
Event Detection through Differential Pattern Mining
in Internet of Things

Md Zakirul Alam Bhuiyan⋆,† and Jie Wu⋆
⋆Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
†Department of Computer and Information Sciences, Fordham University, New York, NY 10458, USA

Email: zakirulalam@gmail.com and jiewu@temple.edu

Abstract—Detecting an event of interest, e.g., damage in
aerospace vehicles from the continuous arriving data in Internet
of Things (IoT) is challenging due to the detection quality.
Traditional data mining schemes are employed to reduce data
that often use metrics, association rules, and binary values for
frequent patterns as indicators for finding interesting knowledge.
However, these may not be directly applicable to the network due
to certain constraints (communication, computation, bandwidth).
We discover that, the indicators may not reveal meaningful
information for event detection. In this paper, we propose a
comprehensive data mining framework for event detection in IoT
named DPminer, which functions in a distributed and parallel
manner (data in a partitioned database processed by one or more
sensor processors) and is able to extract a pattern of sensors
that may have event information with a low communication cost.
To achieve this, we introduce a new sensor behavioral pattern
mining technique called differential sensor pattern (DSP) which
considers different frequencies and values (non-binary) with a set
of sensors. We present an algorithm for data preparation and
then use a highly-compact data tree structure (called DP-Tree) for
generating the DSP. Evaluation results show that DPminer can
be very useful for networked sensing with a superior performance
in terms of communication cost and detection quality compared
to existing data mining schemes.

Index Terms—Internet of things, wireless sensor, data mining,
pattern mining, event detection, resource-efficiency

I. INTRODUCTION

With the capabilities of pervasive surveillance, Internet
of Things (IoT) such as networked sensing systems have
strong practical applications in many domains, e.g., structural
health monitoring (SHM) for industrial machine or aerospace
vehicles, chemical explosion, military surveillance, intrusion
tracking [1], [2]. In these applications, high quality event
detection using wireless sensing in IoT is essential. The
wireless sensors in IoT produce a huge volume of dynamic
data when deployed in these applications. The raw data, if
accurately analyzed and transformed to usable information
through data mining, can facilitate automatic and intelligent
decision-making on specific events of interest (e.g., damage in
aerospace vehicles), while optimizing the resource efficiency
of networks. Hence, it is vital to develop methodologies to
mine sensor data.

Recently, extracting knowledge from sensor data has re-
ceived a great deal of attention in the data mining com-
munity [3]–[6]. Traditional data mining schemes focusing
on association rules, frequent patterns, sequential patterns,
clustering, and classification have been successfully used on

P1

DB1 DB2 DBd

P1 P1

Sensor 1 Sensor 2

(Cluster Head)

sisi

si+1

si+2

sisCH

si+1

si+2

Sensor c

Sensor 3

Pattern
 summarization

DSP
generation

Initial
sensor pattern

Processed
by each sensor

 processor

Data acquisition
and preparation

(Event detection
 sensor pattern)

} at
 e

ac
h
 s

en
so

r

Fig. 1. The concept of DPminer showing interactions between sensors and
their cluster head (CH) in generating a sensor pattern.

sensor data. These mining schemes are usually centralized and
computationally expensive, and they focus on disk-resident
transactional data. A decent number of data mining algorithms
have been developed with less computational complexity [3],
[7]–[9], and the process of forming patterns and producing
association rules is straightforward. Metrics, rules, binary
patterns, and frequent patterns are often used as indicators
to find interesting knowledge.

Through observation, we discover that many of the indica-
tors do not reflect meaningful information of a physical event,
particularly in those applications that urgently require prepro-
cessed data after there is an event detection indicator. We
select three types of IoT data mining algorithms (associations
rule based [5], associated-pattern based [7], and confidence
metric-based [9]), and verify them with real datasets. We find
that the communication energy cost with those algorithms is
significantly high, though they often fail to detect an event.
Thus, these algorithms are not directly applicable to the event
detection due to resource constraints in networked systems
(communication, computation, bandwidth), and the large-scale
network deployment.

In this paper, we present a comprehensive sensor data
mining framework for event detection in IoT named DPminer
which functions in a distributed and parallel manner (data

in a partitioned database processed by one or more sensor
processors). It is able to extract a pattern of sensors that may
have event information with a low communication cost. The
main concept is illustrated in Fig. 1. Each partition contains
a set of data acquired at the current time slot, which we call
Cases. From Cases, a sensor mines different values/items and
different rates of frequencies of these values, and puts in a
database partition. Besides, the sensor maintains a Controls
database/dataset that contains ranges of data (to compare with
the data in Cases) and is defined by the event intensity in a
specific application. Based on the event intensity, the sensor
calculate a data pattern.

A cluster of sensors shares data patterns so that each
individual sensor can calculate a sensor pattern. The sensors in
a cluster coordinate with their cluster head (CH), and together,
they develop a differential data pattern tree structure, called
DP-Tree in a distributed and parallel manner for data mining.
The CH, along with its sensors, finds an initial differential
sensor pattern (DSP) via the DP-Tree. After mining all initial
DSPs, the CH provides a confirmed DSP that can ensure
whether an event has occurred around some sensors or the
cluster, even offering a value (e.g., eV > 1) as the event
indicator.

In DPminer, the sensors which are not in a DSP are
dropped with their data from further pattern mining, thereby
reducing the communication cost. Instead of finding binary
frequent patterns, we find sensor patterns that come from the
consideration of different rates of frequencies and values in the
Cases and Controls. Generating such a DSP from a network
can be very useful in a wide range of applications that require
fine-grained monitoring of physical environments.

The major contributions of this paper are four-fold:
• We define a new type of data pattern mining for sensors in

IoT, DSP, which discovers the sensors that contain event
detection information. We design DPminer to generate
the DSP for event detection.

• We propose a simplified “data preparation” algorithm,
which is the first-stage data mining algorithm used to
prepare the data for a tree structure in the network.

• To generate a DSP, we devise a DP-Tree that is developed
on a sensor partitioned database in such a way that data
in each sub-database can be processed by one or more
sensor processors in a distributed and parallel manner.

• Finally, we validate DPminer in extensive simula-
tions. We provide trade-off between sensor energy costs
for communication and computation for event detection
through sensor data mining in IoT. We have found that
DPminer achieves a superior performance in terms of
both communication cost and detection quality compared
to existing data mining schemes.

