
QoS-aware Optimization Strategy for Security Ranking in SSL Protocol

Fang Qi
1
, Zhe Tang

1
, Guojun Wang

1, 2,
*, and Jie Wu

2

1
School of Information Science and Engineering

Central South University, Changsha, P. R. China, 410083

e-mail: *csgjwang@mail.csu.edu.cn

2
Department of Computer and Information Sciences

Temple University

 Philadelphia, PA 19122, USA

Abstract—The primary goal of the secure socket layer

protocol (SSL) is to provide confidentiality and data integrity

between two communicating entities. Since the most

computationally expensive step in the SSL handshake protocol

is the server’s RSA decryption, it is introduced that the

proposed secret exchange algorithm can be used to speedup

SSL session initialization. The optimization strategy, which is

based on the constrained model considering the user’s

requirements for Quality of Service (QoS), such as security

ranking, focuses on the optimal result in different public key

size. It is also introduced that the parameter is optimized when

integrating user’s requirements for Internet QoS such as the

stability of the system and the tolerable response time. Finally,

the proposed algorithm is evaluated to be practical and

efficient through both analysis and simulation studies.

Index Terms—Quality of Service (QoS), SSL handshake,

optimization strategy, security ranking, tolerable response time

I. INTRODUCTION

SSL protects communications by encrypting messages

with a secret key negotiated in the SSL handshake protocol

[1]. How to offer some Quality of Service (QoS) that may

be satisfied with Web users has become a new issue for

study.

SSL protocol allows the server and the client to

authenticate each other and to negotiate an encryption

algorithm and cryptographic keys before transmitting and

receiving the first byte of data [2]. However, such a protocol

needs intensive computational resource due to the cost of

public-key operations [3]. Many algorithmic approaches for

speeding up SSL’s performance on a web server are

presented in some literatures [4-9]. However, these schemes

ignore the satisfactory of the users’ requirements for QoS

such as the stability of the system and tolerable response time.

Being aware of the computational imbalance between

clients and server in the SSL handshake protocol, we

proposed a secret exchange algorithm to overcome the

problem. The starting point of the proposed scheme is a

technique due to batch RSA decryption [10]. This paper

adapts the certificate mechanism [11] so as to provide SSL

setup with unique certificate issued by Certificate Authority

(CA). This paper also proposed the constrained model

integrating user-perceived quality into secure Web server

design [12, 13]. This paper also optimizes the batch size by

the constrained model meeting the user’s requirements for

quality of service such as security ranking focusing on the

optimal result in different public key size. In addition, the

proposed scheme in this paper uses the approximate

analytical solution of mean response time to optimize the

batch size of the server. It is designed for heavily loaded web

servers handling many concurrent SSL sessions.

The rest of the paper is organized as follows. Section II

describes the secret exchange algorithm in SSL handshake

protocol. The proposed constrained model of QoS-aware

optimization strategy is presented in Section III. QoS-aware

optimization algorithm is presented in Section IV. Section V

validates the solutions through both analysis and simulation

studies and Section VI concludes the paper.

II. SECRET EXCHANGE ALGORITHM IN SSL HANDSHAKE

PROTOCOL

 The following Algorithm 1 and Algorithm 2 are secret

exchange algorithms of SSL handshake at server end and at

client end respectively. When using small public exponent

e1 and e2, it is possible to decrypt two cipher texts for

approximately the price of one [10,11]. This technology

facilitates more favorable load distribution by requiring the

clients to perform more work (as part of encryption) and the

server to perform commensurately less work, thus resulting

in better SSL throughput at the server.

Our unique certificate method is to reuse the message

ServerHello.random in the protocol (see Step 2 of

Fig.1)[11]. For simplicity, we only show the related

processes and the modified information in the standard SSL

handshake protocol.

 In the standard SSL protocol, each client encrypts a 48-

byte pre-master secret using ei as the encryption exponents,

and the server decrypts the cipher text independently so as

to get the Pre-master secret. Algorithm 1 obtains the Pre-

master secrets from multiple clients and hence improves the

performance significantly.

