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In this paper a sufficient condition is given for minimal routing in n-dimensional (n-D) meshes with
faulty nodes contained in a set of disjoint fault regions. It is based on an early work of the author on
minimal routing in low-dimensional meshes (such as 2-D meshes with faulty blocks). Unlike many
traditional models that assume all the nodes know global fault distribution, our approach is based
on the concept of limited global fault information. First, a novel fault model called Fault Region is
proposed in which all faulty nodes in the system are contained in a set of disjoint regions. Fault
information is coded in a 2n-tuple called Extended Safety Level associated with each node of an n-D
mesh to support minimal routing. Specifically, we study the existence of minimal paths at a given
source node, limited distribution of fault information, minimal routing and deadlock-free routing.
Our results show that any minimal routing that is partially adaptive can still be applied, as long as
the destination node meets a certain safety condition. A dynamic planar-adaptive routing scheme is
presented that offers better fault tolerance and adaptivity than the regular planar-adaptive routing
scheme in n-D meshes. In 3-D meshes, both regular and dynamic planar-adaptive routing need
three virtual channels. Our approach is the first attempt to address minimal routing in n-D meshes

with faulty nodes using limited global fault information.
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1. INTRODUCTION

In a multicomputer system, a collection of processors (or
nodes) work together to solve large application problems.
These nodes communicate data and coordinate their efforts
by sending and receiving packets through the underlying
communication network. Thus, the performance of such
a multicomputer system depends on the end-to-end cost
of communication mechanisms. The routing time of
packets is one of the key factors that are critical to the
performance of multicomputers. Basically, routing is the
process of transmitting data from one node called the
source node to another node called the destination node
in a given system. The mesh-connected topology [1, 2] is
one of the most thoroughly investigated network topologies
for multicomputer systems. Mesh-connected topologies,
also called k-ary n-dimensional (n-D) meshes, have an
n-D grid structure with k nodes in each dimension such
that every node is connected to two other nodes in each
dimension by a direct link. Mesh-connected topologies
include n-D meshes, tori and hypercubes. Examples of
commercial products based on n-D hypercubes include
the Ncube’s nCUBE, the Thinking Machine’s Connection
Machine, which is a hypercube interconnected bit-serial
SIMD machine and, more recently, the SGI’s Origin 2000
[3]. Many multicomputers that use 2-D meshes include

the MIT J-machine [1], the Symult 2010 [4] and the Intel
Touchstone [5]. The CRAY T3D and T3E [2] systems use a
3-D torus.

As the number of nodes in a mesh-connected multicom-
puter increases, the chance of failure also increases. The
complex nature of networks also makes them vulnerable to
disturbances which can be either deliberate or accidental.
Therefore, the ability to tolerate failure is becoming increas-
ingly important, especially in the communication subsystem.
Several studies have been conducted which achieve fault
tolerance by adding (or deleting) extra components of the
system [6, 7, 8]. However, adding and deleting nodes and/or
links require modifications of network topologies which may
be expensive and difficult. We focus here on achieving
fault tolerance using the inherent redundancy present in the
mesh-connected multicomputer, without adding spare nodes
and/or links.

An important and challenging issue is to extend
communication subsystems which include various routing
algorithms to cope with faulty components. To this
end, fault models and routing algorithms are the two
keys to successfully extending the existing approaches.
We introduce a convex type of fault region as our fault
model and propose a novel information model in which
each node in a mesh-connected multicomputer collects
and distributes fault information concurrently but in a
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decentralized way. This collection and distribution process
exhibits the desirable property of self-stabilization. In
addition, this process converges quickly to meet the demands
of many real-time applications. To ensure that this approach
is scalable for a large and complex network, only specially
coded fault information is distributed rather than detailed
information. Unlike many existing information models
that require each node to have knowledge of the entire
network, the coded fault information associated with each
node represents limited global information by exploring the
locality of disturbances in the network. It also reduces the
memory requirement [9] to store fault information at each
node. When a disturbance occurs, only those nodes affected
update their information to keep it consistent.