This paper is organized as follows. Section II reviews
related work. We formulate our problem in Section III. Section
IV explains the DPminer framework. Section V presents
the data preparation algorithm. Section VI develops DP-Tree
and analysis. Evaluation through simulations is conducted in
Section VII. Finally, Section VIII concludes this paper.

II. RELATED WORK

There are various data mining techniques outlined in the
literature, including frequent patterns, sequential patterns,
clustering, and classification. They already address numerous
issues in data mining including execution time, complexity,
and rule or query processing needed to mine stored (static)
and/or stream data [3]–[6], [9], [10].

In the recent decades, mining association rules have been
used in transactional databases. Recently, they have been
applied to data mining schemes in sensor networks. Mining the
associations among sensor values that co-exist temporally in
large-scaled WSNs and mining spatial temporal event patterns
from sensor data are proposed in [9], [11]. A behavioral pattern
named Target-based Association Rules (TARs) for point-of-
coverage in WSNs which aims to discover the correlation
among a set of targets monitored by a WSN and uses confi-
dence metrics is proposed [9]. In TARs, every sensor maintains
an additional flash memory that increases the deployment cost.

An interesting data mining technique in wireless ad hoc
networks uses a tree-based structure called Positional Lexico-
graphic Tree (MAR-PLT for short) to mine association rules in
which the event-detecting sensors are the main objects [5]. It
follows a FP-growth-like pattern growth mining technique, but
the two database scanning requirements and the extra MAR-
PLT update operations during mining limit efficient use of
this technique in handling WSN data. Association rules-based
growth trees do not show satisfactory performance in WSNs
in terms of communications.

A method which captures association-like co-occurrences
as well as temporal correlations (linked with such co-
occurrences) is used to mine associated patterns from sensor
data streams [7]. A regular frequent pattern is proposed to
find frequent sensor patterns that occur after a certain interval
in the sensor database. Most of these techniques consider
a binary (0/1) occurrence of the patterns in the database.
Binary value (0/1) is also used for frequent pattern association.
Such a binary occurrence or pattern association may fail
to detect events in practice. In addition, they still require
significant communication costs in terms of excessive message
transmission in the WSN. Also, there is a lack of analysis of
the costs in WSNs.

We observe that current data mining schemes using associ-
ation rules, associated pattern, data clustering, and so on do
not show satisfactory performance in terms of communication
and event detection in sensors of IoT. These issues have not
been specifically addressed before. Our framework DPminer
is an attempt to overcome these shortcomings while detecting
an event through a DSP.

III. DIFFERENTIAL SENSOR PATTERN MINING

In this section, we describe both the network model and data
mining techniques. Then, we define the problem of DPminer.

Let us consider a hierarchical network with a large set S of
m sensors which is to be deployed for a particular monitoring
application of IoT, such as SHM, S = {s1, s2, . . . , sm}.
The sensors are randomly deployed in the sensing area,

TABLE I
SYMBOL DEFINITION

Symbol Definition
D Differential sensor patter (DSP)
F, V data frequency, data value, respectively
rf & mv rate of frequencies & median values, respectively
Ss subset of sensors
Hh set of tuple (h = 1, 2 . . . , n)
Ftk (si, Hh) rate of frequencies in Hh of the ith sensor
Ftk (Hh) total frequencies in Hh

Ftk (Hh)rf total rate of frequencies in Hh of a DBi

Ftk (Ss, Hh)Ss rate of frequencies in Hh of Ss

Ftk (Ss)rf rate of frequencies in Hh of Ss in DBi

Vtk (Ss)mv median values in Hh of Ss in DBi

eV > event indication based in on values
eF > event indication based in on frequencies

and they are self-organized into clusters using a clustering
algorithm [12]–[14]. The underlying principle of data mining
in DPminer involves starting from simple in-network data
mining at sensors (say data preparation) to fair regional
complete pattern mining at intermediate sensors (e.g., cluster
heads: CHs) and finally through to global base station (BS).

We assume that the whole event detection time (Qw) is
divided into Q periods. Each period includes further q slots,
i.e., {t1, t2, . . . , tq} such that tk+1-tk = τ , which is the length
of each time slot. We assume that a sensor database DB can
be partitioned into d sub-databases, i.e., DB1, DB2, . . . , DBd.
One of the sub-databases (e.g., DB1) of a sensor contains
prepared data that is collected in period Q (refer to Fig. 2(i)).
This arriving dataset is a large dataset which we call Cases.
Other sub-databases are shared with the neighbors in a cluster.

Each sensor mines both different values/items (V) and
different frequencies (F) of these values from Cases and de-
termines a set of tuples within time slot tk. Here, we maintain a
Controls database/dataset which contains the healthy data (for
comparison with the data in Cases). If there is an event, each
tuple may have frequent values with higher event intensity
information (see Fig. 2(ii)). This can be determined through
comparison with data in Controls. In Cases, a set of tuples
denoted by Hh(h = 1, 2 . . . , n) is defined as a subset of data
(frequencies and values) of a particular sub-database. From
Cases, we first find a rate of frequencies (rf) and median
values (mv) in Hh, a subset Ss of sensors, and DBi.

Let Ftk(si, Hh) be the rate of frequencies in Hh of the ith
sensor. For example, A = 3 in Fig. 2(v), i.e., a value within
label A has been seen three times in Hh. Toward the DSP
generation, we first need to define the rate of frequencies and
total values in a set of set acquired data.

Definition 1 [Ftk(Hh)]. The rate of frequencies in a set of
tuple Hh represents the total frequencies in Hh; it is given by
the following equation:

Ftk(Hh) =
∑

si∈Hh

Ftk(si, Hh) (1)

In Fig. 4, Ftk(H1)=Ftk(s1, H1)+Ftk(s3, H1)+Ftk(s4, H1)+
Ftk(s6, H1) + Ftk(s9, H1) = 3 + 2 + 3 + 1 + 1 = 10.

Definition 2 [Ftk(Hh)rf]. The total rate of frequencies that
carry event information in all tuples of a DBi is given by the
following equation:

Ftk(Hh)rf =
∑

Hh∈DBi

Ftk(Hh) (2)

In Fig. 4, Ftk(H1)rf = 10 + 13 + 16 + 8 + 12 + 16 = 75.
Assume that a subset Ss of sensors is working in a cluster.

