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Abstract—Data collection in wireless networked sensing sys-
tems (WNSS) is usually not reliable due to sensor faults and/or
security attacks. This makes detection of an event (e.g., structural
damage) through data aggregation unreliable. In this paper, we
propose a trustworthy and protected data collection (TPDC)
framework for event detection in WNSS. This framework fa-
cilitates reliable data for aggregation at clusters of WNSS. The
key idea of TPDC is to allow a cluster head to check whether or
not the transmitted data is trustworthy (i.e., unaltered estimated
at the sensor node level) and protected (i.e., received without
alteration after the transmission) before aggregating the data at
a cluster. For the trustworthy data, we propose an algorithm to
make sure that transmitted data is unaltered. For the protected
data, we present a truth discovery approach, whose goal is to infer
truthful facts from unreliable sensor data. Through simulations
, we demonstrate that the collected data in TPDC is trustworthy
and protected that can make aggregation for event detection
reliable.

Index Terms—Networked sensing systems, data collection, fault
tolerance, trustworthy, security, correlation

I. INTRODUCTION

With the capabilities of pervasive surveillance, wireless
networked sensing systems (WNSS) have strong practical
applications in many domains, e.g., crowd sensing, struc-
tural health monitoring (SHM) or damage event detection for
industrial machines or infrastructures, chemical explosions,
and military surveillance intrusion tracking [1]–[4]. In most
sensing applications, the quality of the data or the quality
of the monitoring and timely detection of an even are the
utmost important issues. This is particularly true for events like
structural damage or fire where an employed system should
be able to detect the acquired data faults online and take
recovery actions immediately to avoid meaningless monitoring
operations [5]. In fact, reliability is highly desired in structural
damage event detection, as an “alert” about a structural event
conveys a serious concern with public safety and economic
losses.

However, transmitted data provided by sensors is usually
unreliable due to various reasons such as sensor fault, lack
of sensor calibration, background noise, incomplete views of
observations, and alterations (by security attacks) [6]. Without
identifying any alternation of the acquired data considering
these reasons, when the data is transmitted towards the up-
stream sensors (such as clusters) for aggregation, the data
cannot be “trustworthy.” Such data highly impacts the overall
monitoring quality.

In addition, the power of networked sensing can be un-
leashed only by properly aggregating unreliable information
from different sensors whose submitted data may be altered
before transmission at the sensor. Regardless of if the trans-
mitted data is trustworthy or not, they can be further altered
during transmission from sensors to clusters by the third party.
Some sensors constantly provide truthful data while others
may generate biased, compromised, or even fake data, due to
security attacks such as the collusion attack and the malicious
attack [7], [8]. For that reason, data aggregation at a cluster
head node has to be accompanied by an assessment of trust-
worthiness of data from individual sensor nodes. Therefore, the
received data should be “protected” data before aggregation.
Thus, it is indispensable to distinguish whether received data
is protected or not before aggregation at a cluster head (CH).

Taking these two aspects into account, decision-making in
existing event detection frameworks through traditional aggre-
gation methods (e.g., voting, avg, sum) that regard all the users
equally would not be able to derive accurate aggregated results
for the event detection [9], [10]. Also, existing event detection
based on results of weighted average, sum, or voting may not
provide true facts in terms of trustworthy or untrustworthy
acquired data [2], [11], [12].

In this paper, we propose a trustworthy and protected data
collection (TPDC) framework for event detection in WNSS.
This framework facilitates data collection for reliable aggre-
gation at clusters of WNSS. The key idea of TPDC is to
allow a cluster head to check whether or not the transmitted
data is trustworthy (unaltered estimated at the sensor node
level) and protected (received without alteration after the
transmission) before aggregating the data at a cluster. For
the trustworthy data, we use a general measurement model,
mutual information independence (MII), between two signals
from two different sensors or the same sensor for evaluating
results in the absence of the ground truth. We think that mutual
statistical information could be used as an indicator to check
whether or not the acquired data is trustworthy in conjunction
with structural damage event detection. Once the data passes
this check, the data is trustworthy and can be transmitted
towards the CH.