The safety-level-based (or safety-vector-based) routing
[10, 11], a special form of limited-global-information-
based routing, is a compromise between local-information-
and global-information-based approaches. In this type of
routing, a routing function is defined based on current
node, destination node and limited global fault information
gathered at the current node. This approach differs from
many existing ones where information is brought by the
header of the routing packet [12] and the routing function is
defined based on the header information and the local state
of the current node [13]. In this approach, neighborhood
fault information is captured by an integer (safety level) or a
binary vector (safety vector) associated with each node. For
example, in a binary hypercube, if a node’s safety level is
m (an integer), there is at least one Hamming distance (or
minimal) path from this node to any node within Hamming
distance m [11]. Using the safety level (or safety vector)
associated with each node, a routing algorithm can obtain
an optimal or suboptimal solution and it requires a relatively
simple process to collect and maintain fault information in
the neighborhood. Therefore, limited-global-information-
based routing can be more cost effective than routing based
on global or local information. The safety-level-based
routing has been successfully applied to binary hypercubes,
but is less efficient when it is directly applied to mesh
topologies such as 2-D and 3-D meshes. In [14], the author
introduced the concept of the extended safety level with its
use in achieving minimal routing in 2-D meshes with faulty
nodes contained in a set of faulty blocks.

In this paper, the extended safety level concept is further
extended for general n-D meshes. The challenge is to find
a minimal path in an n-D mesh with faulty nodes contained
within a set of disjoint fault regions (a fault model extended
from the commonly used faulty block model in 2-D meshes).
In 3-D meshes fault regions are called faulty cubes. The
amount of limited global information should be kept to
a minimum and should be easy to obtain and maintain.
The requirement to be deadlock-free and livelock-free adds
another challenging dimension. A deadlock occurs when
some packets from different packets cannot advance towards
their destinations because the channels requested by them
are not available. A livelock occurs when a routing packet
travels around its destination node, but never reaches it.
Designing a routing protocol that is both fault-tolerant and

deadlock-free (and livelock-free) poses a major challenge.
Fault tolerance demands an adaptive and flexible routing
process to get around faults. On the other hand, added
flexibility increases the chances of deadlock. In addition,
some deadlock and livelock situations are fault-induced [15].
Our approach is to provide just enough adaptivity in the
routing process to ensure fault tolerance so that the cost of
preventing deadlock and livelock (using the virtual channel
approach) is minimized.

Specifically, we address the issues of the existence of a
minimal path at a given source node, limited distribution
of fault information, minimal routing and deadlock-free
routing. The concept of partial adaptive routing is
defined and a dynamic planar-adaptive routing approach
is proposed that trades routing adaptivity for a simple
deadlock-free routing with a better fault tolerance capability
than Chien and Kim’s regular planar-adaptive routing [16].
Our approach is the first attempt to address the minimal
routing in n-D meshes with faulty nodes using limited fault
information. Our main results include the following.

• A fault model called Fault Region is introduced in
n-D meshes. A simple labeling scheme is introduced
that quickly identifies those non-faulty nodes that cause
routing difficulty and disables them. A fault region
consists of adjacent faulty and disabled nodes. The
labeling scheme produces a set of disjoint fault regions
that contain all faulty nodes.

• A new limited global information model called
Extended Safety Level is proposed, which is coded
fault information represented by a 2n-tuple associated
with each node. The safety level information can be
used to determine the existence of a minimal path for
a given pair of source and destination nodes in n-D
meshes.

• The concepts of fully and partially adaptive routing in
n-D meshes are formally defined. It is shown that the
planar-adaptive routing [17] fails to meet the proposed
partial adaptivity requirement.

• A dynamic planar-adaptive routing is proposed and it is
used to prove that any minimal routing that is partially
adaptive can be applied in our model as long as the
destination node meets a certain safety requirement.

• A simple deadlock-free implementation of dynamic
planar-adaptive routing is presented using n (n+1 when
n is even) virtual channels in an n-D mesh.

The selection of a switching method is not covered in this
paper. Basically, the proposed approach can potentially be
used for all methods: packet switching, circuit switching,
wormhole switching [18], virtual cut-through [19] and
pipelined circuit switching [20].

The collision-free routing in the presence of obstacles is
also studied in other fields such as routing urban vehicles,
motion planning in robotics and wire routing in VLSI. The
foci in these fields are different. For example, given a
set of obstacles and two points in the plane, most studies
try to find a shortest path, not necessarily a minimal one,
among all the available collision-free paths. In addition,
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FIGURE 1. An n-D mesh.

most problems are optimization problems associated with a
certain optimization function, such as the minimum number
of bends as in VLSI routing. See [21] for a survey of
research in these fields.