Then, the following equation gives the rate of frequencies in
Hh:

Ftk(Ss, Hh)Ss =
∑

si∈Ss

Ftk(si, Hh) (3)

For example, Ftk((s2, s3, s5), H2)Ss = 1 + 3 + 2 = 6 in Fig.
4. We then calculate the rate of frequencies in all of tuples of
Ss in DBi as follows:

Ftk(Ss)rf =
∑

Si∈DBi

Ftk(Ss, Hh). (4)

Similarly, the total median values in all of the tuples in a subset
Ss of sensors in DBi can be calculated by the following:

Vtk(Ss)mv =
∑

Hh∈DBi

Vtk(Ss, Hh) (5)

In Fig. 4, Vtk(s2, s3, Hh)mv = Vtk(s2, s3, H2)mv +
Vtk(s2, s3, H6)mv = (3.4 + 4.6) + (6.3 + 8.3) = 22.6.

Once we have a subset Ss of sensors’ frequencies and values
in DBi, we can find the DSP by ordering the sensors based on
a differential data tree structure (called DP-Tree). This tree is
structured by each sensor, but its structural process requires the
participation of both neighboring nodes and CH in a parallel
and distributed manner. Vtk(Ss)mv and Ftk(Ss)rf are some
possible criteria for developing a DP-Tree structure. Finally,
a sensor pattern can be generalized via the DP-Tree using its
step-by-step process.

Instead of finding a frequent sensor pattern (as is usually
done in existing schemes), sensors found in DSP denoted by
D come from the analysis of different frequencies and values
in Cases and Controls of ← Ss. It is important to note that
instead of just having a DSP, a simplified event indicator as
a differentiation may also be calculated from the sensors in a
DSP by the following:

eV =
Vtk(Ss[Control])

Vtk(Ss)
, eF =

Ftk(Ss[Control])

Ftk(Ss)
(6)

An event can be said to be present in the application
environment if both eV > 1 and eF > 1. Otherwise, event
information is said to be absent based on the collected data.

The differential pattern D in DBi can be defined by the
differences between Cases and Controls in terms of prepared
data values and rates of frequencies in all sets of tuples
in DBi, i.e., diff (D,DBi) = |{Hs(Hh, Ss)|D ⊆ Ss}|. A
pattern D is said to be a DSP if diff (D,DBi) ≥ min diff,
where min diff is a user-given minimum support parameter in
percentage of DBi size in terms of size (Hs) of tuples.

Our problem is to find a D of sensors (that may report an
event of interest) by mining all sets of Hh of each sensor in

a cluster in a distributed manner such that a CH can finally
decide whether an event has occurred in the area and report
to the BS. Our objectives are to reduce the communication
cost of the wireless sensor and to provide high-quality event
detection.

IV. DPMINER : A DISTRIBUTED DATA MINING
FRAMEWORK FOR WIRELESS SENSOR IN IOT

In this section, we present the DPminer framework. It
includes a step-by-step process for finding a differential sensor
pattern (DSP) in a distributed and parallel manner.

To mine data parallelly in sensors means that mining tasks
are performed concurrently in multiple processing nodes,
a process referred to as “auto-palatalization.” However, the
term “distributed” is usually associated with data mining of
geographically-distributed datasets and is not concerned with
computational scalability. The data can be partitioned into
smaller subsets/sub-databases, and it is distributed to multiple
processors [15].

Using the idea above, we consider DPminer as a parallel
and a distributed memory-shared data mining framework for
event detection in a IoT. Regarding our network model, we
consider the sensor of IoT as a distributed system of m pro-
cessing nodes that are collectively responsible for mining the
whole prepared dataset. Each processing node is comprised of
one or more processors, local memories, and limited resources,
including energy. For memory sharing and processing the data
on a share-basis, we also consider that a sensor database
(DB) is horizontally divided into n non-overlapping partitions
(where n is the number of neighboring nodes of sensor si).
In that way, a processor of the ith sensor si processes almost
an equal number of tuples (including different frequencies and
values). Thus, we can have the DB in DB1, DB2,. . . , DBd.
We assume that each partition/sub-database is assigned to a
sensor process, i.e., DBi is assigned to sensor si. The example
database where the dataset is partitioned into several parts can
be seen in Fig. 4; each is assigned to a processor (e.g., P1).

A CH can have some additional capacity besides its regular
data mining tasks. It is responsible for performing extra
sequential steps, and any of the processors can be allocated
to do these tasks. This processor is called a CH/master
processor PCH while every other sensor’s processor is called
a local processor. The following key information is required
to identify a DSP in a parallel and distributed environment.

Definition 3 [Ftk(Ss)lrf] The total rate of frequencies in
all sets of tuples of a subset Ss of sensors that may carry event
information at tk is the sum of frequencies in all the tuples of
the local partition DBi. It is given by the following:

Ftk(Ss)lrf =
∑

Ss⊆Hh∈DBi

Ftk(Hh)lrf (7)

For example, Ftk(s3, s5, s7)lrf= Ftk(H2)lrf = 13, as shown
in Fig. 4. This is because {s3, s5, s7} appears only in H2 in
the local partition P1. Similarly, the total median value is, for
example, Vtk(s3, s5, s7)lmv= Ftk(H2)lmv = 40.4.

Definition 4 [Ftk(Ss)grf] The total rate of frequencies in
all sets of tuples Ss is the sum of frequencies in all the tuples
of the global DB, and it is given by the following equation:

Ftk(Ss)grf =
∑

Ss⊆Hh∈DB

Ftk(Hh) (8)

For example, Ftk(s3, s5, s7)grf = Ftk(H2) + Ftk(H21) +
Ftk(H22) = 13 + 10 + 17 = 40, as shown in Fig. 4.
This is because {s2, s3, s5, s7, s8} appears only in H2 in
the ith local partition DBi. Similarly, the total median value
is Vtk(s3, s5, s7)lmv = Vtk(H2) + Vtk(H21) + Vtk(H22) =
40.4 + 39.9 + 67.3 = 147.6.

For identifying a DSP in parallel and distributed sensors of
IoT, DPminer executes the following steps.

Step 1. Sensor si carries out “data preparation” based on
its acquired data and puts the prepared data into its DBi.

Step 2. si scans the local database DBi only once, and it
develops an initial local DP-Tree structure. It maintains DP-
Tree locally and puts the values of Ftk(Ss)lrf and Vtk(Ss)lmv

in ith sensor si’s header table dentoed by si(SH). It then
transmits it to the CH.

Step 3. The CH sensor sCH maintains a global table
si(GSH) by accumulating all values of Ftk(Ss)lrf and
Vtk(Ss)lmv and then broadcasts the si(GSH) table to si.

