T Temple
=8 University

ArrayPipe: Introducing Job-Array Pipeline
Parallelism for High Throughput Model Exploration

Presenter: Hongliang Li

Hairui Zhao!, Hongliang Li'-2, Qi Tian!, Jie Wu3, Meng Zhang!, Zhewen Xu!, Xiang Li', Haixiao Xu*

1 College of Computer Science and Technology, Jilin University, Qianjin street 2699, Changchun, 130012, China
2 Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Changchun, China
3 Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
4 High Performance Computing Center, Jilin University, China



Outline

« Background and Motivation
« Job Array Pipeline Parallelism and ArrayPipe Framework

e Evaluations



Background (1)

 Parallel schemes to accelerate individual DL model training

r

GPT-4.5 | | - .
1+E4B /,1_.[_ | A 7y ] A A
o -~ .-
© GP.T 4 .- 12008 . L S— : : _____
; 1+E3B PaLM-~""" DeepSeek R2 A 3 T el R —
i GPT-3 Gopher &~ P : 7} A : . Sl I R, A
E 1+E28 1758 ’,28013 9408 GPU D GPU 1 GPUO GPU 1
2 f A f
o 1+E1B data ddta data data
S GPT-2 .-~
% Leop 158 Data Parallel Tensor Parallel
G_E'—F—’f
_ . OIB » GPU1 GPU1 GPU 2 GPU3
2017 2019 2020 2021 2023 20256 \;em- _ o] Mo _y o [
-xpert xpert xpert xpert xpert -xpert

Scaling law: bigger model, more data, better result|

Dramatic growth in both data volume and
model complexity.

m

“

dwta | Pipeline Parallel MoE Parallel

Training DeepseekV3 requires 2048 H100 GPUs using 55 days.

[1] Alex Black. Vyacheslav Kokorin. Distributed Deep Learning, Part 1: AnIntroduction to Distributed Training of Neural Networks g 3



Background (2)

* Training jobs are not always independent

* The search space for optimal hyperparameter settings can be
Iar'ge (5 hyperparameters with 5 possible values each leads to 3125 configurations).

« Babysitting: trying out one setting at a time (one environment)

[@ Forward [l Backward [l Update [T] Switch Cost [] Bubble

Microbatch Iler%lon

. S3

Experiment "

. M So
Circle of model exploration

(Explore hyperparameter settings) Tob A Minibatch " JobB JobC

* Batching: Explore multiple settings in parallel (multiple sets of
environment)

How to accelerate the model exploration process as a whole?

[1] https://xgboosting.com/optimal -order-for-tuning- xgboost-hyperparameters/?utm_source=chatgpt.com



Motivations (1)

« How to increase the resource utilization in trainings?

> Reducing "bubbles”: divide minibatch to microbatches, pipeline
scheduling

» Overlapping communication with computation

» Context switching in between jobs (100x the duration of an iteration [1])
B Forward [l Backward [[] Update [ ] Switch Cost [] Bubble
T icrotch [teration N

A
T s )

S3

S, Z g

Si E'.:; @

Sy

\ ) v J
Job A Minibatch JobB Job C

[1]1Z. Bai, et al.,"Pipeswitch: Fast pipelined context switching for deep learning applications,” in USENIX OSDI, 2020



Motivations (2)

 Searching hyperparameter involves trail-and-error sibling jobs

» share the same core (i.e. model stucture, CUDA Context structure)
» vary in hyperparameter configuration (e.g., batch_size, learning_rate, weight_decay...)

« Opportunity to pack sibling jobs into a batch (job-array)

Job-Array: a set of Sibling Jobs ; Same Model Structure| Different Hyper-Parameter
S 51 52 |

§ (batch_size, learning_rate,
weight_decay, ..)
| |
« Job-Array: train concurrently, instead of sequentially
i. How to seamlessly switch between sibling jobs?
ii. How to efficiently schedule multiple jobs in one pipeline?




Job-Array Pipeline (JAP) Parallelism

« Job-level parallelism for high throughput model exploration

MAinibatch B Forward [ Backward [] Update [ ] Switch Cost [] Bubble
S3
Sy
S
So
L A J
Y Y
Iteration of Job Array{Job A, B and C} Next Iteration

Given a job-array J and a cluster of servers H, JAP is a pipeline parallelism that supports
the stages of different jobs in J execute concurrently rather than consecutively.




