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Abstract—The primary goal of the secure socket layer 

protocol (SSL) is to provide confidentiality and data integrity 

between two communicating entities. Since the most 

computationally expensive step in the SSL handshake protocol 

is the server’s RSA decryption, it is introduced that the 

proposed secret exchange algorithm can be used to speedup 

SSL session initialization. The optimization strategy, which is 

based on the constrained model considering the user’s 

requirements for Quality of Service (QoS), such as security 

ranking, focuses on the optimal result in different public key 

size. It is also introduced that the parameter is optimized when 

integrating user’s requirements for Internet QoS such as the 

stability of the system and the tolerable response time. Finally, 

the proposed algorithm is evaluated to be practical and 

efficient through both analysis and simulation studies. 

Index Terms—Quality of Service (QoS), SSL handshake, 

optimization strategy, security ranking, tolerable response time 

 

I. INTRODUCTION  

SSL protects communications by encrypting messages 

with a secret key negotiated in the SSL handshake protocol 

[1]. How to offer some Quality of Service (QoS) that may 

be satisfied with Web users has become a new issue for 

study. 

SSL protocol allows the server and the client to 

authenticate each other and to negotiate an encryption 

algorithm and cryptographic keys before transmitting and 

receiving the first byte of data [2]. However, such a protocol 

needs intensive computational resource due to the cost of 

public-key operations [3]. Many algorithmic approaches for 

speeding up SSL’s performance on a web server are 

presented in some literatures [4-9]. However, these schemes 

ignore the satisfactory of the users’ requirements for QoS 

such as the stability of the system and tolerable response time.  

Being aware of the computational imbalance between 

clients and server in the SSL handshake protocol, we 

proposed a secret exchange algorithm to overcome the 

problem. The starting point of the proposed scheme is a 

technique due to batch RSA decryption [10]. This paper 

adapts the certificate mechanism [11] so as to provide SSL 

setup with unique certificate issued by Certificate Authority 

(CA). This paper also proposed the constrained model 

integrating user-perceived quality into secure Web server 

design [12, 13]. This paper also optimizes the batch size by 

the constrained model meeting the user’s requirements for 

quality of service such as security ranking focusing on the 

optimal result in different public key size. In addition, the 

proposed scheme in this paper uses the approximate 

analytical solution of mean response time to optimize the 

batch size of the server. It is designed for heavily loaded web 

servers handling many concurrent SSL sessions. 

The rest of the paper is organized as follows. Section II 

describes the secret exchange algorithm in SSL handshake 

protocol. The proposed constrained model of QoS-aware 

optimization strategy is presented in Section III. QoS-aware 

optimization algorithm is presented in Section IV. Section V 

validates the solutions through both analysis and simulation 

studies and Section VI concludes the paper. 

 

II. SECRET EXCHANGE ALGORITHM IN SSL HANDSHAKE 

PROTOCOL 

     The following Algorithm 1 and Algorithm 2 are secret 

exchange algorithms of SSL handshake at server end and at 

client end respectively. When using small public exponent 

e1 and e2, it is possible to decrypt two cipher texts for 

approximately the price of one [10,11]. This technology 

facilitates more favorable load distribution by requiring the 

clients to perform more work (as part of encryption) and the 

server to perform commensurately less work, thus resulting 

in better SSL throughput at the server. 

Our unique certificate method is to reuse the message 

ServerHello.random in the protocol (see Step 2 of 

Fig.1)[11]. For simplicity, we only show the related 

processes and the modified information in the standard SSL 

handshake protocol. 

 In the standard SSL protocol, each client encrypts a 48-

byte pre-master secret using ei as the encryption exponents, 

and the server decrypts the cipher text independently so as 

to get the Pre-master secret. Algorithm 1 obtains the Pre-

master secrets from multiple clients and hence improves the 

performance significantly. 

 

 

 

 



   Algorithm 1: Secret exchange algorithm at the server end 

1. {Given b distinct and pair wise relatively prime public keys 

e1,...,eb all sharing a common modulus N = pq, relatively prime 

to ( ) ( 1)( 1)N p qφ = − − . n is the bit length of the public 

modulus N and k the bit length of the bigger of ei. }   

Construct a full binary tree T_d which is called 

decryption tree with leaves labeled e1,...,eb; 

 {Each node in the decryption tree mainly need conserve two 

middle values such as exponent and ciphertext}. 