Step 4. si develops a DP-Tree, according to the descending
order of Vtk(Ss)lmv . It then applies a compression technique
to locally reconstruct DP-Tree.

Step 5. Sensor si calculates initial DSP and then sends to
the sCH . This DSP can be an indicator of which are the subsets
of sensors that have event information.

Step 6. Finally, sCH receives all the initial DSPs from all
sensors and mines them, generating a final DSP.

V. DATA PREPARATION: THE 1ST STAGE DATA MINING

In this section, we present data preparation algorithm needed
towards DP-Tree development for event detection.

Acquired data from sensors often contains a large amount
of redundancy, noise, and outliers for various reasons [3]
separating out actual data from the acquired data is a rigorous
task. There are various types of data extraction algorithms,
cleaning methods, outlier detections, and data predictions that
can help with this task using them, there is a risk of missing
important data. Instead, in DPminer local data preparation is
provided.

The idea behind the data preparation is to reduce additional
data transmission and interactions by mining data, and therein,
to reduce the communication cost. In the beginning of the
system operation, the data preparation process diffuses the
mining parameters from the BS to all nodes, and if there is a
DSP, request the DSP as the event information (see Algorithm
1 for steps). These parameters include Q and tk with slot
length τ . Upon the returned message reception, the BS sets
both its time slot and its time for data collection. This is highly
important for synchronized data acquisition [16].

Upon receiving the mining parameters, sensor si executes
commands, including timing and clustering. It also sets its

H1 A B B C A B C D B A B D D C B B

B A B C C A B D A E C A B A B A

A B B A C B B A F D A A B B B E

… … … … … … … … … … … … … … … … …

d1 0.05685 0.18652 0.12451 0.21546 0.06592 0.18652 …

d2 0.12596 0.01256 0.12981 0.26451 0.29865 0.08289 …

d3 0.01652 0.16029 0.17045 0.01421 0.02429 0.19077 …

… … … … … … … …

Labeling Values

A=3 B=7 C=3 D=3

A=6 B=5 C=3 D=1 E=1

A=5 B=7 C=1 D=1 E=1 F=1

TA=14 TB=19 TC=7 TD=5 TE=2 TF=1

Rate of Frequencies FA=3 FB=3 FC=3 FD=3 FE=2 FF=1

Total values

Sensor s1
Acquired data at t1(i)

(iv)

(v) (vi)

(iii)

Calculating Frequencies

H2

H3

F
t1

={3,3,3,3,2,1}

Tmv= 8.5

Rate of Frequencies,
Total average values,

 Data ranging(ii)

0.00 0.09 0.10 0.19 0.21 0.29 0.31 0.39 0.41 0.49 0.51 0.59 0.61 0.69 0.71 0.79 0.81 0.89 0.91 1.00

low event intensity low event intensity high event intensity

F=0.55 G=0.65 H=0.75 I=0.85 J=0.95

low to high event intensity

A=0.05 B=0.15 C=0.25 D=0.35 E=0.45

Summarization

Fig. 2. The process of data preparation from refined data in sensors of IoT.

Algorithm 1: Network Interaction and Data Collection

The BS:
Broadcast (Q,Qw, τ , clustering, DB partitioning, min dif)
Upon receiving returned messages

for each tk(tk = 1 to Qw
τ)

I ← set sensors’ identifiers within the same time slot
U ← (tk, I)
Insert (U,DB)

Node si: (Upon receiving mining parameters)
for each ith node si of the IoT

Communicate with the neighbors and organize into clusters
tk = 1
t← current time (tc)
While tc ≤ Qw − t

If (tc ≤ t+ (tk × τ))
Perform DB partitioning
Acquire data and buffer
Call Algorithm 2 at tk for data preparation

else
tk++

DBi. We assume that data mining can be performed at each
time slot (i.e., close to process as the data arrives). When
a set of data is acquired, data preparation starts. Algorithm
2 is presented for data preparation and its corresponding
illustration is shown in Fig. 2. After data acquisition, si stores
the set of data into its DBi: Cases dataset. A partial set of
data can be seen in Fig. 2(i). Then, si performs a proportion
test to refine the acquired data.

Proportion Test. As part of the data preparation algorithm,
we perform a proportion test [17] (i.e., to check whether
the collected data is within a given range or not). We then
configure a simplified dataset Controls. It includes (i) a set of
ranges to classify the acquired data in order to find frequencies
and simplified values and (ii) a set of tuples with different
frequencies and values defined/collected that can be defined
by the healthy data (when there is no event in an application).
The ranges are set between 0.01 and 1. Note that these ranges
can be different for different applications due to the nature of
sensor data, their special characteristics, as well as the intensity
of an event required in a particular application.

Through the proportion test, a significant amount of unnec-

Algorithm 2. Data Preparation

for each node si
Pass the acquired data through the ProportionTest
Classify and label all the data according to the ranges

(see Fig. 2(ii) and 2(iii))
Calculate frequency and value set
Make a summary of the total frequencies and values

essary, irregular, or null data (i.e., the data having no relation
to event information, not indicate the data in Controls) can
be reduced. Although the proportion test helps to reduce
irregular data, we still need redundant/duplicate data for event
detection so do not skip them. The proportion test establishes
a data pattern by comparing close frequencies and values
between Cases and Controls (Hin : πCase = πControl vs
Hout : πCase ̸= πControl, where Hin and Hout denote the
frequencies and values that are ‘in’ the range and ‘out’ of the
range, respectively). We denote the frequencies in the union
of Cases and Controls by π. In the following equation,
pCase, pControl, and p are estimates of πCase, πControl and
π, respectively. Then, we have,

z =
pcase − pcontrol√

p(1− p)(1
πcase

+ 1
πcontrol

)
. (9)

Under the null hypothesis of no difference in values, the
square of the statistic z2 follows the Pearson’s chi-squared
test [18]. In Fig. 2(iii), we have the label for the data for sets
of tuples Hh. Based on this tuple set, every sensor calculates
the total values and frequencies that are used in the DP-Tree
development, as shown in Figs. 3(v) and 3(vi) .

After the data preparation, we can begin the second stage
of the mining process which we call DSP mining process,
each sensor represents itself with different data frequencies
and values (instead of ‘0/1’ values).