ArrayPipe Framework Overview

learning_rate,
weight_decay

) )

1 = PCle [}
i@ @@ i Sw1tch C
i
\

(vl 3
Sibling|(” ArrayPipe )
Jobs ~ Binder Scheduler Memory
e L R i Manager
Job v Pack | 1 Analysis | | | ,ec---------
n {: S=Ze=sceEn T e ! _Bg(_:(_)l;ﬂ_]:ll,lt?_l
" N i Context i Job Arra [/l ---------- 5 [Task GrapH =~ ~-=-==~——~
-:>: Sharing i :s o Branch& E : EB :’ Just-in-time | !
(512,0.01 R 2 ! i Bound ! | Update !
,0.0005, ...) (e s . e 1 L S 4
i Low-Cost T . e !
: | Switching ' Gent?tlc i \ Pre-fetch .
Top )| (M .. : '\ Algorithm 1| i _&Off-load ;
0 \ S e e e ;0 A Nemmmmm e
Job Afra)ﬂ ______________________ ’ Memory ﬂ
i 1 Optimizati
: Record E Graph | Mask Gra phlmlza o]
(256,001 Profiler —— & Generator | Executor
,0.0005, ...) =
L Records Instructions /
7 = ,/ =
SO S S « SN
o\\' o O [ : = ‘r . \\I
Pre-fetch Thread || Off-load Thread
O\”\ \O/ :{O Server Node re-ietc rea oal reas L E
20 a2 I | e ———— Compute Thread || Update Thread I
(batch_size, '
1
1
1

* Binder regards a batch of sibling jobs as a
whole and packs them as a job-array
supported by Low-Cost Context Switching
(LCS).

* Scheduler integrates two algorithms (B&B
and Genetic algorithm) to generate the
pipeline plans a job-array.

* Memory Manager mitigates the memory
pressure via re-computation, just in-time
updates, memory virtualization, and a dedicated
buffer to pre-load model par'ame’rer's




Challenge 1: How to support low-cost context switching between sibling jobs?

S

Switching context:
model states

s [ [ I activations
(7 v (7 1 Ry 1

gradients

(a) Training of JAP without sharing CUDA context
Training with Binder supported by Low-Cost Context Switching (LCS).

Model States ~ OWitching states:
parameter

optimizer
-_ 'CTXS: Context Switch

c Load Model

(b) Trainine of JAP with sharing the CUDA context



Scheduler

Challenge 2: How to ensure an efficient scheduling when sibling jobs have
different mini-batch execution durations and their own stage dependencies?

====% Job A Dependency ====% Job B Dependency Job C Dependency

S, S

S .

So

(a) JAP using GPipe Strategy

Sophisticated scheduling algorithms are needed.

S,

S #

So

Time Saving

(b) ArrayPipe Scheduling Strategy



JAP Scheduling Problem

Given a job-array of DL training jobs J, and a cluster of servers H, the
JAPSP seeks a schedule of all stages for J on H, with the minimum
per-iteration time T, as:
minimaize T, (¢
subject to :
f—l—rshf—l—nsfxej L f i€ {1,...,|S| — 1}, S)
esib + ?“S_b + ns_b + re’ e hb S ej_ o €42, |8} (6)
elns+ml;+wl, <el,, VseS, (7)
eshf + Tshf + wgh S 6ihf, Vs S S, (8)

. . . . . .’
j j j j j j
€y T Tanp T Wiy + Ugy, T T, S €y VS ES. ®)

1



Solving JAPSP

» A variant of the Job Shop Scheduling Problem (JSSP), R
with extra dependencies between model stages 2: Output: Schedule for each block of jobs Sched
. . . 3: Imitial: LB, (G’ )=+00, Q'={}, mak =0, Sched=
« A Branch-and-bound Algorithm and a Genetic Algorithm s D

4 while Q £ & do
t(Q):meirll{Relgn +ri}
jE.

wn

—> Stage Dependencies ----> Resource Competition == Determined Arcs
(D Prepared Nodes (C_"3 Unprepared Nodes () Determined Nodes

-

(i*,_) = argmin{Rel! +71J }
JjEJ n Sn

6
7: for (s,,j) in © do
8

Stage 0 Stage 1 Stage 2 ; if s, == i* and Rel] < () then
| | A A | 9: Q = (sn U
Plyp—— ¢ ,
1 Tsi N 52 10: end if
! ! 11: end for
Sourc 1 X 12: for (’L*,‘]) in Q' do
! 13: G =G
14: add arcs to other jobs in stage i* in G’
15: Update makespan
16: Lymaz = 1|Relj| Lmax(S)
17: LB(G') = makespan + Lqq
2 . , 18: if LB(G') < LBin(G’) then
ot ’ 19: OptSchcd = (Z*1J)7 LBmin(G’) = LB(G/)
£ () t 1Y) opt.s 20: end if
1 B A A B B 21: end for
Step (A90)9( 30)3(C90) rso + nso Stage 0 (A7O)’( ,O),(C,O) ( ’0) - O=0-— Opt_S U (Opt_S.next fOllOWCI')
Step2  (A0LB,IL(C0) TA+nd  Stage0  (A0CO  (CO) 23 Sched = Sched U Opt_S
24: G=G

Step3  (A,0),(B,1),(C,1) rsf 4+ nsBl Stage 1 (B,1),(C,1) (B,1) 25: end while
26: return Sched




Memory Manager

Challenge 3: How to avoid Out Of Memory (OOM) in JAP when too
many sibling jobs are sharing resources?