This paper is organized as follows. Section 2 presents
some preliminaries. Section 3 proposes the Fault Region
model in n-D meshes. Section 4 introduces the concept
of Extended Safety Level as a special form of limited
global information. Section 5 offers a simple adaptive
and minimal routing algorithm based on limited global
information provided in n-D meshes. It is shown that
any partially-adaptive and minimal routing algorithm can
be applied in our model, as long as the destination meets
a certain safety requirement. Section 6 discusses possible
extensions, including a strengthened sufficient condition, the
application of the proposed approach in an n-D torus and
deadlock-free and livelock-free routing. Section 7 concludes
the paper. The proofs of all the theorems are listed in the
Appendix.

2. NOTATION AND PRELIMINARIES

A k-ary n-D mesh with kn nodes has an interior node degree
of 2n and a network diameter of n(k − 1). Each node u has
an address (u1, u2, . . . , un), where ui ∈ {0, 1, . . . , k − 1}
corresponds to the location of u in dimension di . Two nodes
v, (v1, v2, . . . , vn), and u, (u1, u2, . . . , un), are connected
if their addresses differ in one and only one element
(dimension), say dimension di ; moreover, |ui − vi | = 1.
Basically, nodes along each dimension are connected as a
linear array. In the subsequent discussion, a k-ary n-D mesh
is simply denoted as an n-D mesh without specifying its size.

A coordinate system in an n-D mesh is defined with its
‘floating’ origin in node (0, 0, . . . , 0) adjustable by constant
c (see Figure 1). A di-dimensional axis (denoted as di-axis)
consists of nodes with addresses (0, 0, . . . , 0, ui, 0, . . . , 0),

where ui is an integer. Because of the floating origin of
the mesh, we can assume without loss of generality that the
source in a routing is (0, 0, . . . , 0) and the destination is
(u1, u2, . . . , un). Along each dimension di , there are two
directions: positive di (also di+) and negative di (di−).
Along the positive di (negative di) dimension, the coordinate
in dimension di increases (decreases). Clearly, there are 2n

directions in an n-D mesh.
Routing is a process of sending a packet from a source

to a destination. A routing is minimal if the length of
the routing path from source (0, 0, . . . , 0) to destination
(u1, u2, . . . , un) is the distance between these two nodes,
i.e.

∑n
i=1 |ui |. Throughout this paper, we focus on minimal

routing in an n-D mesh with faulty nodes. The challenge is
to find a minimal path (if there exists one) by avoiding faults
in the system.

The simplest routing algorithms are deterministic which
define a single path between the source and destination
nodes. The routing following the dimension order is an
example of deterministic routing in which the packet is
first forwarded along dimension d1 and is then routed along
dimension d2, and so on. Finally the routing packet is
forwarded along dimension dn. Adaptive routing algorithms,
on the other hand, support multiple paths between the source
and destination nodes. Fully adaptive and minimal routing
algorithms allow all packets to use any minimal paths.
A preferred direction is one along which the neighbor is
closer to the destination. In an n-D mesh, there are at
most n preferred directions, out of 2n possible directions,
for a routing process. Actually, the number of preferred
directions is equal to the number of dimensions spanned by
the source and destination pair. For example, suppose in a
routing in a 3-D mesh that the source is (2,−2,−4) and
the destination is (1, 2,−3), then preferred dimensions at
the source are west (negative d1), north (positive d2) and
front (positive d3). During a minimal routing, the number
of preferred directions from an intermediate node to the
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destination reduces and it eventually becomes zero upon
reaching the destination.

DEFINITION 1. A minimal routing is fully adaptive if it
can select any preferred direction at any step of the routing
process. A minimal routing is partially adaptive if it can
select from at least two preferred directions at any step
whenever there are two or more preferred directions.

3. FAULT REGION

Before proposing a minimal routing algorithm in an n-D
mesh with faulty components, we first discuss the fault
model under consideration. This paper considers node faults
only. To simplify the routing process, a labeling scheme is
introduced to quickly identify those non-faulty nodes that
cause routing difficulty and disable them. As a result, a set
of convex-type fault regions is formed.