VI. DSP MINING THROUGH DP-Tree DEVELOPMENT

This section studies data mining in sensors of IoT through
DP-Tree development, and generates a differential sensor
pattern (DSP), and shows the event detection through the DSP.

Qi t k Sensor Tuple Frequency rate Average values Total values Partition

Q1 t 1 s1 , s3, s4,s6, s9 3,2,3,1,1 8.5,12.3,4.6,16.2,7.2 48.8

t 2 s2, s3,s5, s7,s8 1,3,2,4,2,1 3.4,4.6,8.9,11.5,12 40.4

t 3 s1, s2,s5, s6,s8,s10 1,3,2,4,2,1,3 7.9,5.9,8.1,4.9,13.9,14.1 54.8

… … … …

t 10 s3, s4,s6, s7 2,3,1,2 8.9,7.9,16.1,15.6 48.5

t 11 s1, s4,s5, s7,s8, s9 3,2,1,1,2,3 5.6,7.9,12.3,13.6,4.6,5.6 49.6

t 12 s2, s3,s4 ,s6,s7,s8,s9 2,4,2,1,1,2,1,3 6.3,8.3,13.9,8,5.9,7.1,52,12.1 113.6

… … … … …

… … … … …

P1

P2

(H) h

4,3,2,1 9.7, 13.2, 9.8, 7.2s3, s4,s5, s7

s1, s3,s5, s7,s8 5,2,3,3,5 7.2,7.1,14.2,14.1,16.4,8.3

6.2, 12.6, 9.5, 4.5, 14.2, 11.2s1, s2,s4, s6,s8 6,1,4,2,2,1

67.3

58.2

39.9t 21

t 22

t 23

… … … … …Q2

,s10

,s9

(DB
1
)

(DB
2
)

Fig. 3. A sensor DB with sensor data values, sensor tuples, and each DB partition corresponding to a processor.

A. DP-Tree Development
We devise a data mining tree structure (called DP-Tree) on

a partitioned database DBi for generating a DSP. Each si
maintains a DP-Tree to mine the pattern. The tree structure is
composed of two segments: insertion segment and restructur-
ing segment. Insertion segment arranges local DBi contents
into the tree, while restructuring segment restructures the tree
into descending order.

1) Insertion Segment: We consider DBi as shown in Fig.
3. We also consider that si can have two or more processors
P1 and P2. In Fig. 3, the rows corresponding to P1 mean that
these rows are within DB1. If si first has only one process,
and the parts of its data (if any remain) may be processed by
another processor of its own, or a neighboring sensor which
is free of tasks at the time slot. ith DBi is assigned to the
ith respective processor, as shown in Fig. 3. si develops the
insertion segment of DP-Tree in parallel.

The step-by-step development processes of DP-Tree (with
the corresponding representation in Fig. 4) is as follows.

Step 1. The DP-Tree is initialized with developing ith sensor
si’s header table, denoted as si(SH)0. Initially, it is empty
(having a ‘null’ value), as shown in Fig. 4(i). This is because,
the table for the tree is made empty after a period of event
detection operation. However, the sensor pattern tuples can be
kept for further analysis with additional space adjustment.

Step 2. In table si(SH)1 as shown in Fig. 4(ii), the rows are
allocated for the neighboring nodes. This is arranged according
to the lexicographic order of sensor identifiers (i.e., s1 > s2 >
, . . . , sm. Here, ‘>’ implies the order of sensor ranks). The
table is built by inserting every tuple into the DBi one after
another (see [5] for the lexicographic order). See Fig. 4(ii) for
sensor ordering.

Step 3. All the tuples in each ith DBi are inserted into the
respective DP-Trees, following the sensor order. As shown in
Fig. 4(iii) and Fig. 4(iv), the lmv values of Vtk(Hh)lmv and
the lrf values of Ftk(Hh)lrf are calculated (refer to Fig. 2
for example prepared data) and inserted into tables si(SH)2

and si(SH)3, respectively. These are processed by processor

P1 and P2, respectively. In Fig. 3, it is seen that si(SH)2

and si(SH)3 are complete representations of sensors DBi,
and si(SH)2, and si(SH)3 are constructed by lmv and lrf .
Step 4. After the insertion segment ends, the restructuring
segment begins. The goal of these segments is to achieve
a highly compact DP-Tree, which will utilize less memory.
The processor PCH of a corresponding CH calculates the
Vtk(Hh)gmv and Ftk(Hh)grf values for each sensor processor
which is available at each sensor’s table si(SH)3. This is a
relatively small sequential step and sCH performs this task.
Table sCH(GSH) contains these values.

Step 5. When PCH finishes the calculation of all
Vtk(Hh)gmv and Ftk(Hh)grf values, it then sorts the sensors
in table si(GSH) according to the descending order of gmv
values (called si(GSH)des) as shown in Fig. 4(vi).

Step 6. CH sensor iCH then broadcasts si(GSH)des to
all of its sensors so that each sensor processor Pi facilitates
restructuring as well as mining phases. si is enabled to merge
sort to put the tree structure according to Vtk(Hh)gmv . For
restructuring si(GSH)des to have the DP-Tree, a branch
sorting method (BSM) is used [19]. BSM uses the merge
sort to sort every path of the prefix tree. This approach first
removes the unsorted paths, then sorts all the paths, and finally
reinserts them into the tree. At this stage, a computationally
inexpensive but effective compression process is employed.
This puts the sensors with the same values of Vtk(Hh)mv in
each branch of the tree and merges them to a single node. The
final DP-Tree, after restructuring and compression, is shown
in Fig. 4(vii), after having changed from Fig. 4(i) to 4(ii) and
from Fig. 4(vi) to 4(vii), respectively. Due to space limitations,
we ignore further analysis of the mining process by the DP-
Tree.