 Algorithm 1: Secret exchange algorithm at the server end

1. {Given b distinct and pair wise relatively prime public keys

e1,...,eb all sharing a common modulus N = pq, relatively prime

to () (1)(1)N p qφ = − − . n is the bit length of the public

modulus N and k the bit length of the bigger of ei. }

Construct a full binary tree T_d which is called

decryption tree with leaves labeled e1,...,eb;

 {Each node in the decryption tree mainly need conserve two

middle values such as exponent and ciphertext}.

2. Construct message including ei and the information ei’ about

brother’s exponent for each client, where 1 i b≤ ≤ ;

3. upon receiving the message including cipher text v’i from each

client, where 1 i b≤ ≤ ;

4. {Compute two middle values such as exponent and ciphertext at

each internal nodes of T_d repeating this computation

recursively. The number of external nodes is equal to b-1. The

computation phase is to generate the

product
/

1
modi

b e e

ii
v v N

=
= ∏ , where

1

b

ii
e e

=
= ∏ . }

For (i=1 to b-1) {

EL ←leftchild.exponent; ER ←rightchild.exponent;

Currentnode.exponent ← EL × ER;

L← leftchild.ciphertext; R← rightchild.ciphertext;

Currentnode.ciphertext← R LE E
L R× ;}

v←rootnode.ciphertext; e ←rootnode.exponent;

{The value of v and e is simply the result associated with the

root}

5. Compute 1/1/

1
mod modi

b ee

ii
m v N v N

=
← = ∏

1

b

ii
e e

=
← ∏ {m

is the ciphertext of root node of T_d.. e is the exponent of root

node of T_d.}

6. {This Step is to break up the product m to obtain the plaintexts
1/ ie

i im v= with repeating this computation recursively from

the root node. }

 For (i=1 to b-1) {

Compute X while ((X=0 mod EL) and (X=1 mod ER)==true);

 /L LX X E← ; (1) /R RX X E← − ;

 /()L RX XX

R L Rm m v v← ⋅ ; /L Rm m m← ;}

{The values of Lv and Rv are simply the results associated

with the ciphertext of node which have stored at Step 4.}

Figure 1. Secret exchange algorithm 1 at the server end

Algorithm 2: Secret exchange algorithm at the client end
1. Create plaintext mi (0<mi<N); upon receiving the message

including ei ;

Compute modie

i iv m N= .1 i b≤ ≤

2. upon receiving the message including ei’ which is the brother’s
exponent value of ei ;

 Compute
'

' modi
e

i iv v N= ;

3. Construct message including v’i , vi for server.

Figure 2. Secret exchange algorithm at the client end

III. CONSTRAINED MODEL OF QOS-AWARE OPTIMIZATION

STRATEGY

The optimization strategy which is based on the

constrained model considering the user’s requirements for

QoS such as security ranking focuses on the optimal result

in different public key sizes.

Lemma 1. Algorithm 1 can generate the b decryption

results in 2 2 21
(log (log) log)

b

ii
O b e N

=
+∑ modular

multiplications and O(b) modular divisions.

 Proof: According to Step 5 of Algorithm 1,
1/1/

1
mod modi

b ee

ii
m v N v N

=
← = ∏ , with

1

b

ii
e e

=
= ∏ , the

algorithm can get the result in 2(log)O N modular

multiplications, which is equivalent to one RSA decryption.

Using the full binary tree as a guide, working from the

leaves to the root, for constructing the serial number for

every exponent of the leaves, the binary length of the serial

number is equal to
2

log b   . In other words, the depth of

the leaves is equal to
2

log b   .

According to Step 6 of Algorithm 1, the algorithm takes

the recursive result from left child and right child, and the

result associated with this node is /()L RX XX

R L Rm m v v← ⋅ .

