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• Parallel schemes to accelerate individual DL model training

Background (1)

Scaling law: bigger model, more data, better result

Pipeline Parallel MoE Parallel

Dramatic growth in both data volume and 
model complexity. 

Training DeepseekV3 requires 2048 H100 GPUs using 55 days.

Data Parallel Tensor Parallel

3[1] Alex Black、Vyacheslav Kokorin. Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks



• Training jobs are not always independent

4[1] https://xgboosting.com/optimal-order-for-tuning-xgboost-hyperparameters/?utm_source=chatgpt.com

• The search space for optimal hyperparameter settings can be 
large (5 hyperparameters with 5 possible values each leads to 3125 configurations).

• Babysitting: trying out one setting at a time (one environment)

• Batching: Explore multiple settings in parallel (multiple sets of 
environment)

Idea
Code

Experiment

Circle of model exploration 
(Explore hyperparameter settings)

Background (2)

How to accelerate the model exploration process as a whole?



Motivations (1)

• How to increase the resource utilization in trainings? 
➢ Reducing “bubbles”: divide minibatch to microbatches, pipeline 

scheduling 
➢ Overlapping communication with computation
➢ Context switching in between jobs (100x the duration of an iteration [1])

5[1] Z. Bai, et al.,“Pipeswitch: Fast pipelined context switching for deep learning applications,” in USENIX OSDI, 2020



Motivations (2)

• Searching hyperparameter involves trail-and-error sibling jobs
➢ share the same core (i.e. model stucture, CUDA Context structure) 

➢ vary in hyperparameter configuration (e.g., batch_size, learning_rate, weight_decay...)

• Opportunity to pack sibling jobs into a batch (job-array)

Job-Array: a set of Sibling Jobs

(batch_size, learning_rate, 
weight_decay, …)

Same Model Structure
S0 S1 S2

Different Hyper-Parameter

…
Job N

…
Job 1

…
…(512, 0.01

, 
0.0005, …)

(256, 0.01
, 
0.0005, …)
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• Job-Array: train concurrently, instead of sequentially
i. How to seamlessly switch between sibling jobs?
ii. How to efficiently schedule multiple jobs in one pipeline?



Job-Array Pipeline (JAP) Parallelism

• Job-level parallelism for high throughput model exploration

Given a job-array J and a cluster of servers H, JAP is a pipeline parallelism that supports 
the stages of different jobs in J execute concurrently rather than consecutively. 
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ArrayPipe Framework Overview

• Scheduler integrates two algorithms (B&B 
and Genetic algorithm) to generate the 
pipeline plans a job-array.

• Memory Manager mitigates the  memory 
pressure via re-computation, just in-time 
updates, memory virtualization, and a dedicated 
buffer to pre-load model parameters.
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• Binder regards a batch of sibling jobs as a 
whole and packs them as a job-array 
supported by Low-Cost Context Switching 
(LCS).



Binder

Challenge 1: How to support low-cost context switching between sibling jobs?

Training with Binder supported by Low-Cost Context Switching (LCS).
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Switching context:
model states
activations
gradients

Switching states:
parameter
optimizer



Scheduler

Challenge 2: How to ensure an efficient scheduling when sibling jobs have 
different mini-batch execution durations and their own stage dependencies?

Sophisticated scheduling algorithms are needed.
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JAP Scheduling Problem

Given a job-array of DL training jobs J, and a cluster of servers H, the 
JAPSP seeks a schedule of all stages for J on H, with the minimum 
per-iteration time T, as:
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Solving JAPSP

• A variant of the Job Shop Scheduling Problem (JSSP), 
with extra dependencies between model stages

• A Branch-and-bound Algorithm and a  Genetic Algorithm
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Memory Manager

Challenge 3: How to avoid Out Of Memory (OOM) in JAP when too 
many sibling jobs are sharing resources?
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BERT GPT-2

Activation memory usage (GPT-2) 
• Activation account of nearly 60% of the 

memory footprint

• Re-materialization: Eliminate and recompute



Evaluations

Training Time Comparisons.

• ArrayPipe achieves 1.46× training throughput, comparing 
with State-Of-The-Art (SOTA) PPs, on average.

Baselines: GPipe, BPipe, Hanayo

Testbed: NVIDIA SXM4 server with 8 A100 (80GB), NVLink (300GB/s), 
PCIe4.0 (64GB/s).

DNN Models:
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Comparison between whether to use LCS 
and MM in ArrayPipe.GPU Utilization.

Evaluations
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• ArrayPipe achieves high GPU utilization. As more jobs are 
packed into a job-array, the overall throughput improves.



Large-scale Simulation
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• ArrayPipe is more suitable for environments with larger 
GPU memory capacity, higher intra-node bandwidth, 
aligning with the developing trends and application patterns.



i. A novel parallel scheme (JAP) is introduced to enable a batch of sibling jobs to form a 
concurrent job-array and to execute concurrently, targeting high throughput model 
exploration.

ii. We design ArrayPipe, a framework to support JAP with low-cost job context switching within 
a job-array and a GPU-Host memory manager for higher training concurrency.

iii. We propose a novel scheduling problem JAPSP that seeks to minimize the per-iteration time 
of a job-array, along with two algorithms for different scales of job-arrays.

iv. Extensive testbed experiments and trace-driven simulations are conducted to evaluate the 
efficiency of ArrayPipe. 

Conclusion

Future Work

i. How can ArrayPipe handle exploratory job workflows that frequently terminate and resubmit?

ii. Models with different hyperparameters may benefit from different degrees of parallelism. 
Fine-grained (layer-wise) LCS and migration is a possible direction.

Conclusion and Future Work
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