2. Construct message including ei and the information ei’ about 

brother’s exponent for each client, where 1 i b≤ ≤ ; 

3. upon receiving the message including cipher text v’i from each 

client, where 1 i b≤ ≤ ; 

4. {Compute two middle values such as exponent and ciphertext at 

each internal nodes of T_d repeating this computation 

recursively. The number of external nodes is equal to b-1. The 

computation phase is to generate the 

product
/

1
modi

b e e

ii
v v N

=
= ∏ , where

1

b

ii
e e

=
= ∏ . } 

For (i=1 to b-1)   { 

EL ←leftchild.exponent; ER ←rightchild.exponent; 

Currentnode.exponent ← EL × ER; 

L← leftchild.ciphertext; R← rightchild.ciphertext; 

Currentnode.ciphertext← R LE E
L R× ;} 

v←rootnode.ciphertext; e ←rootnode.exponent; 

{The value of v and e is simply the result associated with the 

root} 

5. Compute 1/1/

1
mod modi

b ee

ii
m v N v N

=
← = ∏  

1
 

b

ii
e e

=
← ∏ {m 

is the ciphertext of root node of T_d.. e is the exponent of root 

node of T_d.} 

6. {This Step is to break up the product m to obtain the plaintexts 
1/ ie

i im v=  with repeating this computation recursively from 

the root node.  } 

   For (i=1 to b-1)   { 

Compute X while ((X=0 mod EL) and (X=1 mod ER)==true); 

        /L LX X E← ; ( 1) /R RX X E← − ; 

        /( )L RX XX

R L Rm m v v← ⋅ ; /L Rm m m← ;} 

{The values of Lv and Rv  are simply the results associated 

with the ciphertext of node which have stored at Step 4.} 

Figure 1. Secret exchange algorithm 1 at the server end 

 

Algorithm 2:   Secret exchange algorithm at the client end 
1. Create plaintext mi (0<mi<N); upon receiving the message 

including ei ;  

Compute modie

i iv m N= .1 i b≤ ≤  

2.  upon receiving the message including ei’ which is the brother’s 
exponent value of ei ; 

 Compute
'

' modi
e

i iv v N= ; 

3. Construct message including v’i , vi for server. 

 
Figure 2.  Secret exchange algorithm at the client end 

III. CONSTRAINED MODEL OF QOS-AWARE OPTIMIZATION 

STRATEGY 

The optimization strategy which is based on the 

constrained model considering the user’s requirements for 

QoS such as security ranking focuses on the optimal result 

in different public key sizes. 

 

Lemma 1. Algorithm 1 can generate the b decryption 

results in 2 2 21
(log ( log ) log )

b

ii
O b e N

=
+∑  modular 

multiplications and O(b) modular divisions. 

 Proof: According to Step 5 of Algorithm 1, 
1/1/

1
mod modi

b ee

ii
m v N v N

=
← = ∏ , with 

1

b

ii
e e

=
= ∏ , the 

algorithm can get the result in 2(log )O N  modular 

multiplications, which is equivalent to one RSA decryption. 

Using the full binary tree as a guide, working from the 

leaves to the root, for constructing the serial number for 

every exponent of the leaves, the binary length of the serial 

number is equal to 
2

log b   . In other words, the depth of 

the leaves is equal to
2

log b   . 

According to Step 6 of Algorithm 1, the algorithm takes 

the recursive result from left child and right child, and the 

result associated with this node is  /( )L RX XX

R L Rm m v v← ⋅ . 

The computation phase is to break up the product m to 

obtain the plaintexts 1/ ie

i im v= , which we wish to decrypt 

simultaneously.  

Note that vl and vr have already been computed and 

storied, as the left and right branch values of the root, during 

the tree based computation of m at Step 4 of Algorithm 1.  

By definition X is the unique solution ((X=0 mod EL) and 

(X=1 mod ER)= =true), Note that 
2 2

log logX e<  and 

/L LX X E← ; ( 1) /R RX X E← − , we can get 

2 2 2 2
log log log log

L R
X X X e+ < <  with 

1

b

ii
e e

=
= ∏ [10]. 