For protecting the data, we present a truth discovery ap-
proach whose goal is to infer truthful facts from unreliable
sensors. To achieve this, TPDC performs sensor status value
calculation and data encryption. An intended recipient, like



the CH, for example, should check if the received data is
protected. We conduct a performance evaluation of TPDC
through extensive simulations. We use real-world data set in
the simulations, and demonstrate that the collected data in
TPDC is trustworthy and protected that can makes aggregation
for event detection reliable.

The remainder of this paper is organized as follows. Section
II briefly discusses framework. Section III provides the trust-
worthy data collection approach. Section IV truth status dis-
covery approach. Section V evaluates our TPDC framework.
Finally, we conclude the paper in Section VI.

II. TPDC FRAMEWORK

In this section, we describe our trustworthy and protected
data collection (TPDC) framework. Let us consider a hier-
archical WNSS with a set of sensors to be deployed for a
particular monitoring application, e.g., monitoring the health
of civil structures, e.g., building, bridge, aircraft. A reference
2D building model is shown in Fig. 1a, where sensors (white
circle) are deployed according to a engineering-driven deploy-
ment method [1] and a remote monitoring center or a base
station (BS) station location (colored circle) which is at a
remote place. The deployed sensors are self-organized into
clusters using some clustering algorithm [13], [14]. Every
cluster head (CH) forwards a final decision of an event or
aggregated data to the BS. We assume sensors can have
different types of application tasks (e.g., sensing the vibration,
strain, and damping, pressure, temperature, etc., in the context
of SHM) and sending its measurements to neighboring nodes
or a CH. For simplicity, we consider vibration signals in this
paper.

Sensors acquire data using a state-space model [15], [16],
analyze it locally, identify whether the acquired data is trust-
worthy or not, and finally transmit the trustworthy data. To
identify trustworthy data, we focus on the following set of
sensor faults that occur in a real wireless SHM system,
sensor debonding fault, faulty signals by precision degradation,
breakage, etc., especially in vibration signal capturing, faults
in offset, bias, and the amplification gain factor of signals.
Sensors may also produce abnormal signals from security
attacks.

We use ‘mutual information independence (MII)’ as an
indirect signal measurement, assuming that a prior correlation
model denoted by C presents [17]. Model C can be given by
a reference data set. This data set is immediately-stored data
in the sensor local memory after the sensor network system
initialization. A MII function between two signals of sensors
i and j at time t in a cluster is applied to check abnormal
signals.

In practical WNSS systems, the security threats mainly
come from the parties themselves (i.e., from any sensors). The
CH may try to deduce the observation of each sensor. On the
other hand, each sensor may also try to infer the information
of other parties. Therefore, it is of paramount importance to
preserve sensor observation values (without alteration). Data
received at the CH with some alteration are not considered
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Fig. 1. WNSS-based SHM frameworks.

for aggregation for event detection. We use a sensor status
value truth discovery for this purpose. In the truth discovery,
the sensors that provide true information will be considered
having truthful facts more often and the information that is
supported by reliable sensors will be regarded as truths.

III. TRUSTWORTHY DATA COLLECTION

We consider data collection for SHM applications [1]. SHM
techniques rely on measuring structural responses to ambient
vibrations, strain signals, or forced excitation. A variety of
sensors, such as accelerometers, strain gauges, or displacement
can be used to measure structural responses. The civil or
structural engineering communities use various data collection
techniques. We consider the state space model, which is
widely accepted for data collection that can accurately capture
the structural dynamics [15].

We propose an algorithm that simply presents the data col-
lection method in a cluster denoted by D. While theoretically
this procedure involves multi-hop communication, consider the
fact that for SHM application, the radio communication range
of current sensor nodes exceeds the area in which the sensors
gather signals. We limit sensors to communicate within the
one-hop neighboring nodes. This algorithm has three steps. In
step 1 of the algorithm, every sensor acquires signals captured
from the vibration responses of the structure (bridge, building,
etc.), and buffers them temporarily. Then, it transmits and
receives the measured signals. In step 2, the sensors check
if there are any faulty signals.