Based on the two segments of tree structure above, si first
generates an initial DSP. If there is no event detected, DSP can
be empty, i.e., D = {}. ith sensor then forwards the DSP to
its CH. The CH receives all such patterns from sensors, mines
the patterns, and then finally generates a DSP that may convey
event information. If the system user wishes, the CH can be

s i (SH)0

{}

{} s i (SH)1

s 1

s 2

s 3

s 4

s 5

s 6

s 7

s 8

s 9

s 10

s i

s 1 152.8 38

s 2 267 45

s 3 187.3 47

s 4 210 46

s 5 14.8 41

s 6 265.8 50

s 7 272.1 41

s 8 144.8 57

s 9 212 38

s 10 54.8 16

{} s i (SH)2
{}

s1: 152.8 s2: 267 s3:48.5

s4:49.6 s3:48.8 s2:54.8 s3:40.4 s3:113.6 s4:48.5

s5:49.6 s4:48.8 s5:54.8 s5:40.4 s4:113.6 s6:48.5

s7:49.6 s6:48.8 s6:54.8 s7:40.4 s6:113.6 s7:48.5

s8:49.6 s9:48.8 s8:54.8 s8:40.4 s7:113.6

s9:49.6 s10:54.8 s8:113.6

s9:113.6

s 1 125.3 34

s 2 58.2 16

s 3 67.3 34

s 4 98.1 28

s 5 67.3 28

s 6 58.2 18

s 7 107.2 18

s 8 39.9 34

s 9 39.9 10

s 10 58.2 16

s i (SH)3

Vt
i
(S s)lmv Ft

i
(S s)lrf Vt

i
(S s)lmv Fti (S s)lrf

s1:67.3 s3:39.9

s3:39.9

s2:67.3

s4::39.9

s5:39.9

s4:67.3

s5:39.9

s7:39.9

s7:67.3

s7:39.9

s8:39.9

s8:67.3

s9:39.9s10:67.3

{}s i

(i)
Sensor

header table (ii) Initial DP-Tree0 (iii) DP-TreeP1 for processor P1 execution (after inserting values from all tuples) (iv) DP-TreeP2 for processor P2 execution

s i

s 1 152.8 125.3 278.1

s 2 267 58.2 325.2

s 3 187.3 67.3 254.6

s 4 210 98.1 308.1

s 5 14.8 67.3 82.1

s 6 265.8 58.2 324

s 7 252.1 107.2 359.3

s 8 144.8 39.9 184.7

s 9 212 39.9 251.9

s 10 54.8 58.2 113

(sCH GSH)

Vt
i
(S s)lmv Vt

i
(S s)lrf Vti (S s)gmv s i

s 7 252.1 107.2 359.3

s 2 267 58.2 325.2

s 6 265.8 58.2 324

s 4 210 98.1 308.1

s 1 152.8 125.3 278.1

s 3 187.3 67.3 254.6

s 9 212 39.9 251.9

s 8 144.8 39.9 184.7

s 10 54.8 58.2 113

s 5 14.8 67.3 82.1

(GSH)des

Vt
i
(S s)lmv Vt

i
(S s)lrf Vt

i
(S s)gmv

{}

{s4,s1,s9,s8,s5}: 49.6

{s2}: 153.8

{s6,s4,s3}: 48.5

{s3,s8,s5}: 40.4 {s6,s4,s3,s9,s8}: 113.6

{s7}: 252.1 {s6,s4,s1,s3,s9}: 48.8

{s2,s6,s1,s8,s10,s5}: 54.8

(v) DP-TreeG
 gathered at the CH

(vi) DP-TreeGDes

 arranged at the CH
(vi) DP-TreeR executed by CH’s processor
 for sensor processor P

1

(vii) DP-TreeR executed by CH’s processor
 for sensor processor P

2

sCH {}

{s1,s3,s8,s5}: 67.3 {s4,s3,s9,s5}: 39.9

{s7}:107.2 {s6,s4,s1,s8,s10}: 58.2

Fig. 4. Distributed and parallel development of DP-Tree in sensors of IoT.

enabled to provide a value as an event indicator, which can be
calculated by the combination eV and eF . If (eV + eF) > 1,
an event has occurred around those sensors in the DSP. In the
case of an event, the CH may request the sensors , which are
in the DSP, for the data, which are in the DSP.

B. Computation and Communication Tradeoff

Initially, sensor si has task of data preparation. Let ccr, cin,
cFtk

, and cVtk
be the computation costs of data cross-checking

with data in Controls through the ProportionTest, refined data
insertion, total frequencies, and values computations. Then, the
total computation cost for data preparation is Cdp = ccr+cin+
cFtk

+ cVtk
. We have DBi of sensor si. Let V and F be the

total number of values and frequencies in DBi respectively.
Assume that the average computation costs to scan one tuple
from DBi and to insert it into the DP-Tree are cS and cI ,
respectively. Therefore, the total cost to scan all tuples from
DBi and insert them into the DP-Tree is Cc = V ×F × (cS+
cI). The total cost for the CH is Ch = cGSH + cdesGSH + cmine

for tasks in tables sCH(GSH) and sCH(GSH) and in DSP
mining. Ca = cm + cBSM + cPi is the extra computation
cost required for merge sort cm, BSM sort (cBSM), and initial
sensor pattern generation (cPi). The total computation cost for
DP-Tree and the DSP generation is given by:

CT = Cdp + Cc + Ch + Ca (10)

The communication cost in the sensor of IoT. Recall
that DP-Tree in DP-miner functions in a cluster. We first
find cluster-wise energy costs for communication. Assume a
cluster denoted by Sc contains a total of ni sensors. Then, the
total energy in a cluster, denoted by cost(Sc), is given by the
following:

cost(Sc) = X ·eT+(ni−1)X ·eR+(ni−1)
nt

2
(eT+eR) (11)

where eT and eR are the energy costs for transmitting and
receiving X data and nt is time length. The first two terms
at the right side of (11) are , respectively, the energy costs
required when a CH broadcasts its time data to its sensors
or the BS, and when all the sensors receive the broadcasts,
respectively. The last term is the energy consumption when
the (ni−1) sensors in the cluster transmit back their response
(including connection establishment), table data transmission,
sensor pattern transmission, and all data transmission if it is in
the DSP; a CH may receive the request for data transmission.

From (11), we can get cost(ni) = cost(Sc), indicating that
the energy consumption of a cluster is only associated with ni

sensors in a cluster. When m sensors are partitioned into equal-
sized clusters of size l, then the number of clusters isz = m/l.
The optimal cluster size [12] can be obtained by looking for
l that minimizes the average energy cost per node, defined
thusly:

100

0

300

500

700

900

0.5 1.5 2.0 2.5 3.0 3.5 4.0

100

0

300

500

700

900
C

o
m

p
u
ta

ti
o
n
 t

im
e

(m
s)

C
o
m

p
u
ta

ti
o
n
 t

im
e

(m
s)

min_diff
2 4 6 8 10 12

ni (sensors in each cluster)

Intel Dataset

TARs

SHM Dataset

DPminer

MAR-PLT
TARs

DPminer

MAR-PLT

Intel Dataset

TARs

SHM Dataset

DPminer

MAR-PLT
TARs

DPminer

MAR-PLT

(i) Computation time vs. min_diff (ii) Computation time vs. ni

Fig. 5. Average computation time in different network data mining schemes
for executing to the GNTVT SHM dataset and Intel dataset.