The computation phase is to break up the product m to

obtain the plaintexts 1/ ie

i im v= , which we wish to decrypt

simultaneously.

Note that vl and vr have already been computed and

storied, as the left and right branch values of the root, during

the tree based computation of m at Step 4 of Algorithm 1.

By definition X is the unique solution ((X=0 mod EL) and

(X=1 mod ER)= =true), Note that
2 2

log logX e< and

/L LX X E← ; (1) /R RX X E← − , we can get

2 2 2 2
log log log log

L R
X X X e+ < < with

1

b

ii
e e

=
= ∏ [10].

Because the depth of the leaves is equal to
2

log b   , for

every plaintext result 1/ ie

i im v= , every node contributes at

most
2

log b   bits to the appropriate exponents the

computation of X
m , LX

Lv and RX

Rv recursive result.

Because the binary length of exponent
ie is

2
log

i
e   ,

Step 6 of Algorithm 1 can generate the following b results

in 2 21
(log (log)

b

ii
O b e

=∑ modular multiplications or

2 2(log log)o b e modular multiplications with
1

b

ii
e e

=
= ∏ .

 To solve for /()L RX XX

R L Rm m v v← ⋅ , we divide

L RX X

L Rv v⋅ by X
m , the number of modular divisions required

is O(b).

At all, Algorithm 1 can generate the b results
11/

1 (mod)
e

m N ， 21/

2 (mod)
e

m N ，… 1/
(mod)be

bm N

in 2 2 21
(log (log) log)

b

ii
O b e N

=
+∑ modular multiplications

and O(b) modular divisions.

Then Lemma 1 is proved.

Lemma 2. Choosing the batch size b, which

satisfied
()

2

2

2
log

n
b

n
≤ ≤ , and choosing the ei exponents to

be polynomial in n, we get 2

2((log))O n n+ modular

multiplications and O(
()

2

2log

n

n
) modular divisions. n is

defined as the binary length of modules N.

Proof: We can easily get log2N=n, where n is defined as

the binary length of modules N.

We can easily get
()

2

2log

n
n

n
< , because n is a negative

number.

Also because the function 2log x increases with x, we

can get
()

2 2

2

log
log

n

n
< 2log n . Because of choosing the batch

size b which satisfies
()

2

2

2
log

n
b

n
≤ ≤ , we can derive

()
2 2 2

2

log log
log

n
b

n
≤ and

()
2 2 2 2 2 221 1

2

log (log) log) log (log) log)
log

b b

i ii i

n
b e N e N

n
= =

+ ≤ +∑ ∑

Due to Lemma 1, where 2 21
log log

b

ii
e e

=
=∑ and log2N=n,

it can be described as

()
2 2 2 2 22 1

2

(log (log) log) (log (log))
log

b

ii

n
O e N O e n n

n
=

+ < +∑

By choosing the ei exponents to be polynomial in n,

Thus e<n， the following equation is derived as
2

2 2 2(log (log)) ((log))O e n n O n n+ < +

Then Lemma 2 is proved.

Constrained model considering the user’s requirements

for QoS such as security ranking focuses is proposed based

on Lemma 2. We optimize the batch size b for a specific

modulus size, and obtain better results for smaller batches if

the modulus is relatively small. According to Lemma 2, the

batch size is optimized as
()

2

2log

n

n
in this constrained model.

IV. QOS-AWARE OPTIMIZATION ALGORITHM

 Let the decryption time of Algorithm 1 in SSL

handshake time be Tb. The decryption time in SSL

handshake Tb can be estimated as the following [11].

() ()3 2 3 3

3 2

3 44 3 1 3 44 3 1
() ()

(3) (3 1)
rsa rsa

n n b b n b b k
bT bT

b n n b n

+ + − + + −
=

+ +
 (1)

Since Tb is the majority of the service time, the batching

service time of the server τ is Tb roughly.