Step 3 executes another algorithm called “decision-making
on the faulty signals” that identifies if collected sensor signals
are faulty or not. When a remarkable change appears in a
sensor’s signals, there is a possibility that a sensor is faulty or



compromised. The MII is used to detect sensor signals. Let us
consider the statistical dependency between the two sensors’
signals quantified by MII. ω measures the information about
one sensor that is shared by another sensor in the set of signals
in D. It is seen that ω changes as soon as a sensor signal fault
occurs because the faulty signal is not present in the reference
or in other sensor signals.

Decision-making on the faulty signals. In order to make
a decision about the sensor acquired signals, we use a joint
Gaussian distribution based correlation model. Multivariate
Gaussian distribution has been used to accurately model the
correlation of many types of signals in literature [10]. Each
signal is broadcasted to sensors in cluster D, where ith sensor
signal yti ∈ ytD and jth sensor signal ytj ∈ ytD, i, j ∈ D. For
simplicity, yti as u and ytj as v are denoted hereafter.

Hence, it would be worth considering how to find joint
probability density between two signals u and v. The sta-
tistical dependency/independency between the two Gaussian
distributed time signals u and v can be expressed in the form
of the joint probability density p(u, v) of signals, which is
given as follows:

p(u, v) = 1
2πτuτv

√
1−ρuv

e− 1
2(1−ρ2

uv
)[(

u−µu
τ2
u

)2
− 2ρuv

(u−µu)(v−µv )
τuτv

+
(

v−µv
τ2
v

)2
]
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where µu, µv , τu, and τv are the means and the standard
deviations of the signals u and v, respectively. ρuv is the
correlation coefficient between the two signals. The coefficient
is given by:

ρuv =
E {(u− µx)(v − µy)}

τuτv
(2)

The correlation coefficient can also sometimes be used to
determine if two signals are statistically independent. On one
hand, if |ρuv| = 1, there is a strong correlation between the
two signals. On the other hand, if |ρuv| = 0, the two signals
are not correlated. The correlation can be interpreted as a weak
form of statistical dependency. In [12], it is shown that two
random variables, which are not correlated, can be statistically
dependent. This is why we take the statistical dependency or
independency. The product of the marginal densities ρu and
ρv of the signals u and v, respectively, is given by:

p(u, v) = p(u)p(v) (3)

If the expression in (1) is equal to the product of the marginal
densities in (3), the signals are completely independent. One
possibility to quantify the statistical dependency between two
signals is to calculate the MII of them, as follows:

ω(u, v, C) =

∫ ∫
p(u, v) log

p(u, v)

p(u)p(v)
du dv (4)

The base of the logarithm determines the units in which
information is measured. (4) shows that if u and v are
independent, ω becomes zero. A forward approach is to divide
the range of u and v into finite bins and count the number
of sampled pairs of ho = (uo, vo), o = 1, 2, · · · , n, falling

into these finite bins. This count allow us to approximately
determine the probabilities, replacing (15) by the finite sum:

ωbin(u, v, C) =
∑

a,b

puv(a, b) log
pu,v(a, b)

pu(a)pv(b)
(5)

where pu(a) ≈ nu(a)/n and pu(b) ≈ nu(b)/n are the
probabilities based on the number of points nu(a) and nv(b)
falling into the ath bin of u and the bth bin of v, respectively.
The joint probability is puv(a, b) ≈ n(a, b)/n based on the
number n(a, b) of points falling into box nos. a, b. MII is
non-negative and symmetric:

ω(u, v, C) = ω(v, u, C) ≥ 0 (6)