Cost(si) =
z.cost(l)

m
+

1− l/m

l − 1
κ (12)

where κ is a constraint on the overlapping sensor nodes in the
cluster [12].

VII. PERFORMANCE EVALUATION

A. Methodology
We evaluate the performance of DPMiner and its DP-Tree

development for a DSP generation. The objective is to verify
its ability in terms of communication and computation cost,
and the quality of event detection. We conduct an extensive
set of simulations for the mining process using DP-Tree.

We consider two sets of large datasets for the evaluation, and
we evaluate the performance of DPminer in heterogeneous
sensors in IoT. The first dataset containing real sensor data
is from the Intel Berkeley Research Lab [20] and has been
widely used [5]. This consists of tuples from 54 sensors and
84600 time slots (one month). The second dataset we used
is collected by an SHM system deployed on the Guangzhou
National TV tower (GNTVT) [21]–[23]. It consists of a set
of 800 wired acceleration sensors data, collected in 273000
time slots. However, to see the DSP mining performance in
sensors of IoT, we consider the GNTVT SHM dataset in the
200-sensor case.

Considering recent advancements of IoT, as modeled before,
we consider that some sensors could have greater memory and
more processors than others. Each DB is distributed among the
sensors, and the processor in the node has complete access to
its portion of the database. Simulations are performed with
Omnet++ simulation tool within a 50m × 500m rectangular
field, taking into account the SHM environment, e.g., a high-
rise building, bridge, aircraft, etc. The hardware constants
for the processor and transceiver are from the Intel Xscale
PXA271. The Imote2 uses a CC2420 radio chip for wireless
communication. We model each sensor with six discrete
power levels in the interval {-10dBm, 0dB}. We adopt similar
configurations from an improved log-normal path loss model
[24] and a synchronized data collection method [17] only for
data forwarding. For the sake of convenience, we normalize
the communication cost from 0% to 100%.

For observing the presence of an event, we consider the
GNTVT SHM dataset and give different levels of event

3 41 2 5 6 7 8 9 10 11 12 13 14

0.1

0

0.3

0.5

0.6

C
o
m

p
u
ta

ti
o
n
 e

n
er

g
y
 c

o
st

 p
er

 s
en

so
r

Number of sensor in clusters in the WSN

(i) Computation energy in different schemes

TARs

SHM Dataset

MAR-PLT

DPminer

3 41 2 5 6 7 8 9 10 11 12 13 14

0.1

0

0.3

0.5

0.6

C
o
m

p
u
ta

ti
o
n
 e

n
er

g
y
 c

o
st

 p
er

 s
en

so
r

Number of sensor in clusters in the WSN

(ii) Computation energy in different schemes

TARs

SHM Dataset

MAR-PLT

DPminer

Fig. 6. Communication cost in data mining in the wireless sensor: (i) in
DPminer; (ii) comparison between DPminer, MAR-PLT, and TARs.

injection (damage information) at different sensor locations
(by modifying the input signal randomly in the data sets of (5-
10)th sensors, (41-45)th sensors, (90-95)th sensors, and (170-
175)th sensors). For comparison, we consider two other sensor
network data mining schemes: MAR-PLT [5] and TARs [9].

B. Performance Results

1) Computation Cost: In the first set of simulations, we
observe the average computation time in generating a DSP in
DPminer. We gather the time for two data set computations in
sensor IoT. The total computation time is composed of the time
for data preparation, DP-Tree development (including data in-
sertion, tree restructuring, delay in data broadcasting/receiving
between the CH and sensors), and finally, DSP generation.
The results for the two data sets at their respective min diff
parameter settings (defined in Section III) are in Fig. 5(i). We
vary the min diff parameter from 1.0 to 4.0. It is found that the
computation time in DPminer is a little lower compared to
that of MAR-PLT and TARs. We note that the computational
load is almost equally distributed among all the processors
in a cluster for the two data sets. In Fig. 5(ii), it is evident
that the computation time decreases when the number of
processors increases. Importantly, the rate of decreases is faster
in DPminer than the rates found in MAR-PLT and TAR.

2) Energy Cost of the sensor in IoT for DSP Mining: Here,
we discuss the results by using the SHM dataset. The energy
cost of the sensor for communication in DPminer is shown
in Fig. 6(i). Based on parameters for sensors and clusters, we
demonstrate the communication energy cost for various cluster
sizes, when the transmission power eT is set from eT = 1eR to
eT = 6eR. This is because the communication cost dominates
the energy cost in a wireless sensor.

With the increase of sensors in clusters, the communication
cost decreases slowly at first; then, it increases speedily. Some
observations are as follows: when the number of sensors (ni)
in a cluster is small to medium (e.g, 3 to 6), the sensors have
low communication tasks for DP-Tree development; when ni

is medium to high (e.g, 6 or more), there are high commu-
nication tasks for DP-Tree development. The comparison of
different schemes in terms of communication energy cost can
be seen in Fig. 6(ii). We find that DPminer consumes a
lower amount of energy than either MAR-PLT and TARs. Both
MAR-PLT and TARs apply a lot of association rules between

3 4 5 6 7 8 9 10 11 12 13 14

-2
-3

0
-1

2
1

4
5

3

E
v
en

t
d

et
ec

ti
o
n

 i
n
d

ic
at

o
r

Event detection via DSPs in DPminer

{s
4
, s

4
}

{s
5
, s

6
, s

7
,s

8
,

s 9
, s

10
, s

11
}

{s
42

,s
43

,s
44

,s
45

,s
46

}

{s
39

, s
40

, s
41

, s
42

}

{s
8
8
,
s 8

9
,
s 9

0
,
s 9

1
,

s 9
2
,
s 9

3
}

{s
93

, s
94

, s
95

, s
9
6
}

ni (sensors in each cluster)

Fig. 7. Performance of the event detection through differential pattern mining.

sensors and interactions, and the tree development process in
them requires a significant communication cost (which is not
investigated in their works).

Due to space constraints, we omit the analysis of compu-
tation energy cost. In an observation, we find that both the
computation and communication energy costs are steady at
first and then gradually increase when the size of DP-Tree
increases. With similar computation energy costs, DPminer
significantly reduces the communication energy cost in data
mining compared to both MAR-PLT and TARs.