Lemma 3. To satisfy the client’s requirement for the

stability of the system, the decryption time in SSL

handshake Tb is less than the batch size multiplied by the

mean Poisson distributed arrival time interval when the time

in the Batch Queue Model M/D/1, thus

/bT bτ λ≈ < (2)

Proof. Let Xi (i=1,2,) be the arrival time interval of two

consecutive requests, and Y be the time interval of b

consecutive requests. Batch Queue Model M/D/1 has been

described in our previous work [11].

If the system achieves the stability when the time

t → ∞ for M/D/1 queue model, Tb< E(Y), where E(Y) is

the expected value of Y. Because the Xi is a random variable

with independent identical distribution, the average arrival

time interval of b consecutive requests is

1

() () () /
b

i i

i

E Y E X bE X b λ
=

= = =∑ (3)

Then Lemma 3 is proved.

Lemma 4. In the Batch Queue Model M/D/1, to satisfy

the client’s requirement for the stability of the system, thus

/ 2qT b λ<

Proof. In the Batch Queue Model M/D/1, the value of Tq

is derived following the equation

1.5

0.5

0.5

1
()
1

1 1
() ()

11
1

(1)

q r

r r

e
T T

e e

e
T T

e e

e e

λτ

λτ λτ

λτ

λτ λτ

λτ λτ

−

− −

− −

−
=

− +

−
= =

− + +
− (4)

Where 0.5
r

T τ= , due to Lemma 3, it can be easily

described as

0.5 0.5

0.5 1
() ()()

1 1 2
1 1

(1) (1)

q

b b

b
T

e e e e
λτ λτ

τ

λ
= <

+ +
− −

 (5)

It can be easily described as when 2b ≤ ,

2 0.5 2 0.5

1 1
0.944 1 1 1

(1) (1)b be e e e×
≈ + ≤ + <

− −
 (6)

. Then the value bound of the upper limit of Tq is

estimated as [0.944 2b λ , 2b λ]. Then Lemma 4 is

proved. Tolerable response time (TRT) is defined as the

delay time a client can tolerate between a request for a

secure web page and receiving the page [12-14]. The real

response time (RRT) is the interval between the receipt of

the end of transmission of an SSL-based inquiry message

and the beginning of the transmission of a response message

to the station originating the SSL handshake.

Lemma 5. In the Batch Queue Model M/D/1, to satisfy

the client’s requirement for the tolerable response time,

RRT<TRT , thus,

 0.4(1)b TRTλ⇒ < × +
Proof. The mean real response time (RRT) is denoted

as the sum of Tq, Tc and the Tb.

In the Batch Queue Model M/D/1, the value bound of

the upper limit of Tq is estimated as 2b λ derived from

Lemma 4 (refer to Eq. 6).

The value bound of the upper limit of Tb is estimated as

b λ derived from Lemma 3 (refer to Eq. 2).

Tc is the mean time for waiting other client in the same

batching which is easily derived that the max value of Tc is

(1)b λ− .

 On the other hand, it is supposed that the solution of b

should satisfy the approximate bound, which is derived

from Lemma 3, Lemma 4 and described as the following

equation:

(1)

2

0.4(1)

q c b

b b b
RRT T T T TRT

b TRT

λ λ λ
λ

−
= + + < + + <

⇒ < × +

 (7)

Then Lemma 5 is proved.

Algorithm 3: QoS-aware optimization algorithm

Input:, λ , TRT, PKS

Output: Optimal_b, Tb, Tb_real, Speedup, Speedup_real

1.Compute the initial value of b

 initial_b ← int(0.4(λ ×TRT +1)); (refer to Eq. 7)

2.n ←PKS; estimate_b ←
()

2

2log

n

n

 
 
  

3.If (estimate_b< initial_b)

Then { initial_b ← estimate_b ; }

Successfind ← false;

4.If (initial_b<=1) then do conventional_RSA_decryption();

return;

5. b ← initial_b;

6. While (b!=1)

do {
()33 44 3 1

()
(3 1)

b rsa

n b b k
T bT

b n

+ + −
=

+
 (refer to Eq. 1)