8 el 3 le2
| == Weights _ | = Weights GPT-2
220FS Gradients BERT o} Gradients
O 7 | s Optimizers QO 24 sam Optimizers %
2> 4 | 7. Activations 7 2 | ###  Activations %
S |=mE Others / S . |=mE Others /
: 7| &' 7
2 : ,
o L5 s g secs fite
16 32 64 128 16 32 64 128
Batch Size Batch Size
A
gso-
« Activation account of nearly 60% of the Y.
memory footprint 2 50-
340—
. . . . g 30-
* Re-materialization: Eliminate and recompute g2
104
0

/N
LN N/

Server Node

£ 0
gExecutor ) Instructionsl

GPU | ||GPU

—

© "\ Load Model \_ _# Offload Pre-fetch
@  Gradients A Activations ¢  Others
Activation memory usage (GPT-2) — :tage;
<o --- Stage
/ \\ﬂ_ — Stage3
/. A — - Staged
. . AN A
[N

N~/ N s

2y 5 A -

1 1 1 1 1 1 1 1 1 1) »

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 550043
Timeline (s)



Evaluations

Testbed: NVIDIA SXM4 server with 8 A100 (80GB), NVLink (300GB/s),
PCIe4.0 (64GB/s).

le3

Baselines: GPipe, BPipe, Hanayo S . | == BERT-large 222 ResNet152
g 2:01 &H VGG19 GPT-2
o . . .
DNN Models: Z1s
£
Model Dataset Optimizer # of Params E 1.0 . Eii
1)) X X
VGG19 ImageNet SGD 144M = Wik
ResNetl152 ImageNet SGD 60M = 0.5 X
BERT-large GLUE BertAdam 340M = G O3EE N
GPT-2 WikiText AdamW 1.5B 0.0 LK

Ar_B&B Ar GA  Hanayo GPipe BPipe

Training Time Comparisons.

« ArrayPipe achieves 1.46X training throughput, comparing
with State-Of-The-Art (SOTA) PPs, on average.




Evaluations

0.8 4.4 |
4 0 - i =t
§ 0.7, whtathtt s 6 Vanilla {00 2
06 X §
> 0.5 0 4 40 -
= 0.4 &3 'E
©o03 21 20 8
0.21 , , | , ‘ : S T
0 50 100 150 200 250 300 350 (- : 0
Time (Second) ResNet152 ~ VGG19  BERT-large ~ GPT-2
GPU Utilizati Comparison between whether to use LCS
lfization. and MM in ArrayPipe.

« ArrayPipe achieves high GPU utilization. As more jobs are
packed into a job-array, the overall throughput improves.




Large-scale Simulation

| mmm -4 - ArrayPipe = -# - Hanayo ArHanayo mmm-¢- GPipe ArGPipe mmm-&- BPipe ArBPipe |
1e3 le3
] A
~~ 8 f,’ =31 *
E /’ A . E k\\
“E/6' ,—”‘ 880 _:-E é :*
v e &) - @ £ &
E |g-=2 e iz E, = e
04 g g o [m_ T e
= [3) = ~ ®-
S b S - el — Py 2 = ~o i
‘f—‘z-:__--:== —————— = Q Eq L T
—i & i
i | | .
1 2 4 8 0 2000 4000 0 2000 4000 4 6 8 10 12 14 16
Number of Servers Training Time (min) Training Time (min) Number of Stages
(a) Performance with Different (b) Performance with different (¢) Performance with Different (d) Performance with Different
Number of Servers Memory of GPUs Bandwidth of GPUs Number of Stages

« ArrayPipe is more suitable for environments with larger
G6PU memory capacity, higher intra-node bandwidth,
aligning with the developing trends and application patterns.




Conclusion and Future Work

Conclusion

i. A novel parallel scheme (JAP) is introduced to enable a batch of sibling jobs to form a
concurrent job-array and to execute concurrently, targeting high throughput model
exploration.

ii. We design ArrayPipe, a framework to support JAP with low-cost job context switching within
a job-array and a GPU-Host memory manager for higher training concurrency.

iii. We propose a novel scheduling problem JAPSP that seeks to minimize the per-iteration time
of a job-array, along with two algorithms for different scales of job-arrays.

iv. Extensive festbed experiments and trace-driven simulations are conducted to evaluate the
efficiency of ArrayPipe.

Future Work

i.  How can ArrayPipe handle exploratory job workflows that frequently terminate and resubmit?

ii. Models with different hyperparameters may benefit from different degrees of parallelism.
Fine-grained (Iayer'-wise{ LCS and migration is a possible direction.

17



T Temple
—a University

Thank you

Presenter: Hongliang Li

lihongliang@ jlu.edu.cn
College of Computer Science and Technology,
Jilin University, Changchun, China, 130012

18



	Slide 1: ArrayPipe: Introducing Job-Array Pipeline Parallelism for High Throughput Model Exploration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Thank you