Because the depth of the leaves is equal to
2

log b   , for 

every plaintext result 1/ ie

i im v= , every node contributes at 

most 
2

log b    bits to the appropriate exponents the 

computation of X
m , LX

Lv and RX

Rv  recursive result. 

Because the binary length of exponent 
ie is 

2
log

i
e   , 

Step 6 of Algorithm 1 can generate the following b results 

in 2 21
(log ( log )

b

ii
O b e

=∑  modular multiplications or 

2 2(log log )o b e  modular multiplications with 
1

b

ii
e e

=
= ∏ .  

 To solve for  /( )L RX XX

R L Rm m v v← ⋅ , we divide 

L RX X

L Rv v⋅ by X
m , the number of modular divisions required 

is O(b). 

At all, Algorithm 1 can generate the b results  
11/

1 (mod )
e

m N ， 21/

2 (mod )
e

m N ，… 1/
(mod )be

bm N  



in 2 2 21
(log ( log ) log )

b

ii
O b e N

=
+∑  modular multiplications 

and O(b) modular divisions. 

Then Lemma 1 is proved. 

 

Lemma 2. Choosing the batch size b, which 

satisfied
( )

2

2

2
log

n
b

n
≤ ≤  , and choosing the ei exponents to 

be polynomial in n, we get 2

2((log ) )O n n+  modular 

multiplications and O(
( )

2

2log

n

n
) modular divisions. n is 

defined as  the binary length of modules N. 

Proof: We can easily get log2N=n, where n is defined as 

the binary length of modules N.  

We can easily get
( )

2

2log

n
n

n
< , because n is a negative 

number. 

Also because the function 2log x  increases with x, we 

can get 
( )

2 2

2

log
log

n

n
< 2log n . Because of choosing the batch 

size b which satisfies
( )

2

2

2
log

n
b

n
≤ ≤ , we can derive 

( )
2 2 2

2

log log
log

n
b

n
≤  and 

( )
2 2 2 2 2 221 1

2

log ( log ) log ) log ( log ) log )
log

b b

i ii i

n
b e N e N

n
= =

+ ≤ +∑ ∑  

Due to Lemma 1, where 2 21
log log

b

ii
e e

=
=∑  and log2N=n, 

it can be described as 

( )
2 2 2 2 22 1

2

(log ( log ) log ) (log (log ) )
log

b

ii

n
O e N O e n n

n
=

+ < +∑     

By choosing the ei exponents to be polynomial in n, 

Thus e<n， the following equation is derived as  
2

2 2 2(log (log ) ) ((log ) )O e n n O n n+ < +                               

Then Lemma 2 is proved. 

 

Constrained model considering the user’s requirements 

for QoS such as security ranking focuses is proposed based 

on Lemma 2. We optimize the batch size b for a specific 

modulus size, and obtain better results for smaller batches if 

the modulus is relatively small. According to Lemma 2, the 

batch size is optimized as 
( )

2

2log

n

n
in this constrained model. 

 

IV. QOS-AWARE OPTIMIZATION ALGORITHM 

 

 Let the decryption time of Algorithm 1 in SSL 

handshake time be Tb. The decryption time in SSL 

handshake Tb can be estimated as the following [11]. 

( ) ( )3 2 3 3

3 2

3 44 3 1 3 44 3 1
( ) ( )

(3 ) (3 1)
rsa rsa

n n b b n b b k
bT bT

b n n b n

+ + − + + −
=

+ +
   (1) 

Since Tb is the majority of the service time, the batching 

service time of the server τ  is Tb roughly.  

 

Lemma 3. To satisfy the client’s requirement for the 

stability of the system, the decryption time in SSL 

handshake Tb is less than the batch size multiplied by the 

mean Poisson distributed arrival time interval when the time 

in the Batch Queue Model M/D/1, thus 

/bT bτ λ≈ <                                                                (2) 

Proof.  Let Xi (i=1,2, ... ...) be the arrival time interval of two 

consecutive requests, and Y be the time interval of b 

consecutive requests. Batch Queue Model M/D/1 has been 

described in our previous work [11]. 

If the system achieves the stability when the time 

t → ∞  for M/D/1 queue model, Tb< E(Y), where E(Y) is 

the expected value of Y. Because the Xi is a random variable 

with independent identical distribution, the average arrival 

time interval of b consecutive requests is 

1

( ) ( ) ( ) /
b

i i

i

E Y E X bE X b λ
=

= = =∑                                          (3) 

Then Lemma 3 is proved.  

