
0

6
0

8
0

1
0
0

Songs From 93.3 WMMR With User Recommendation Zones

BPM

E
N

E
R

G
Y

Fig. 3. K-Means Simulation Results

D. Song Selection Process

The “Decision Maker” is an essential part of this framework,

that handles selecting an appropriate song after the data has

been collected. During the decision making phase of the

framework, the recommendation zones are compared with the

song data from the radio station. Another list of songs is

created based on songs that fall inside the preference zone

(refer back to Figure 3). From here, the “Decision Maker” will

select the song based on a preference score that is computed

from user/listener input. This preference score is based on a

majority-voting system that users are able to interact with,

to build a queue of songs that will be played based on user

feedback. This system is designed to operate as a dynamic

radio station that will be able to select songs based on what

users historically have listened to, and real-time feedback

through user/listener crowd-voting. The “Decision Maker” part

of the song selection process will be how the entire framework

comes together to deliver quality results and make the most

users/listeners happy.

IV. SIMULATIONS

After collecting the musical data that was needed from the

user, we graphed the data on two separate 2-D graphs. The first

graph, we plotted the data by (BPM,Energy) and the second

graph by (BPM,Dance). BPM was always a constant, because

that is one of the easiest and universal ways to get a numerical

value for an aspect of the song that isn’t the length of the song.

Next, we used 93.3 WMMR’s music archive [15] of previously

played songs as the radio station for our testing environment.

For our test, 93.3WMMR is heavily based around the “Rock”

genre. Passing an entire day’s worth of music through the same

Spotify sorting service, we had a group of music to compare

the users data to.

Similar to crowdsourcing examples and platforms, we need-

ed to apply some sort of clustering to the dataset. Clustering

techniques take a group of data and try to find relation between

the points into groups that all share similarities. Two of the

most popular methods for clustering are K-means clustering

and Hierarchical clustering[5]. K-means clustering partitions

the dataset into K clusters where all of the data points inside

a partition are related to one another. Hierarchical clustering

can be subdivided into two categories, Agglomerative and

Divisive. Agglomerative is a bottom-up approach that starts

by assuming all individual points are a cluster, then merges

closest cluster together until there is either one giant cluster

(All data points together-same as not running any clustering

technique) or a desired number of clusters is reached. Divisive

is a top-down approach assuming all points make up one giant

cluster, then recursively breaks into smaller clusters until a

desired number of clusters is reached. For its simplicity and

ease, we used K-means clustering to find three clusters in the

users musical history. The K-means simulations and graphs

were made using the R statistical language in RStudio.

Applying the K-means algorithm to the users data gave

us three clusters, with three centers that can be used as a

starting point to make the recommendation. After the cluster

center was found, we expanded the area around the center

point into what we refer to as the “recommendation zone”.

In Figure 3, the lower graph these zones are displayed as

red circles, representing the processes of comparing these

zones to the list of songs from the radio station. This zone

represents the range of values that a recommendation song

should have to be similar to a group of songs that the user has

already listened to. These recommendation zones can then be

compared to the set of songs played by the radio station (In

our case, 93.3WMMR’s dataset)to find which songs could be

played next that would be related to the users musical history.

Numerically, each part of the song that is examined (BPM,

Energy, and Dance) is generally between 20 and 200. This

range allowed us to make the recommendation zone a circle

with the cluster center as the center, with a diameter of about

20, to get a small range for songs that should be played.

After getting the recommendation zones for the desired

characteristics of a song, they can then be compared to

the graphs from the radio station’s songs (See figure 3 for

examples).

A. Additional Data Collection

In addition to platforms like Spotify and Last.fm, to collect

real world data on musical preference, we sent out surveys on

social media websites that were created in Google Forms. To

get an idea of what this process will look like with a large

pool of users outside our testing environment, we collected

data that asked the users to select what their favorite genre

of music was. This simple question was effective because we

were able to get a good idea of the general interest of a group

of people, while not wasting the time of individuals with a

lengthy survey. After sending this survey, we received over

140 responses in a week, with a wide range of genres (See

Figure 4 for results). This data is important, because this shows

that there are a wide range of musical genres, so the need for

our system to change dynamically as new users/listeners tuned

in, is extremely important.