The MII for all possible combinations of sensor outputs yr
and ys (except r = s, i = 1, 2, · · · , r, j = 1, 2, · · · , s) is
computed, which leads to an ω-matrix for all combinations of
r and s. The basic idea is that the MII changes when a signal
fault fr is present. Suppose that it is in the rth channel or
index:

ỹr = yr + fr (7)

This fault appears only in the rth channel. Thus, we should
expect that all combinations with index r should show a
reduction of ω. This allows us to localize the faulty signals.
One or more sensors’ faulty signals can be simultaneously
detected in the same way. One possibility to visualize the
faulty signals is to use the relative change as a signal fault
indicator λω

yr
:

λω
yr

=
|ωyr − ωref |

ωyr

(8)

where yr is an actual data set and the lower index ref is one
reference data set. The method based on MII is able to detect
sensor faults in different combinations of them.

The faulty signal detection can execute in a distributed
manner when each sensor makes a decision on the collected
signals locally. In this algorithm, if the local decision on a
sensor’s signals, λω

yr
> 0.5, the signals are faulty. This means

that MII is high on the sensor’s faulty signals. The algorithm
based on MII is able to detect different kinds of faults (as
discussed in Section II). Using the algorithm, a sensor is able
to know whether its collected data is trustworthy or not and
forward the data towards the CH.

IV. PROTECTED DATA COLLECTION FOR AGGREGATION

Once a sensor has trustworthy data which has been iden-
tified earlier, it may be altered at the sensor or intermediate
sensor before/after transmission, i.e., a CH may receive unpro-
tected (or altered) data for aggregation. We need to ensure the
data protection. To discover a unreliable sensor or unprotected
data at the CH, we use the truth discovery approach in TPDC.
Traditionally, truth discovery is used in many domains in
order to resolve conflicts with multiple noisy data sensors.
The insight is a truth discovery algorithm that begins with a
random guess of ground truths, and iteratively conducts status
value updates and truth updates until convergence [9].



In our approach, we compute sensor status value to check
whether or not the data is altered at the transmission. The
basic idea is that a sensor’s status value can be given a high
value if the sensor transmitted trustworthy data is close to the
estimated ground truths. Typically, the sensor status values are
computed as follows:

Sk = log(

∑K
k′=1

∑M
m=1 d(x

k′

m, x∗
m)

∑M
m=1 d(x

k
m, x∗

m)
) (9)

d(.) is the distance function which measures the difference
between sensors observation values xk′

m and the estimated
ground truths x∗

m [18]. d(.) relies on particular sensing appli-
cation scenarios. The proposed framework TPDC is intended
to deal with SHM applications,such as structural damage
event detection, for example. For SHM applications, where the
sensory data is continuous, like with acceleration or strain, we
adopt the following normalized squared distance function:

d(xk
m, x∗

m) =
(xk

m − x∗
m)

2

stdm
(10)

where stdm is the standard deviation of all observation values.
Truth Update. Suppose that the status value of each sensor

is fixed. Then, we can estimate the ground truth for the m-th
events (m is used as there can be multiple events or an event
includes multiple type of signals’ information, such as with
accelerometer, stain, displacement, etc.

x∗
m ←

∑K
k=1 Skxk

m∑K
k=1 Sk

(11)

Since acceleration and strain data are continuous, x∗
m de-

notes the estimated ground truth value. The truth discovery
process begins with randomly guessing the ground truth for
an event, then iteratively updates sensors status values and
estimated ground truths until some convergence criterion is
satisfied. Normally, the convergence criterion is set regarding
the requirements of specific applications. It should be a
threshold of the change in the estimated ground truths in two
consecutive iterations.