 

Lemma 4. In the Batch Queue Model M/D/1, to satisfy 

the client’s requirement for the stability of the system, thus                         

/ 2qT b λ<
                                                            

Proof.  In the Batch Queue Model M/D/1, the value of Tq 

is derived following the equation 

1.5

0.5

0.5

1
( )
1

1 1
( ) ( )

11
1

( 1)

q r

r r

e
T T

e e

e
T T

e e

e e

λτ

λτ λτ

λτ

λτ λτ

λτ λτ

−

− −

− −

−
=

− +

−
= =

− + +
−                       (4)  

Where 0.5
r

T τ= , due to Lemma 3, it can be easily 

described as 

 
0.5 0.5

0.5 1
( ) ( )( )

1 1 2
1 1

( 1) ( 1)

q

b b

b
T

e e e e
λτ λτ

τ

λ
= <

+ +
− −

                 (5) 

It can be easily described as when 2b ≤ , 

 
2 0.5 2 0.5

1 1
0.944 1 1 1

( 1) ( 1)b be e e e×
≈ + ≤ + <

− −
                       (6) 

.    Then the value bound of the upper limit of Tq is 

estimated as [0.944 2b λ , 2b λ ]. Then Lemma 4 is 

proved. Tolerable response time (TRT) is defined as the 

delay time a client can tolerate between a request for a 

secure web page and receiving the page [12-14]. The real 

response time (RRT) is the interval between the receipt of 

the end of transmission of an SSL-based inquiry message 

and the beginning of the transmission of a response message 

to the station originating the SSL handshake. 



Lemma 5. In the Batch Queue Model M/D/1, to satisfy 

the client’s requirement for the tolerable response time,        

RRT<TRT , thus,  

 0.4( 1)b TRTλ⇒ < × +  
Proof.  The mean real response time (RRT) is denoted 

as the sum of Tq, Tc and the Tb. 

In the Batch Queue Model M/D/1, the value bound of 

the upper limit of Tq is estimated as 2b λ  derived from 

Lemma 4 (refer to Eq. 6). 

The value bound of the upper limit of Tb is estimated as 

b λ  derived from Lemma 3 (refer to Eq. 2). 

Tc is the mean time for waiting other client in the same 

batching which is easily derived that the max value of Tc is 

( 1)b λ− .  

      On the other hand, it is supposed that the solution of b 

should satisfy the approximate bound, which is derived 

from Lemma 3, Lemma 4 and described as the following 

equation: 

( 1)

2

0.4( 1)

q c b

b b b
RRT T T T TRT

b TRT

λ λ λ
λ

−
= + + < + + <

⇒ < × +

                         (7) 

Then  Lemma 5 is proved. 

 

Algorithm 3: QoS-aware optimization algorithm 

Input:, λ , TRT, PKS 

Output: Optimal_b, Tb, Tb_real, Speedup, Speedup_real 

1.Compute the initial value of b 

     initial_b ← int(0.4( λ ×TRT +1)); (refer to Eq. 7) 

2.n ←PKS; estimate_b ←  
( )

2

2log

n

n

 
 
  

 

3.If (estimate_b< initial_b)  

Then { initial_b ← estimate_b ; } 

Successfind ← false;  

4.If (initial_b<=1) then do conventional_RSA_decryption( );  

return; 

5. b ←  initial_b; 

6.   While (b!=1 ) 

do { 
( )33 44 3 1

( )
(3 1)

b rsa

n b b k
T bT

b n

+ + −
=

+
 (refer to Eq. 1) 

 If ( /bT b λ≤ ) then {  (refer to Eq. 2) 

Optimal_b ←  b;  Successfind ← true;  break;  }  

 Elseif ( /bT b λ> ) then { b ←b-1;} 

          }/* While (b!=1 )*/ 

 7.  If (initial_b<=1) then conventional_RSA_decryption( );  

return; 

8. Compute Tb_real ; 

Speedup ←
( )3

(3 1)

3 44 3 1

b n

n b b k

+

+ + −
 ; (refer to Eq. 1) 

9. Compute Speedup_real ←Trsa / Tb_real;  
Figure 3. QoS-aware optimization algorithm 

Combining the user’s requirements for QoS such as 

security ranking, the stability of the system and tolerable 

response time, these strategies aim to optimize the 

parameter b, which means the size of multi-clients for 

aggregate decryption in Algorithm 1. QoS-aware 

optimization algorithm is described in Fig. 4, which satisfies 

these strategies in this paper.  

