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Background (1)

 Parallel schemes to accelerate individual DL model training
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Dramatic growth in both data volume and
model complexity.
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Training DeepseekV3 requires 2048 H100 GPUs using 55 days.

[1] Alex Black. Vyacheslav Kokorin. Distributed Deep Learning, Part 1: AnIntroduction to Distributed Training of Neural Networks g 3



Background (2)

* Training jobs are not always independent

* The search space for optimal hyperparameter settings can be
Iar'ge (5 hyperparameters with 5 possible values each leads to 3125 configurations).

« Babysitting: trying out one setting at a time (one environment)
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* Batching: Explore multiple settings in parallel (multiple sets of
environment)

How to accelerate the model exploration process as a whole?

[1] https://xgboosting.com/optimal -order-for-tuning- xgboost-hyperparameters/?utm_source=chatgpt.com



Motivations (1)

« How to increase the resource utilization in trainings?

> Reducing "bubbles”: divide minibatch to microbatches, pipeline
scheduling

» Overlapping communication with computation

» Context switching in between jobs (100x the duration of an iteration [1])
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[1]1Z. Bai, et al.,"Pipeswitch: Fast pipelined context switching for deep learning applications,” in USENIX OSDI, 2020



Motivations (2)

 Searching hyperparameter involves trail-and-error sibling jobs

» share the same core (i.e. model stucture, CUDA Context structure)
» vary in hyperparameter configuration (e.g., batch_size, learning_rate, weight_decay...)

« Opportunity to pack sibling jobs into a batch (job-array)

Job-Array: a set of Sibling Jobs ; Same Model Structure| Different Hyper-Parameter
S 51 52 |

§ (batch_size, learning_rate,
weight_decay, ..)
| |
« Job-Array: train concurrently, instead of sequentially
i. How to seamlessly switch between sibling jobs?
ii. How to efficiently schedule multiple jobs in one pipeline?




Job-Array Pipeline (JAP) Parallelism

« Job-level parallelism for high throughput model exploration
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Given a job-array J and a cluster of servers H, JAP is a pipeline parallelism that supports
the stages of different jobs in J execute concurrently rather than consecutively.




ArrayPipe Framework Overview
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* Binder regards a batch of sibling jobs as a
whole and packs them as a job-array
supported by Low-Cost Context Switching
(LCS).

* Scheduler integrates two algorithms (B&B
and Genetic algorithm) to generate the
pipeline plans a job-array.

* Memory Manager mitigates the memory
pressure via re-computation, just in-time
updates, memory virtualization, and a dedicated
buffer to pre-load model par'ame’rer's




Challenge 1: How to support low-cost context switching between sibling jobs?
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Scheduler

Challenge 2: How to ensure an efficient scheduling when sibling jobs have
different mini-batch execution durations and their own stage dependencies?
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JAP Scheduling Problem

Given a job-array of DL training jobs J, and a cluster of servers H, the
JAPSP seeks a schedule of all stages for J on H, with the minimum
per-iteration time T, as:
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Solving JAPSP

» A variant of the Job Shop Scheduling Problem (JSSP), R
with extra dependencies between model stages 2: Output: Schedule for each block of jobs Sched
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Memory Manager

Challenge 3: How to avoid Out Of Memory (OOM) in JAP when too
many sibling jobs are sharing resources?
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Evaluations

Testbed: NVIDIA SXM4 server with 8 A100 (80GB), NVLink (300GB/s),
PCIe4.0 (64GB/s).

le3

Baselines: GPipe, BPipe, Hanayo S . | == BERT-large 222 ResNet152
g 2:01 &H VGG19 GPT-2
o . . .
DNN Models: Z1s
£
Model Dataset Optimizer # of Params E 1.0 . Eii
1)) X X
VGG19 ImageNet SGD 144M = Wik
ResNetl152 ImageNet SGD 60M = 0.5 X
BERT-large GLUE BertAdam 340M = G O3EE N
GPT-2 WikiText AdamW 1.5B 0.0 LK

Ar_B&B Ar GA  Hanayo GPipe BPipe

Training Time Comparisons.

« ArrayPipe achieves 1.46X training throughput, comparing
with State-Of-The-Art (SOTA) PPs, on average.




Evaluations
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« ArrayPipe achieves high GPU utilization. As more jobs are
packed into a job-array, the overall throughput improves.




Large-scale Simulation
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« ArrayPipe is more suitable for environments with larger
G6PU memory capacity, higher intra-node bandwidth,
aligning with the developing trends and application patterns.




Conclusion and Future Work

Conclusion

i. A novel parallel scheme (JAP) is introduced to enable a batch of sibling jobs to form a
concurrent job-array and to execute concurrently, targeting high throughput model
exploration.

ii. We design ArrayPipe, a framework to support JAP with low-cost job context switching within
a job-array and a GPU-Host memory manager for higher training concurrency.

iii. We propose a novel scheduling problem JAPSP that seeks to minimize the per-iteration time
of a job-array, along with two algorithms for different scales of job-arrays.

iv. Extensive festbed experiments and trace-driven simulations are conducted to evaluate the
efficiency of ArrayPipe.

Future Work

i.  How can ArrayPipe handle exploratory job workflows that frequently terminate and resubmit?

ii. Models with different hyperparameters may benefit from different degrees of parallelism.
Fine-grained (Iayer'-wise{ LCS and migration is a possible direction.
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