Truth Status Value Discovery. Here, we discuss the de-
tails of our secured truth discovery approach. We assume
a semantically secure (p, t)-threshold Paillier cryptography,
adopted from [19]. Here p is the number of sensors including
both clusters and sensors, and t is the minimum number
of (clusters and sensors) needed to complete the decryption.
Thus, each sensor TPDC has known the public encryption key
pk = (g, n), while the private decryption key has been divided
and distributed to all nodes in D (i.e., node i gets its private
key share ski ). At the data transmission, sensors iteratively
conduct the following two procedures:

• Status Value Update. Each sensor computes the distances
between its trustworthy data (observation values) and the
estimated ground truths given by the cluster regarding the
distance functions, then encrypts the distance information
and yields the ciphertexts to the CH. Once the ciphertexts

from all sensors are received, the CH securely updates
the status value in encrypted form for each sensor. Then,
the ciphertext of the updated status value is sent to each
corresponding sensor.

• Secure Truth Estimation. Based on the encrypted status
value received from the CH, each sensor computes the
ciphertexts of status value observation without decrypting
the status value, and then sends them to the CH. Once the
CH gets all the ciphertexts of status value from sensors,
it can compute the ground truth for the trustworthy data.

The above two procedures begin with a random initializa-
tion of the ground truth for the trustworthy data, and are
then iteratively conducted until convergence. Throughout these
procedure, the processes are conducted on encrypted data.
Therefore, it is ensured that the status value observations of
each sensor are known only to itself and the sensor status
values are not disclosed to any other sensors.

For status value update and secure truth estimation, we use
a secure sum protocol designed to calculate the summation
of the data collected from sensor without disclosing them to
any unintended party of the system. According to Eqn. (9)
and Eqn. (11), a CH calculates the summation of the data
collected from sensors in order to update status values and
estimate ground truths. However, the plaintext of each sensors
data should not be accessible to other due to privacy concerns.
We deal with this problem with a the secure sum protocol
which can be achieved through threshold Paillier cryptosystem
[20].

V. PERFORMANCE EVALUATION

A. Simulation Methods

We conduct simulations using MATLAB to evaluate TPDC
that includes the trustworthy and protected data collection
methods. We use real data sets collected by the SHM system
employed on the high-rise Guangzhou National TV Tower
(GNTVT) [5], [21] and a SHM toolsuite [22]. The dataset
includes data collected from 800 sensors. We use the data sets
for the 100-sensor case in our simulations. We perform the
WNSS deployment via our WNSS-based deployment scheme
suggested in [23] The simulation environment is a 450 × 50
sensing field regarding structural environment, e.g., bridge,
building, aircraft.

The background data is simulated as vibration influenced
by the 100 sensor locations in the field. A random Gaussian
noise is added to all the data. The mean of the noises is zero,
and the standard deviation is 10% of the real signals. From
the data sets, a set of data is used as reference data to train
the joint distribution, and another set of similar data is used
for testing. The noise is present in both the data sets. Thus,
the trained correlation model reflects the noises. After a sensor
receives a decision, it recomputes its MII.

As a baseline approach for status value truth discov-
ery, we use the state-of-the-art truth discovery scheme
in our simulations, i.e., CRH (conflict resolution on het-
erogeneous data) [18], which does not take any actions
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to break sensor security during the whole procedure. A
(p,

⌊p
2

⌋
)-threshold Paillier cryptosystem is used in simulations

(http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/). The status
value truth discovery is implemented by following the Paillier
Threshold Encryption Toolbox.

We also consider Voting framework for comparison. Voting
is used to eliminate conflicts for decision-making based on
collected data, which is used to conduct majority voting so that
information with the highest number of occurrences, mean,
or median is regarded as the correct answer. In Voting, it
is assumed that all the sensors are equally reliable, and thus
the votes from different sensors are uniformly weighted. We
adopted a state-of-the-art network based voting algorithm from
[24].

B. Performance measures

We consider the following measures for evaluating the
estimation accuracy of sensor status value truth in TPDC:
mean of absolute error (AE) and error rate. The data used
in TPDC is the continuous data and we use AE to measure
the mean of absolute distance between the estimated results
and ground truths. Error rate is calculated as the percentage
of the approachs output that are different from the trustworthy
data and ground truths. The simulation is repeated for 50 times
for confidence.