According to Lemma 5, the initial value of b is 

estimated at Step 1 of Algorithm 3 with TRT and λ as input 

values.  According to Lemma 2, b is estimated at Step 2 

with PKS as input value. If condition of optimal batch can 

not be satisfied, the algorithm has the ability to fall back on 

conventional_RSA_decryption () which means the 

decryption with plain RSA, which is described at Step 4 and 

Step 7. The computation of Tb is performed using Eq. 1 at  

Step 6. Step 6 sorts b to satisfy max solution of bT b λ<  

according to Lemma 3 in descending order from the upper 

limit computing at Step 3 to two. 

 

V. VALIDATION OF ANALYTICAL MODELS AND 

PERFORMANCE EVALUATION STUDY 

 

A. Validation of analytical models 

The analytical results and simulative results are executed 

on a machine with a Dell Intel Pentium IV processor 

clocked at 3.20GHz and 1GMB RAM. Specifically, this 

paper performs the simulation of SSL handshake secret 

exchange algorithm with very small public exponents, 

namely e=3, 5, 7, 11, 13, 17, etc. It is assumed that the value 

(TRT) is equal to 1 second and 8 seconds as examples both 

in the analytical model and simulation. It is assumed that the 

value public key size (PKS) is equal to 512, 1024 and 2048 

bits length as examples both in the analytical model and 

simulation.   

Table 1 validates the result of Optimal_b described by the 

constrained model of QoS-aware optimization strategy. It is 

assumed that the TRT is equal to 1s in analytical model and 

simulation. As small arrival rates, b is almost uniformly 

calculated by our analytical model (Table 1). Since arrival 

rates are small (i.e., λ<2), there is very little opportunity to 

batch, and therefore, the solution of b is relatively small 

(Table 1). Even at higher arrival rate, the analytical result 

and simulation result are very close. The solution of the 

optimal batch size is increased with λ both in analytic and 

simulation when λ<30 (i.e., PKS=1024bits) approximately. 

Otherwise, the RRT is not increased obviously. The solution 

of b is decreased with λ  when λ>60 (i.e., PKS=1024bits) 

approximately. The solution of b can not satisfy the  user’s 

requirements for the stability of the system, in other words, 

the solution of b can not satisfy /bT b λ≤  according to 

Lemma 3 when λ>37.5 approximately (i.e., PKS=2048bits).  

 



Table 1 Optimal batch size in constrained model validation    

Optimal_b 

analytical model simulation results 
PKS

λ

 
512 1024 2048 512 1024 2048 

1 

2 

3 

4 

5 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

- 

2 

2 

3 

4 

8 

8 

8 

8 

8 

8 

8 

8 

6 

6 

- 

2 

2 

3 

4 

8 

10 

10 

10 

10 

6 

6 

6 

5 

5 

- 

2 

2 

3 

4 

6 

6 

6 

- 

- 

- 

- 

- 

- 

- 

- 

2 

2 

3 

4 

8 

8 

8 

8 

8 

8 

8 

8 

6 

6 

- 

2 

2 

3 

4 

8 

10 

10 

10 

10 

6 

6 

6 

5 

5 

- 

2 

2 

3 

4 

6 

6 

6 

- 

- 

- 

- 

- 

- 

- 

 

But with non-batching system, it becomes unstable when 

1/ 1/ 0.16 6.25rsaTλ > = =  for 2048 bits keys due to the fact 

that a non-batching system becomes unstable when λ τ>  . 

 

B.  Performance evaluation 

The simulation result of the RSA decryption time Trsa 

with larger public exponent, namely e=65537 is about 16 ms, 

32ms and 130ms with public modulus N is 512 bits length, 

1024 bits length, and 2048 bits length respectively, which is 

tested using reiterative results. 

The multi-factor RSA [9] can expect the theoretical 

speedup of around 2.25 with n = pqr and 3.38 for n = p2q. 