 If (/bT b λ≤) then { (refer to Eq. 2)

Optimal_b ← b; Successfind ← true; break; }

 Elseif (/bT b λ>) then { b ←b-1;}

 }/* While (b!=1)*/

 7. If (initial_b<=1) then conventional_RSA_decryption();

return;

8. Compute Tb_real ;

Speedup ←
()3

(3 1)

3 44 3 1

b n

n b b k

+

+ + −
 ; (refer to Eq. 1)

9. Compute Speedup_real ←Trsa / Tb_real;
Figure 3. QoS-aware optimization algorithm

Combining the user’s requirements for QoS such as

security ranking, the stability of the system and tolerable

response time, these strategies aim to optimize the

parameter b, which means the size of multi-clients for

aggregate decryption in Algorithm 1. QoS-aware

optimization algorithm is described in Fig. 4, which satisfies

these strategies in this paper.

According to Lemma 5, the initial value of b is

estimated at Step 1 of Algorithm 3 with TRT and λ as input

values. According to Lemma 2, b is estimated at Step 2

with PKS as input value. If condition of optimal batch can

not be satisfied, the algorithm has the ability to fall back on

conventional_RSA_decryption () which means the

decryption with plain RSA, which is described at Step 4 and

Step 7. The computation of Tb is performed using Eq. 1 at

Step 6. Step 6 sorts b to satisfy max solution of bT b λ<

according to Lemma 3 in descending order from the upper

limit computing at Step 3 to two.

V. VALIDATION OF ANALYTICAL MODELS AND

PERFORMANCE EVALUATION STUDY

A. Validation of analytical models

The analytical results and simulative results are executed

on a machine with a Dell Intel Pentium IV processor

clocked at 3.20GHz and 1GMB RAM. Specifically, this

paper performs the simulation of SSL handshake secret

exchange algorithm with very small public exponents,

namely e=3, 5, 7, 11, 13, 17, etc. It is assumed that the value

(TRT) is equal to 1 second and 8 seconds as examples both

in the analytical model and simulation. It is assumed that the

value public key size (PKS) is equal to 512, 1024 and 2048

bits length as examples both in the analytical model and

simulation.

Table 1 validates the result of Optimal_b described by the

constrained model of QoS-aware optimization strategy. It is

assumed that the TRT is equal to 1s in analytical model and

simulation. As small arrival rates, b is almost uniformly

calculated by our analytical model (Table 1). Since arrival

rates are small (i.e., λ<2), there is very little opportunity to

batch, and therefore, the solution of b is relatively small

(Table 1). Even at higher arrival rate, the analytical result

and simulation result are very close. The solution of the

optimal batch size is increased with λ both in analytic and

simulation when λ<30 (i.e., PKS=1024bits) approximately.

Otherwise, the RRT is not increased obviously. The solution

of b is decreased with λ when λ>60 (i.e., PKS=1024bits)

approximately. The solution of b can not satisfy the user’s

requirements for the stability of the system, in other words,

the solution of b can not satisfy /bT b λ≤ according to

Lemma 3 when λ>37.5 approximately (i.e., PKS=2048bits).

Table 1 Optimal batch size in constrained model validation

Optimal_b

analytical model simulation results
PKS

λ

512 1024 2048 512 1024 2048

1

2

3

4

5

10

20

30

40

50

60

70

80

90

100

-

2

2

3

4

8

8

8

8

8

8

8

8

6

6

-

2

2

3

4

8

10

10

10

10

6

6

6

5

5

-

2

2

3

4

6

6

6

-

-

-

-

-

-

-

-

2

2

3

4

8

8

8

8

8

8

8

8

6

6

-

2

2

3

4

8

10

10

10

10

6

6

6

5

5

-

2

2

3

4

6

6

6

-

-

-

-

-

-

-

But with non-batching system, it becomes unstable when

1/ 1/ 0.16 6.25rsaTλ > = = for 2048 bits keys due to the fact

that a non-batching system becomes unstable when λ τ> .

