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Introduction

* Background of Facility Allocation:

* Strategic placement of resources in various fields: urban planning,
telecommunications, computing infrastructure.

* Focus on optimizing spatial resources in dynamic, uncertain conditions.

* Problem Complexity:

* Decision-making is iterative, aiming to maximize total reward over
multiple rounds.

 Challenges in environments with variable demands, like emergency
services and telecommunications.

* Combinatorial nature: multiple facilities are decided upon
simultaneously.
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Problem Formulation

* Model Setup:

* Grid Layout: 1X 1 square divided into N cells (perfect square).
* Population Density: Each cell i has an unknown fixed density D (i).

* Facility Allocation:

* Round-by-Round Decision: Allocate K facilities at cell centers per round,
represented as F(t) = {f1(t), ..., fx () }.
* Unique Positioning: No two facilities share the same location in the same

round.
* Voronoi Partitioning:

* Determines which facility point each cell is closest to, using either Manhattan
or Euclidean distance.

* Cells are assigned to the nearest facility, breaking ties randomly.



Problem Formulation

* Attraction Probability:

* Probability p; ;(t) of attracting an individual from cell i to facility j inversely
proportional to their distance.

e Modeled as: , Where « is a tunable factor and d is the chosen distance
metric.

* Expected Population Attraction:
* Each round models population attraction as a binomial random variable:
X;(t) ~ Binomial(D(i),p; (t)).
* Expected attracted population from cell i to facility j: E[X;(£)] = X< D(Dp;;(t).

* Regret Minimization Objective:

. Regrceit Definition: Difference between optimal and actual attracted population over
rounds.

* Optimization Goal: Minimize cumulative regret by selecting F(t) to maximize total
expected population attraction.

a
d(fj®),i)+1



Problem Formulation

(a) (b)

Figure 1: An illustration showing the effect of the choice
of distance metric on the Voronoi partition V;(t) Vj < K.
The background color represents the value of the underlying
population density of the cells D(i): (a) Euclidean distance
metric; (b) Manhattan distance metric.
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Solution of the Problem

Algorithm 1 Geometric-UCB for facility allocation UCB(F,t) = i(F.t) + \2log t/Ne (), (4)
Input: D(i) Vi < N, K, distance metric.
Output: F(t) Vt=12,...,T. F(¢) = arg max (p(F, £) + /2 1og r/NF(t)) | (5)
Initialization: X;(0) « 0Vi < N, fi(F,t) < 0and Np(t) « OVF F
Lifort=12....Tdo Np(DAF ) + 25, Tiev, (1) Xi(1)
2: for all possible allocations F do p(Fr+1) = Ne(f) +1 : (6)
3:  Evaluate UCB(F, t) from Equation 4.
4: Choose F(t) based on Equation 5. Np(t+1) = {NF(I‘) +1 if F(t) = F )
5:  Perform the Voronoi partition based on F(t) and the N (1) otherwise

chosen distance metric to get V;(t) for all j < K.
6: Observe X;(t) Vi < N and update fi(F, t) and Np(t) VF
based on Equations 6-7.
7: return F(1),F(2),...,F(T).

THEOREM 5.1. Algorithm 1 guarantees a regret bound of:

R(T) < 2/2NlogT (1 + 1/\/ﬁ) .




Solution of the Problem

* Algorithm Choice:

+ Utilizes a Combinatorial Upper Confidence Bound (C-UCB) algorithm.
 Balances exploration (gaining new information) and exploitation (using known high-reward locations).

* Algorithm Overview:

» Expected Attraction: Computes expected total population attraction for different facility sets, F(t).
» UCB Formula: Incorporates both past data and an exploration bonus to guide allocation decisions.

* Algorithm Execution:
* Initialization: Sets initial conditions for all variables and parameters.

* Iteration Process: Evaluates and chooses facility sets based on their upper confidence bounds across all
rounds.

* Voronoi Partitioning: Performed each round to determine the influence area of each facility based on
chosen distance metric.