DEFINITION 2. In an n-D mesh, a non-faulty node is
either marked enabled or disabled. Initially, all non-
faulty nodes are marked enabled. A non-faulty node is
marked disabled if there are two or more disabled or
faulty neighbors along different dimensions. A fault region
contains all the connected disabled and faulty nodes.

Based on Definition 2, there are three types of nodes:
faulty nodes, enabled nodes and disabled nodes. The node
status can be easily determined through rounds of status
exchanges among neighboring nodes. The number of rounds
of information exchanges is dependent on the maximum
size of the fault region. Rounding information can be
implemented asynchronously and independently at each
node. That is, each node updates its status only when there
is a status change of a neighbor. It is assumed that both
source and destination nodes in a routing process are non-
faulty and they are marked enabled. A fault region has
the following desirable features that facilitate simple and
minimal routing.

THEOREM 1. In an n-D mesh, a fault region defined by
Definition 2 has the following properties:

(1) every neighbor of a fault region has one and only one
faulty or disabled neighbor (in the fault region);

(2) the distance between any two fault regions is at least
two.

With the first property of fault region (also called the
convex feature), the address of a fault region can be simply
described by a range along each dimension, e.g. fi : f ′

i , with
fi ≤ f ′

i , specifying the range along dimension di . A general
fault region can be represented by [f1: f ′

1, f2: f ′
2, . . . , fn:

f ′
n] which covers

∏n
i=1(f

′
i − fi + 1) nodes. When the

range along a dimension is one, say fi : fi , the number of
dimensions spanned by the corresponding region is reduced
by one.

For n-D meshes with boundary, we can add ‘ghost’ nodes
around boundary nodes to change these nodes to regular
interior nodes. Ghost nodes are assumed to be non-faulty
and are marked enabled. The ghost nodes are ‘imaginary’

d  2
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(0,0,0)

(3,4,2)

(3,5,2)

(3,5,1)

(5,4,2)

d  1

faulty node
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FIGURE 2. Fault regions in a 3-D mesh.

nodes. They do not exist. With such imaginary nodes,
boundary nodes become interior nodes. In this case, we can
use a uniform procedure to calculate and update node status.
Note that in some models, such as the one proposed by Chien
and Kim [17], a pessimistic fault model is used. Specifically,
one of the ghost nodes has to be marked disabled, hence
generating more disabled nodes in the given mesh.

The concept of faulty cube in 3-D meshes stems from the
faulty block model [16, 22, 23, 24, 25] in 2-D meshes. In
3-D meshes, fault regions are called faulty cubes. Figure 2
shows a 3-D mesh with four faulty nodes (3, 4, 2), (3, 5, 1),
(3, 5, 2) and (5, 4, 2). Based on Definition 2, these four
faulty nodes generate two disjoint faulty cubes: [3:3, 4:5,
1:2] (also called a faulty block in 2-D meshes) and [5:5, 4:4,
2:2], a single node. To study properties of a faulty cube, we
first give the following definition: a cube is a solid that has
six surfaces and any two cross sections perpendicular to the
same surface generate two rectangles of the same size and
shape.

THEOREM 2. In a 3-D mesh, a faulty cube defined by
Definition 2 has the following properties:

(1) each faulty cube is a cube;
(2) each of the six surfaces of the faulty cube is

perpendicular to an axis in 3-D meshes.

Figure 3a shows the average number of (synchronous)
rounds needed to form a set of disjoint fault regions in 2-D
meshes (which is 100 × 100) and 3-D meshes (which is
21 × 21 × 21). Figure 3b shows the average number of
non-faulty nodes marked as disabled in 2-D meshes and 3-D
meshes. Results show that the average number of rounds
needed to form fault regions is between one and four if the
number of faulty nodes stays within 100. The number of
non-faulty nodes marked as disabled is small compared to
the number of faulty nodes in the system (this is especially
true in 2-D meshes). Recently, Wu [26] proposed a new fault
model called Orthogonal Convex Fault Region which can be
built from a given fault region by enabling many disabled
nodes. The bisection of the region in any 2-D space is an
orthogonal convex polygon.
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FIGURE 3. (a) The average number of rounds needed to construct
fault regions. (b) The average number of non-faulty nodes marked
disabled.