Fig. 4. Results From Survey

B. Results

After running several simulations with data from both a

user and 93.3WMMR, we were able to successfully make

recommendations based on a groups of songs by breaking

them down by Beats Per Minute, Energy, and Dance numerical

values. While our simulation only examined a dataset that

came from a single user, this process can easily be scaled to

a group of users by plotting all the data on a single graph.

Also, while we used a 2-D graph to find the clusters and

centers, this framework can also easily handle higher multi-

dimensional datasets. For example, instead of plotting the

songs as (BPM, Energy), you could plot the songs in a 3-

D space, (BPM, Energy, Dance), and still successfully run

the K-Means clustering algorithm. This process can also be

applied to different radio stations to get different types of

recommendations.

V. FUTURE WORK

While we were able to successfully make musical recom-

mendations based on crowdsourced musical data, this fame-

work still only exists and operates in a limited test setting.

Future work includes development of the framework and

implementation of this system in the real world, collecting

data from multiple people. Also, since this is based around

crowdsourcing, there are security risks that still exist in the

larger process, such as privacy and malicious users[16][17].

Specifically, how can you protect the identity of the user-

s/listeners.

VI. CONCLUSION

In this paper we have described a modified framework that

uses crowdsourcing to collect musical data from a set of

users and a radio station, as well as related crowdsourcing

examples that show similar approaches to data collection. We

also outlined how we used the K-Means clustering algorithm

to process the data in real-time in our theoretical framework.

We outlined the importance of a system that can change as

new users/listeners become active, through the user of survey

platforms like Google Forms. This dynamic system will be us-

ing a series of methods to allow user feedback to decide what

musical direction the system will shift toward, through the use

of crowd voting. Finally, we showed how you can combine the

previously stated methods to make a musical recommendation

with the goal of satisfying all active listeners. Overall, we have

described how crowdsourcing can be effectively intergrated

into the music industry to create a unique listening experience

that changes with the users/listeners.

REFERENCES

[1] Howe, Jeff. ”The rise of crowdsourcing.” Wired magazine 14.6 (2006):
1-4.

[2] https://www.mturk.com/mturk/welcome

[3] Difallah, Djellel Eddine, et al. ”The dynamics of micro-task crowdsourc-

ing: The case of amazon mturk” Proceedings of the 24th International
Conference on World Wide Web. International World Wide Web Confer-
ences Steering Committee, 2015.

[4] Mao, Ke, et al. ”A survey of the use of crowdsourcing in software

engineering.” Journal of Systems and Software 126 (2017): 57-84

[5] Munir, Mussawer, et al. ”Comparitive Study of Clustering Techniques in

Data Mining”

[6] https://www.playbattlegrounds.com/overview.pu

[7] Villarroel, Lorenzo, et al. ”Release planning of mobile apps based on user

reviews.” Proceedings of the 38th International Conference on Software
Engineering. ACM, 2016.

[8] Wang, Yunsheng, Yuhong Guo, and Jie Wu. ”Making many people happy:

Greedy solutions for content distribution.” Parallel Processing (ICPP),
2011 International Conference on. IEEE, 2011.

[9] Pournajaf, Layla, et al. ”Participant privacy in mobile crowd sensing

task management: a survey of methods and challenges.” ACM SIGMOD
Record 44.4 (2016): 23-34.

[10] Prpic, John, et al. ”How to work a crowd: Developing crowd capital

through crowdsourcing.” Business Horizons 58.1 (2015): 77-85.
[11] McDuff, Daniel, Rana El Kaliouby, and Rosalind W. Picard. ”Crowd-

sourcing facial responses to online videos.” Affective Computing and
Intelligent Interaction (ACII), 2015 International Conference on. IEEE,
2015.

[12] W. Chang and J. Wu, ”Progressive or Conservative: Rationally Allocate

Cooperative Work in Mobile Social Networks,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 26, No. 7, 2015, 2020-2035.

[13] https://www.last.fm/home

[14] http://organizeyourmusic.playlistmachinery.com/

[15] http://wmmr.com/stream/WMMRFM/

[16] Gadiraju, Ujwal, et al. ”Understanding malicious behavior in crowd-

sourcing platforms: The case of online surveys.” Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems.
ACM, 2015.

[17] Yang, Kan, et al. ”Security and privacy in mobile crowdsourcing net-

works: challenges and opportunities.” IEEE Communications Magazine
53.8 (2015): 75-81.

