
ArrayPipe: Introducing Job-Array Pipeline
Parallelism for High Throughput Model Exploration

Presenter: Hongliang Li

Hairui Zhao1, Hongliang Li1,2, Qi Tian1, Jie Wu3, Meng Zhang1, Zhewen Xu1, Xiang Li1, Haixiao Xu4

1 College of Computer Science and Technology, Jilin University, Qianjin street 2699, Changchun, 130012, China

2 Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Changchun, China

3 Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA

4 High Performance Computing Center, Jilin University, China

1INFOCOM, London, UK, May 2025

• Background and Motivation

• Job Array Pipeline Parallelism and ArrayPipe Framework

• Evaluations

Outline

2

• Parallel schemes to accelerate individual DL model training

Background (1)

Scaling law: bigger model, more data, better result

Pipeline Parallel MoE Parallel

Dramatic growth in both data volume and
model complexity.

Training DeepseekV3 requires 2048 H100 GPUs using 55 days.

Data Parallel Tensor Parallel

3[1] Alex Black、Vyacheslav Kokorin. Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks

• Training jobs are not always independent

4[1] https://xgboosting.com/optimal-order-for-tuning-xgboost-hyperparameters/?utm_source=chatgpt.com

• The search space for optimal hyperparameter settings can be
large (5 hyperparameters with 5 possible values each leads to 3125 configurations).

• Babysitting: trying out one setting at a time (one environment)

• Batching: Explore multiple settings in parallel (multiple sets of
environment)

Idea
Code

Experiment

Circle of model exploration
(Explore hyperparameter settings)

Background (2)

How to accelerate the model exploration process as a whole?

Motivations (1)

• How to increase the resource utilization in trainings?
➢ Reducing “bubbles”: divide minibatch to microbatches, pipeline

scheduling
➢ Overlapping communication with computation
➢ Context switching in between jobs (100x the duration of an iteration [1])

5[1] Z. Bai, et al.,“Pipeswitch: Fast pipelined context switching for deep learning applications,” in USENIX OSDI, 2020

Motivations (2)

• Searching hyperparameter involves trail-and-error sibling jobs
➢ share the same core (i.e. model stucture, CUDA Context structure)

➢ vary in hyperparameter configuration (e.g., batch_size, learning_rate, weight_decay...)

• Opportunity to pack sibling jobs into a batch (job-array)

Job-Array: a set of Sibling Jobs

(batch_size, learning_rate,
weight_decay, …)

Same Model Structure
S0 S1 S2

Different Hyper-Parameter

…
Job N

…
Job 1

…
…(512, 0.01

,
0.0005, …)

(256, 0.01
,
0.0005, …)

6

• Job-Array: train concurrently, instead of sequentially
i. How to seamlessly switch between sibling jobs?
ii. How to efficiently schedule multiple jobs in one pipeline?

Job-Array Pipeline (JAP) Parallelism

• Job-level parallelism for high throughput model exploration

Given a job-array J and a cluster of servers H, JAP is a pipeline parallelism that supports
the stages of different jobs in J execute concurrently rather than consecutively.

7

ArrayPipe Framework Overview

• Scheduler integrates two algorithms (B&B
and Genetic algorithm) to generate the
pipeline plans a job-array.

• Memory Manager mitigates the memory
pressure via re-computation, just in-time
updates, memory virtualization, and a dedicated
buffer to pre-load model parameters.

8

• Binder regards a batch of sibling jobs as a
whole and packs them as a job-array
supported by Low-Cost Context Switching
(LCS).

Binder

Challenge 1: How to support low-cost context switching between sibling jobs?

Training with Binder supported by Low-Cost Context Switching (LCS).

9

Switching context:
model states
activations
gradients

Switching states:
parameter
optimizer

Scheduler

Challenge 2: How to ensure an efficient scheduling when sibling jobs have
different mini-batch execution durations and their own stage dependencies?

Sophisticated scheduling algorithms are needed.

10

JAP Scheduling Problem

Given a job-array of DL training jobs J, and a cluster of servers H, the
JAPSP seeks a schedule of all stages for J on H, with the minimum
per-iteration time T, as:

11

Solving JAPSP

• A variant of the Job Shop Scheduling Problem (JSSP),
with extra dependencies between model stages

• A Branch-and-bound Algorithm and a Genetic Algorithm

12

Memory Manager

Challenge 3: How to avoid Out Of Memory (OOM) in JAP when too
many sibling jobs are sharing resources?

13

BERT GPT-2

Activation memory usage (GPT-2)
• Activation account of nearly 60% of the

memory footprint

• Re-materialization: Eliminate and recompute

Evaluations

Training Time Comparisons.

• ArrayPipe achieves 1.46× training throughput, comparing
with State-Of-The-Art (SOTA) PPs, on average.

Baselines: GPipe, BPipe, Hanayo

Testbed: NVIDIA SXM4 server with 8 A100 (80GB), NVLink (300GB/s),
PCIe4.0 (64GB/s).

DNN Models:

14

Comparison between whether to use LCS
and MM in ArrayPipe.GPU Utilization.

Evaluations

15

• ArrayPipe achieves high GPU utilization. As more jobs are
packed into a job-array, the overall throughput improves.

Large-scale Simulation

16

• ArrayPipe is more suitable for environments with larger
GPU memory capacity, higher intra-node bandwidth,
aligning with the developing trends and application patterns.

i. A novel parallel scheme (JAP) is introduced to enable a batch of sibling jobs to form a
concurrent job-array and to execute concurrently, targeting high throughput model
exploration.

ii. We design ArrayPipe, a framework to support JAP with low-cost job context switching within
a job-array and a GPU-Host memory manager for higher training concurrency.

iii. We propose a novel scheduling problem JAPSP that seeks to minimize the per-iteration time
of a job-array, along with two algorithms for different scales of job-arrays.

iv. Extensive testbed experiments and trace-driven simulations are conducted to evaluate the
efficiency of ArrayPipe.

Conclusion

Future Work

i. How can ArrayPipe handle exploratory job workflows that frequently terminate and resubmit?

ii. Models with different hyperparameters may benefit from different degrees of parallelism.
Fine-grained (layer-wise) LCS and migration is a possible direction.

Conclusion and Future Work

17

Thank you

Presenter: Hongliang Li

lihongliang@jlu.edu.cn
College of Computer Science and Technology,

Jilin University, Changchun, China, 130012

18INFOCOM, London, UK, May 2025

	Slide 1: ArrayPipe: Introducing Job-Array Pipeline Parallelism for High Throughput Model Exploration
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Thank you