4. EXTENDED SAFETY LEVEL

In this section, an information model representing fault
distribution is studied. We first extend the safety level
concept to n-D meshes. The Safety Level [11] concept was
originally proposed to capture limited global information
in a binary hypercube. It was extended to 2-D meshes as
Extended Safety Level [14] which includes four elements,
each of which indicates the distance to the closest faulty
block to east, south, west and north of the current node. The
limited global information (captured by Extended Safety
Level) at each node can be used to decide the feasibility
of a minimal routing. The following shows an important
theorem that leads to our Extended Safety Level definition
in n-D meshes and it serves as a basis of our approach.

THEOREM 3. Assume that node (0, 0, . . . , 0) is the
source and node (u1, u2, . . . , un) is the destination. If there
is no fault region that intersects with any of the axes, there
exists at least one minimal path between (0, 0, . . . , 0) and
(u1, u2, . . . , un). This result holds for any location of the
destination and any number and distribution of fault regions.

The above result can be strengthened by including the
location of destination (u1, u2, . . . , un).

COROLLARY 3. Assume that node (0, 0, . . . , 0) is the
source and node (u1, u2, . . . , un) is the destination. If there
is no fault region that intersects with the sections of [0, ui]
along the di-axis for all i ∈ {1, 2, . . . , n}, then there exists at

least one minimal path between the source and destination
nodes.

Note that the role of source and destination can be
interchanged if there exists a minimal path between them.
That is, if there exists a minimal path from a source to
a destination, then there exists a minimal path from the
destination to the source. However, their roles cannot be
interchanged in Theorem 3 (and Corollary 3). This is
because if a source node is extended safe with respect to a
destination, it does not imply that the destination is extended
safe with respect to the source.

The following definition gives an extended safety level
definition for n-D meshes. The source node (0, 0, . . . , 0)

is associated with a 2n-tuple (p1, n1, p2, n2, . . . , pn, nn),
where pi and ni represent the distance to the closest
fault region along the positive and negative di dimensions,
respectively. Basically, Extended Safety Level is coded
information about fault distribution in the neighborhood.
Such information can be used to determine the existence
of a minimal path between a given pair of source and
destination nodes. Symbol − is used to represent the
fact that there is no fault region along the corresponding
direction. A node is called safe if its extended safety level
is (−,−, . . . ,−); otherwise, it is unsafe. In a 3-D mesh,
each node is associated with a vector (E,W,N, S, F,B) to
represent the distance to the closest faulty cube along the
east (positive d1), west (negative d1), north (positive d2),
south (negative d2), front (positive d3) and back (negative
d3) directions. In a 2-D mesh, each node is associated with a
vector (E,W,N, S). Figure 4 shows a faulty 8×8 2-D mesh
with extended safety levels associated with unsafe nodes.

DEFINITION 3. The extended safety level of node
(0, 0, . . . , 0) in a given n-D mesh is a 2n-tuple:
(p1, n1, p2, n2, . . . , pn, nn). This node is extended safe
with respect to a destination (u1, u2, . . . , un) if |ui | ≤ pi

(when ui > 0) and |ui | ≤ ni (when ui < 0) for all
i ∈ {1, 2, . . . , n}; otherwise, it is extended unsafe.

An intuitive explanation of the extended safe node is the
following: a node is extended safe to a destination node,
as long as there is no fault region that intersects with the
sections between the source and the destination along each
axis. Based on Corollary 3, there always exists a minimal
path between two nodes, as long as one node is extended
safe with respect to the other.

Like fault regions, the extended safety level of each
node can be calculated through iterative rounds of message
exchanges among neighboring nodes. Assume that each
node knows the status of its neighbors (faulty, enabled and
disabled). When a node identifies a faulty or disabled
neighbor, it passes information to the neighbor in the
opposite direction. For example, if the neighbor to its
positive di dimension is faulty or disabled, the current node
passes information (distance ‘2’ and direction ‘positive di’)
to its neighbor at the negative di dimension. Once a node
receives fault information it keeps a copy and increments its
distance value by one before forwarding it to the neighbor
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FIGURE 4. A faulty 8 × 8 2-D mesh with extended safety levels associated with unsafe nodes.

in the opposite direction. Clearly, each node will receive
up to 2n distance values together with their directions from
2n different directions. The default value for each direction
is −; that is, there will be no overhead when there is no
fault in an n-D mesh. Since information is transmitted along
one direction in a dimension, the number of (synchronous)
rounds of message exchanges among neighboring nodes is
bounded by k in a k-ary n-D mesh; that is, O(k) in a kn-node
n-D mesh.