B. Performance evaluation

The simulation result of the RSA decryption time Trsa

with larger public exponent, namely e=65537 is about 16 ms,

32ms and 130ms with public modulus N is 512 bits length,

1024 bits length, and 2048 bits length respectively, which is

tested using reiterative results.

The multi-factor RSA [9] can expect the theoretical

speedup of around 2.25 with n = pqr and 3.38 for n = p2q.

Experiments show the real speedup to be around 1.73 and

2.3, respectively. Rebalanced RSA offers the theoretical

speedup of 3.6 but the actual speedup is 3.2 for 1024bits

keys. Specifically, d is chosen to be close to n such that both

d mod (p-1) and d mod (q-1) are small integers [9]. The

resulting public exponent e also becomes close to n, which

is much larger than typical values (i.e., e = 3, 17, or 65537).

It is in fact so large that Microsoft Internet Explorer (IE)

cannot accept it; SB (Shacham and Boneh) scheme [7]

offers the speedup factor of 2.5 for 1024bits keys. The

downside is obvious because that CA’s charge per

certificate regardless of whether the certificate is for the

same site or not. It also ignores the satisfaction of the user’s

requirements for QoS, where the batch size is equal to four.

Table 2 Speedup of decryption time validation

Speedup of decryption time (ms)

 Speedup Speedup_real

b/PK

S 512 1024 2048 512 1024 2048

2

4

6

8

1.81

3.68

2.10

1.28

1.90

3.05

2.80

2.18

1.95

3.42

3.82

3.47

1.78

3.21

2.01

1.14

1.83

2.93

2.76

2.09

1.90

3.39

3.80

3.39

Our algorithm offers the speedup factor of 2.76 (Table 2)

for 1024bits key which is used in SSL handshake protocol

frequently. Typically, b is equal to 6 for optimal

performance when 60< λ <80 approximately (Table 1).

Obviously, our scheme not only achieves better speedup

factor and overcomes these disadvantages of the previous

schemes. All the methods are backward compatible with

standard RSA. Also, all speedup discussed is based on

1024-bit RSA and is relative to the cost of performing plain

RSA decryptions.

It is assumed that TRT is equal to 8 seconds in Figure 4.

These figures show that RRT is almost linear when λ is

relatively small. This is due to the fact that RRT = Tq + Tc +

Tb (refer to Eq. 7). When λ is relatively small, the main

contribution to RRT is made by Tc (i.e., λ = 10,

PKS=1024bits). It is evident that the time Tc is increased

linearly with b. Tb is also increased with b. Therefore, RRT

is also increased with b when λ is relatively large (i.e. λ=

80, PKS=1024bits).
A non-batching system becomes unstable when

1/ 1/ 0.032 31.25rsaTλ > = = for 1024bits keys. When the non-

batching system is stable, the mean response time '
T can be

estimated as Eq. 8 [11]. The mean service time 'τ is

deterministic in the non-batching in M/D/1 queue model.
Since Trsa is the majority of the service time, the mean

service time 'τ of the server is roughly Trsa. .
'

' ' '

'
() ()
2(1) 2(1)

rsa
rsa rsa

rsa

T
T T T

T

τ λ λ
τ τ

τ λ λ
= + ≈ +

− −
 (8)

Fig. 5 (i.e. TRT = 8) illustrates the comparison of the
mean response time of our scheme with non-batching. The
vertical axis in each graph is the mean response time over the
batch size divided by the mean response time with non-
batching. The optimal batch size in our scheme is equal to 10
when λ=30. The speedup of the mean response time is an

optimal one that equals to 6.32 approximately. It is clear that
with the optimal batch size our scheme has considerable
advantages and while costs little.