3) Performance on the Event Detection: Finally, we report
an interesting result about event detection performance in
DPminer regarding the situations of event detection in AR-
PLT and TARs. Recall that we have provided event informa-
tion injection into some of the sensors’ data. Corresponding
clusters containing these sensors should have a DSP. Fig. 7
shows the performance on the event detection in different
clusters in DPminer. Here, a detection indicator is calculated
by average values of (eV +eF) in different time slots within a
given period of time in the wireless sensor of IoT. We find the
indicator cluster-wise since the DP-Tree is developed between
sensors in each cluster in a distributed and parallel manner.

VIII. CONCLUSION

In this paper, we have proposed DPminer, a comprehensive
data mining framework for wireless sensoring in IoT which
functions in a distributed and parallel manner and is able to
extract a pattern of sensors that have event information. It is
a unique mining framework which works on sensing actual
values and providing important values as outputs (rather than
“0/1” binary decision) for event detection. DPminer hints that
if an application user wishes to have further analysis on the
event, such outputs can be crucial. Thus, it can be useful for
many IoT applications. We have validated that with a lower or
similar computational time in generating a sensor pattern for
event detection, DPminer can significantly reduce the energy
for communication in IoT. Applying the differential sensor
mining technique with a machine-learning approach and in
big data environments will be our future work.

ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS 1449860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, and
ECCS 1231461.

REFERENCES

[1] M. Z. A. Bhuiyan, J. Wu, G. Wang, , and J. Cao, “Sensing and
decision-making in cyber-physical systems: The case of structural health
monitoring,” IEEE Transactions on Industrial Informatics, pp. 1–11,
2016, http://dx.doi.org/10.1109/TII.2016.2518642.

[2] M. Z. A. Bhuiyan, G. Wang, and A. V. Vasilakos, “Local area prediction-
based mobile target tracking in wireless sensor networks,” IEEE Trans-
action on Computers, vol. 64, no. 2, pp. 1968–1982, 2015.

[3] A. Mahmood, K. Shi, S. Khatoon, and M. Xiao, “Data mining techniques
for wireless sensor networks: A survey,” IEEE Transactions on Parallel
and Distributed Systems, vol. 2013, pp. 1–24, 2013.

[4] H. J. Woo, S. J. Shin, K. H. Joo, and W. S. Lee, “Finding context
association rules over sensor-actuator data streams,” IEEE Transaction
on Computers, vol. 62, no. 7, pp. 74–77, 2014.

[5] A. Boukerche and S. Samarah, “A novel algorithm for mining association
rules in wireless ad hoc sensor networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 19, no. 7, pp. 865–877, 2008.

[6] C. Nawapornanan and V. Boonjing, “An efficient algorithm for mining
complete share-frequent itemsets using bittable and heuristics,” in Proc.
of ICMLC, 2012, pp. 96–101.

[7] M. Rashid, I. Gondal, and J. Kamruzzaman, “Mining associated pat-
terns from wireless sensor networks,” IEEE Transaction on Computers,
vol. 64, no. 7, pp. 1998–2011, 2014.

[8] K. Romer, “Distributed mining of spatio-temporal event patterns in
sensor networks,” in Proc. of DCOSS, 2006, pp. 103–116.

[9] S. Samarah, B. Azzedine, and S. Alexander, “Target association rules: A
new behavioral patterns for point of coverage wireless sensor networks,”
IEEE Transaction on Computers, vol. 60, no. 6, pp. 879–889, 2011.

[10] S. Tanbeer, C. Ahmed, and B. Jeong, “An efficient single-pass algorithm
for mining association rules from wireless sensor networks,” IETE
Technical Review, vol. 26, no. 4, pp. 280–289, 2009.

[11] K. Loo, I. Tong, and B. Kao, “Online algorithms for mining interstream
associations from large sensor networks,” in Proc. of PAKDD, 2005, pp.
143–149.

[12] X. Liu, J. Cao, S. Lai, C. Yang, H. Wu, and Y. Xu, “Energy efficient
clustering for WSN-based structural health monitoring,” in Proc. of IEEE
INFOCOM, 2011, pp. 1–9.

[13] M. Z. A. Bhuiyan, G. Wang, J. Wu, X. Xiaofei, and X. Liu, “Application-
oriented sensornetwork architecture for dependable structural health
monitoring,” in Proc. of IEEE PRDC, 2015, pp. 134–147.

[14] M. Z. A. Bhuiyan, G. Wang, J. Cao, , and J. Wu, “Deploying wireless
sensor networks with fault-tolerance for structural health monitoring,”
IEEE Transaction on Computers, vol. 64, no. 2, pp. 382–395, 2015.

[15] F. Stahl, M. Gaber, and B. Bramer, “Scaling up data mining techniques
to large datasets using parallel and distributed processing,” in Business
Intelligence and Performance Management, 2013, pp. 243–259.

[16] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: Versatile and
efficient all-to-all data sharing and in-network processing at scale,” in
Proc. of ACM SenSys, 2013, pp. 1–14.

[17] P. Armitage, G. Berry, and J. N. S. Matthews, Statistical Methods in
Medical Research. 4th Edn: Wiley-Blackwell, 2002.

[18] 2015, https://en.wikipedia.org/wiki/Pearson’s chi-squared test.
[19] S. Tanbeer, C. Ahmed, and B. Jeong, “Efficient single-pass frequent

pattern mining using a prefix-tree,” Information Sciences, vol. 179, no. 5,
pp. 559–58, 2009.

[20] Intel lab data, http://db.csail.mit.edu/labdata/labdata.html.
[21] Http://www.cse.polyu.edu.hk/benchmark/ (last access: 2015).
[22] Y. Ni and H. Zhou, “Guangzhou new tv tower: integrated structural

health monitoring and vibration control,” in Proc. of the 2010 Structures
Congress of American Society of Civil Engineers, 2010, pp. 3155–3164.

[23] Y. Ni, Y. Xia, W. Liao, and J. Ko, “Technology innovation in developing
the structural health monitoring system for Guangzhou New TV Tower,”
Structural Control and Health Monitoring, vol. 16, no. 1, pp. 73–98,
2009.

[24] Y. Chen and A. Terzis, “On the implications of the log-normal path loss
model: An efficient method to deploy and move sensor motes,” in Proc.
of ACM SenSys, 2011, pp. 26–39.