Experiments show the real speedup to be around 1.73 and 

2.3, respectively. Rebalanced RSA offers the theoretical 

speedup of 3.6 but the actual speedup is 3.2 for 1024bits 

keys. Specifically, d is chosen to be close to n such that both 

d mod (p-1) and d mod (q-1) are small integers [9]. The 

resulting public exponent e also becomes close to n, which 

is much larger than typical values (i.e., e = 3, 17, or 65537). 

It is in fact so large that Microsoft Internet Explorer (IE) 

cannot accept it; SB (Shacham and Boneh) scheme [7] 

offers the speedup factor of 2.5 for 1024bits keys. The 

downside is obvious because that CA’s charge per 

certificate regardless of whether the certificate is for the 

same site or not. It also ignores the satisfaction of the user’s 

requirements for QoS, where the batch size is equal to four. 

 

 

 

 

 

 

 

Table 2 Speedup of decryption time validation 

Speedup of decryption time (ms) 

 Speedup Speedup_real 

   

b/PK

S 512 1024 2048 512 1024 2048 

2 

4 

6 

8 

1.81 

3.68 

2.10 

1.28 

1.90 

3.05 

2.80 

2.18 

1.95 

3.42 

3.82 

3.47 

1.78 

3.21 

2.01 

1.14 

1.83 

2.93 

2.76 

2.09 

1.90 

3.39 

3.80 

3.39 

      

Our algorithm offers the speedup factor of 2.76 (Table 2) 

for 1024bits key which is used in SSL handshake protocol  

frequently. Typically, b is equal to 6 for optimal 

performance when 60< λ <80 approximately (Table 1). 

Obviously, our scheme not only achieves better speedup 

factor and overcomes these disadvantages of the previous 

schemes. All the methods are backward compatible with 

standard RSA. Also, all speedup discussed is based on 

1024-bit RSA and is relative to the cost of performing plain 

RSA decryptions. 

It is assumed that TRT is equal to 8 seconds in Figure 4. 

These figures show that RRT is almost linear when λ  is 

relatively small. This is due to the fact that RRT = Tq + Tc + 

Tb (refer to Eq. 7). When λ  is relatively small, the main 

contribution to RRT is made by Tc (i.e., λ = 10, 

PKS=1024bits). It is evident that the time Tc is increased 

linearly with b. Tb is also increased with b. Therefore, RRT 

is also increased with b when λ  is relatively large (i.e. λ= 

80, PKS=1024bits). 
A non-batching system becomes unstable when 

1/ 1/ 0.032 31.25rsaTλ > = =  for 1024bits keys. When the non-

batching system is stable, the mean response time '
T  can be 

estimated as Eq. 8 [11]. The mean service time 'τ  is 

deterministic in the non-batching in M/D/1 queue model. 
Since Trsa is the majority of the service time, the mean 

service time 'τ  of the server is roughly Trsa. .  
'

' ' '

'
( ) ( )
2(1 ) 2(1 )

rsa
rsa rsa

rsa

T
T T T

T

τ λ λ
τ τ

τ λ λ
= + ≈ +

− −
                  (8)      

Fig. 5 (i.e. TRT = 8) illustrates the comparison of the 
mean response time of our scheme with non-batching. The 
vertical axis in each graph is the mean response time over the 
batch size divided by the mean response time with non-
batching. The optimal batch size in our scheme is equal to 10 
when λ=30. The speedup of the mean response time is an 

optimal one that equals to 6.32 approximately. It is clear that 
with the optimal batch size our scheme has considerable 
advantages and while costs little.         

 

 

 

 

 

 



 

 

 

 

 

 

 

 

  

(a) λ= 10                                  

 

 

 

 

 

 

 

 

 

 

(b) λ= 80 

Figure 4. Mean response time validation over batch size 

 
                                                                            

 

 

 

 

 

Figure 5.  Mean response time speedup  

VI. CONCLUSION 

In conclusion, this paper proposes the secret exchange 
algorithm in SSL handshake protocol. Combining the user’s 
requirements for Quality of Service (QoS) such as security 
ranking, the stability of the system, and the tolerable 
response time, these strategies aim to optimize the parameter 
b which means the size of multi-clients for aggregate 
decryption. The parameter optimization-based SSL 
handshake is a viable option for secure communications. 
Currently we mainly investigated this work based on the 
Internet with high speed client/server computing paradigm. 
As our future work, we plan to extend it to more scenarios 
including P2P networks and wireless networks. 
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