5. FAULT-TOLERANT ADAPTIVE AND MINIMAL
ROUTING

In this section, we first show that any fully adaptive and
minimal routing can be applied in any n-D meshes with
fault regions, as long as the destination is extended safe
with respect to the source. Then, we extend the result to
any partially-adaptive and minimal routing. It is shown that
the planar-adaptive routing [17] fails to meet the partially-
adaptive routing requirement.

Our fault-tolerant adaptive and minimal routing is based
on the following assumptions:

(1) the fault region defined earlier is used as the fault
model;

(2) the source knows the extended safety level of the
destination;

(3) each node knows the status of its adjacent nodes;
(4) only the static fault model is used, i.e. it is assumed that

no new fault occurs during a routing process.

5.1. Fully adaptive and minimal routing

For the convenience of feasibility checking of a routing
process, (0, 0, . . . , 0) is considered as a destination
with an Extended Safety Level (p1, p2, . . . , pn) and
(u1, u2, . . . , un) as a source with an Extended Safety Level
(n′

1, n
′
2, . . . , n

′
n) (still with ui ≥ 0 for all i ∈ {1, 2, . . . , n}).

Although destination (source) still holds a safety vector
(p1, n1, p2, n2, . . . , pn, nn) ((p′

1, n
′
1, p

′
2, n

′
2, . . . , p

′
n, n

′
n)),

a subvector is used because of the specific locations of
source and destination in the assumption.

The routing algorithm consists of two parts: feasibility
check and routing. Feasibility check at the source is applied
to check if it is possible to perform a minimal routing. This
can be easily done by comparing the relative coordinates
between the source and destination nodes with the safety
vector of the destination.

FEASIBILITY CHECK n-D-MESHES

{At source (u1, u2, . . . , un), destination (0, 0, . . . , 0)

with extended safety level (p1, p2, . . . , pn)}
if (u1, u2, . . . , un) ≤ (p1, p2, . . . , pn)

then returns YES
else returns NO.

FT-ROUTING IN n-D-MESHES

{At source (u1, u2, . . . , un)}
if Feasibility Check n-D-Meshes = YES
then apply any fully adaptive and minimal routing in
regular n-D meshes

else the proposed routing approach cannot be applied.

Before proving the correctness of the above approach, let
us look at its application in 2-D meshes. Again, assume
that (0, 0) is the destination and node (u1, u2) is the source,
with u1, u2 ≥ 0. If there is no fault region (faulty block
in 2-D meshes) that intersects with the d1-axis and d2-axis,
then there exists at least one minimal path from (u1, u2) to
(0, 0), i.e. the length of this path is |u1| + |u2|. Results in
[14] show that any fully-adaptive and minimal routing in a
2-D mesh can still be applied if the above condition holds
and there is no need of additional fault information during
the routing process. Whenever a packet reaches a faulty
block, it just goes around the block towards the destination
and it will never be forced on to a detour path or a trap where
backtracking is required.

In fact, given a source s and a destination d in a 2-D
mesh, all the intermediate nodes of a minimal path between
s and d are enclosed in a region of minimal paths (RMP)
(see Figure 5) which contains nodes and only nodes along
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FIGURE 5. A sample RMP in 2-D meshes.

minimal paths between s and d . The RMP is constructed
by determining two special paths (Path A and Path B) from
source to destination. Starting from the source, Path A is
constructed by going west (negative d1) until the d2-axis is
reached and then by going along the d2-axis towards the
destination. If the path hits a faulty block, it goes around
the faulty block by going South (negative d2). It then makes
a south-west turn when possible and continues going west
(negative d1). Path B is constructed in a similar way. It
starts from the source and goes south (negative d2) until the
d1-axis is reached and then goes along the d1-axis towards
the destination. If the path hits a faulty block, it goes around
the faulty block by going west (negative d1). It then makes
a west-south turn when possible and continues going south.