(a) λ= 10

(b) λ= 80

Figure 4. Mean response time validation over batch size

Figure 5. Mean response time speedup

VI. CONCLUSION

In conclusion, this paper proposes the secret exchange
algorithm in SSL handshake protocol. Combining the user’s
requirements for Quality of Service (QoS) such as security
ranking, the stability of the system, and the tolerable
response time, these strategies aim to optimize the parameter
b which means the size of multi-clients for aggregate
decryption. The parameter optimization-based SSL
handshake is a viable option for secure communications.
Currently we mainly investigated this work based on the
Internet with high speed client/server computing paradigm.
As our future work, we plan to extend it to more scenarios
including P2P networks and wireless networks.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China under Grant Nos. 90718034 and

60773013, Hunan Provincial Natural Science Foundation of

China No. 09JJ4031, the Program for New Century

Excellent Talents in University (NCET-06-0686), and the

Program for Changjiang Scholars and Innovative Research

Team in University under Grant No. IRT0661.

REFERENCES

[1] I. Goldberg, and D. Wagner, “Randomness and the Netscape

Browser”, Dr. Dobb's Journal, January 1996, pp. 66-70.

[2] A. O. Freier, P. Karlton, P. C. Kocher, “The SSL ProtocolV3.0”,
1996-11-01.

[3] T. S. Sobh, A. Elgohary, M. Zaki, “Performance Improvements on
the Network Security Protocols”, International Journal of Network
Security, Vol.6, No.1, 2008, pp.103–115.

[4] H.M.Sun, C.T. Yang, M. E. Wu, “Short-Exponent RSA”, IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, Vol.E92-A, No.3, 2009, 3, pp.912-918.

[5] F.C. Kuo, H. Tschofenig, F. Meyer, et.al, “Comparison Studies
between Pre-shared and Public Key Exchange Mechanisms for
Transport Layer Security”, Proceedings of IEEE Global Internet
Symposium 2006, Spain, April 2006, pp.1-6.

[6] C. Castelluccia, E. Mykletun, and G.Tsudik, “Improving Secure
Server Performance by Re-balancing SSL/TLS Handshakes”,
Proceedings of the 2006 ACM Symposium on Information, computer
and communications security. New York, NY, USA: ACM Press,
2006, pp.26-34

[7] H. Shacham, and D. Boneh, “Improving SSL Handshake Performance
via Batching,” RSA'2001, Lecture Notes in Computer Science, San
Francisco, CA, USA: Spring Verlag, Vol. 2020, 2001, pp.28-43.

[8] T. Takagi, “Fast RSA-Type Cryptosystems Using N-adic Expansion”,
Proceedings of Crypto '97, Lecture Notes in Computer Science,
Berlin, Germany: Spring-Verlag, 1997, vol.1294, pp.372-384.

[9] D. Boneh, H. Shacham, “Fast Variants of RSA”, RSA Laboratories
Cryptobytes, 2002, 5 (1), pp.1-8.

[10] A. Fiat, “Batch RSA,” Crypto'89, pp.175-185, 1989. See also Journal
of Cryptology, 1997,10 (2), pp.75-88.

[11] F. Qi, W. Jia, F. Bao, et.al, “Batching SSL/TLS Handshake
Improved”, Lecture Notes in Computer Science, Berlin, Germany:
Spring-Verlag, 2005, Vol 3783, pp. 402-410.

[12] N. Bhatti, A. Bouch, A. Kuchinsky, “Integrating User-perceived
Quality into Web Server Design”, Proceedings of the 9th
International World Wide Web Conference, Amsterdam,
Netherlands,2000, pp.24-334.

[13] A. Bouch, A. Kuchinsky, N. Bhatti, “Quality is in the Eye of the
Beholder: Meeting User’s Requirements for Internet Quality of
Service”, Proceedings of the CHI 2000 Conference on Human Factors
in Computing Systems, The Hague, The Netherlands,2000,pp.297-
304.

[14] F. Nah, “Study on Tolerable Waiting Time: How Long Are Web
Users Willing to Wait?” Behaviour & Information Technology, 2004,
Vol23, pp.153-163.