C. Results

In the first set of simulations, we implemented trustworthy
data collection under the sensor signal fault injection, which
was achieved through modifying a number of sensors’ signals
randomly in the data sets. A fraction of the sensors is randomly
selected and the modified faulty signals are fed into their
acquisition modules. We vary the number of faulty signals
from 15% to 25%. Each sensor broadcasts its readings towards
the neighboring sensors. Each of the faulty readings is replaced
by a random number independently drawn from a uniform
distribution in the deployment field (0, 450). Such a fault
model is selected since it yields uncorrelated data in the same
magnitude as the collected signals in practice.

In Fig. 2, MII achieved in the first four successful simulation
cases, with varying sensor fault injection. Case 1 has no any
signal fault injection. This means that the acquired data is
not altered almost in all the sensors by any signal faults or
security attack. Case 2 shows the high MII value at some
sensors including sensor 9 and sensor 10. Their signals are
faulty or partly altered, which is apparently detected. When
the rate of signal fault injection increases, we can see that the
MII values at sensors in the neighborhood becomes highest.
Data from these sensors cannot be trustworthy. This justifies
the correctness of the untrustworthy data detection. Whenever
a CH receive such data, it may drop the data from aggregation
or a data reconstruction method may be used for the portion
of untrustworthy data.

We compare the accuracy of ground truths between TPDC
and CRH. The estimation errors of TPDC are introduced by
randomly guessing the ground truths, since we randomly ini-
tialize the estimated ground truths, and use a threshold of the
change in estimated ground truths in two consecutive iterations
as the convergence criterion. Fig. 3 shows the ground truth
estimation errors of TPDC, CRH, ad Voting under different
random values. The error is measured in terms of AE. The
figure shows that TPDC almost has the same estimation errors
as CRH while the number of sensors is varying. In some cases,
even TPDC is better performing than the CRH; particularly,
when the number of sensors is small. Also, we can see that, the
estimation errors decrease with the increase of the number of
sensors. When compared to both CRH and TPDC, the Voting
framework shows the worst performance. One possible reason
is that reliability estimation based on the maximum number of
packets or votes cannot reflect the true facts in the networked
systems. Though the commonly used approach to eliminate
conflicts for a decision on an event or faulty sensor is to
conduct majority voting so that information with the highest
number of occurrences or median is regarded as the correct
answer. The issue of such Voting/Averaging frameworks is that
they assume all the data packets from sensors or the sensors are
equally reliable, and thus the votes from different sources are
uniformly weighted. This does not include information when
the packets or voted are altered.

In the final set of simulations in this paper, we observe
the error rate in different frameworks. In Fig. 4, we illustrate
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the performance of them in terms of error rate on the SHM
data set. We can see that the proposed TPDC obtains better
performance on the SHM data set compared with the CRH
and Voting. From the figure, we can observe that the CRH
framework consider all the data collected where some data are
compromised, i.e., faulty signals were injected. Trustworthy
data is not identified in both the CRH and Voting. In Voting,
sensor data are considered equally reliable and/or the sensor
is reliable which has maximum votes. The sensors in TPDC
include the trustworthy data. When a portion of the trustworthy
data is further altered at the transmission, this data is dropped
before aggregation. As a result, the error rate in TPDC is lower
than that of the CRH.

VI. CONCLUSION

In this paper, we have presented a trustworthy and protected
data collection (TPDC) framework for event detection in
WNSS. It facilitates reliable collection for aggregation at a
cluster of WNSS. For the trustworthy data, we propose an
algorithm to make sure that transmitted data is unaltered. For
the protected data, we present a truth discovery approach,
whose goal is to infer truthful facts from unreliable sensor
data. Through extensive simulations, we demonstrate that the
collected data in TPDC is trustworthy and protected that may
provide a reliable decision-making in event detection. Our
future work includes performance evaluation of event detection
using TPDC framework, detailed performance analysis of the
proposed approaches, and comparative studies. Furthermore,
the data transmission security and authenticity with the sensor
status value discovery approach is not described in this paper,
which will be focused in the future.
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