* Observation and Update: Records results from the current allocation to refine future decisions.



Solution of the Problem

* Key Features of Geometric-UCB:
 Uses real-time data to dynamically adjust decisions.
« Aims to maximize total attraction over time, minimizing regret.
* Suitable for scenarios where the number of facilities (K) is small,
making complex computations tractable.
* Computational Complexity:

* Time Complexity: Dominated by evaluating all potential allocations
(O(T x N*)) and computing Voronoi partitions each round (O (T X
2

K?2)).
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Simulation

* Experimental Settings Overview:
* Facility Numbers: K = 3 or 4 to manage computational feasibility.

* Probability Parameter: a varied from 0.1 to 1.0 to test different
attraction levels.

* Distance Metrics: Both Manhattan and Euclidean used to examine
adaptability.
 Data Used for Simulation:

* Real-World Traces: Population density data from the United States,
discretized into 36 or 49 cell grids.

* Synthesized Data: Generated datasets with population densities
drawn from a normal distribution to test across varied scenarios.



Simulation

* Algorithm Comparison:

* Epsilon-Greedy Algorithm: Examines balance between exploration and
exploitation, with e = 0.25.

* Thompson Sampling: Assesses performance against a probabilistic method
that uses Bayesian inference for decision-making.

* Random Selection: Provides a baseline by randomly choosing facility
locations, ignoring prior data.

* Goals of Comparative Evaluation:
* Test the Geometric-UCB's efficiency against established algorithms.
* Identity strengths and potential areas for improvement in different settings.

 Validate robustness and adaptability of Geometric-UCB under varied
experimental conditions.



Simulation

pud o

N: 49, K: 4, Dist: Euclidean N: 36, K: 3, Dist: Euclidean

250 250 |
Geometric-UCE Geometric-UCE
I Epsilon-Greedy I Epsilon-Greedy

200 Thompsan Sampling 200 Thompson Sampling

I Random Selection m Aandom Selection

o

a value

1 1504

w
=1

1 100

=1
o

501

w
=1

0.1 0.5 1.0

a value

N: 49, K: 4, Dist: Manhattan N: 36, K: 3, Dist: Manhattan

250 250
Geometric-UCB Geometric-UCB
EE Epsilon-Greedy W Epsilon-Greedy
200 Thempson Sampling 200 Thompson Sampling
mm Random Selection W Random Selection
1501 1504
100 | 100+
50 50
0 ol
0.1 0.5 1.0 0.1 0.5 1.0
a value a value

Total Regret (in thousands) Total Regret (in thousands)
Total Regret (in thousands) Total Regret (in thousands)

Figure 3: Total regret value for different algorithms under synthesized data with ditferent « values. yp = 5000, opp = 100.
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world traces with different K values.
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Future Work

* Expanding Dimensions:

* Explore the applicability of the Geometric-UCB algorithm in higher-
dimensional spaces.

* Test the scalability and computational feasibility as dimensions increase.

* New Performance Measures:
* Investigate other metrics beyond regret to assess the algorithm's effectiveness.
 Consider factors like computational efficiency, convergence speed, and
robustness under varying conditions.
* Refinement of Probability Parameter («):

* Develop adaptive strategies for tuning a dynamically based on observed
attraction levels.

* Enhance the algorithm's responsiveness to changes in population density and
attraction patterns.



Conclusion

* Key Contributions:

* Introduced a novel Geometric-UCB algorithm tailored for the stochastic facility
allocation problem.

» First application of CMAB techniques in 2-dimensional spaces with uncertain
population distributions.

* Algorithm Advantages:

» Efficiently balances exploration and exploitation to maximize total population
attraction.

* Demonstrated adaptability with both Manhattan and Euclidean distances in facility
allocation.

* Validation through Simulations:

 Tested on both real-world data and synthesized datasets to verify effectiveness and
efficiency.

* Outperformed traditional algorithms like Epsilon-Greedy and Thompson Sampling
In various setups.
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