It is clear that any fully-adaptive and minimal routing for
regular 2-D meshes can still be applied to find a minimal
path, as long as the destination meets the above condition.
An intuitive explanation is that, because of the convex
nature of a faulty block, each faulty block can block at
most one dimension. Therefore, at least one dimension
remains free for any source and destination pair that spans
two dimensions. When the source (or an intermediate node)
and destination pair spans only one dimension, the condition
associated with the destination ensures that there is no faulty
block along that dimension.

The correctness of the proposed algorithm can be
described as follows through induction on dimension n.
Clearly, this algorithm works for 2-D meshes. Assume
that this algorithm works for meshes with up to n − 1
dimensions. In n-D meshes, we assume that a source (or an
intermediate node) and destination pair spans n dimensions;
otherwise, the problem is reduced to minimal routing in l-D
meshes (with l < n) and its correctness follows directly. In
other words, at each intermediate node the packet can be
forwarded along any one of the n dimensions. When an
intermediate node is adjacent to a fault region, since each
neighbor of a fault region is adjacent to exactly one disabled
(or faulty) node in the fault region, the packet can still
be forwarded along either one of the other directions (a

d 3

d 2

d 1

s: (11, 7, 4)
w

u

vd: (0, 0, 0)

F1:  [6:9, 5:8, -3:6]

F2:  [3:5, -3:6, 3:6]

FIGURE 6. A routing example in 3-D meshes.

fully-adaptive routing algorithm allows this). The disjoint
property of fault regions ensures that the routing process can
still enjoy (n − 1)-D freedom until it hits either a new fault
region or the offset along one dimension di is reduced to
zero, i.e. ui = 0. Based on the induction, a minimal path is
guaranteed in the remaining routing process.

Figure 6 shows a routing example in a 3-D mesh with
two faulty cubes. The routing starts from node (11, 7, 4)

and goes west (negative d1). Once the routing packet hits
faulty cube F1, [6:9, 5:8, −3:6], at node u, it turns south
(negative d2) and makes a south-west turn at node v (which
is the intersection of two adjacent surfaces of faulty cube
F1). The routing packet then goes west until it hits another
faulty cube F2, [3:4, −3:6, 3:5], at node w. It then turns
back (negative d3). Once the routing packet passes the
intersection of two adjacent surfaces of faulty block F2, the
remaining routing resembles the one in a regular 3-D mesh
without faulty cubes.

The proposed approach is simple, but a bit too
conservative. In fact, the destination can use its subvector
of the extended safety level (n′

1, n
′
2, . . . , n

′
n) to strengthen

the sufficient condition for a minimal routing.

EXTENDED FEASIBILITY CHECK n-D-MESHES

{At source (u1, u2, . . . , un) with extended safety
level (n′

1, n
′
2, . . . , n

′
n) destination (0, 0, . . . , 0) with

extended safety level (p1, p2, . . . , pn)}
if there exists i (= 1, 2, . . . , n) such that (u1, u2, . . . ,
ui − (n′

i − 1), . . . , un) ≤ (p1, p2, . . . , pi , . . . , pn)

then returns YES
else returns NO.

Identify a node v, (u1, u2, . . . , ui − (n′
i − 1), . . . , un),

which is n′
i − 1 hops away from destination u along

dimension di . The minimal routing can be divided into
two phases: first a deterministic minimal route from u

to v and second a dynamic minimal route from v to s.
Figure 7 shows such a two-phase routing process in a
2-D mesh. Note that the deterministic routing constraint
is essential. Otherwise, the routing process may enter a
position (w in Figure 7) where no minimal path to the source
exists. Clearly, the EXTENDED FLEXIBILITY CHECK N-
D MESHES extends the sufficient condition of Theorem 3.
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d 1

d 2

(0,0)

u: (u 1 , u 2  )

w

v

p 2

p 1

n ’  1

n ’  2

FIGURE 7. A two-phase routing process in 2-D meshes: from u

to v and from v to s.

That is, a minimal path may still exist even if a fault region
intersects with the section [0, ui] along the di-axis.

The sufficient condition can be further enhanced by
making use of the neighbors’ safety status. For example,
a minimal routing is still possible if one of the preferred
neighbors (of the source) meets the safety requirement with
respect to the destination. A sub-minimal routing exists
if one of the spare neighbors (ones that are not preferred
neighbors) meets the safety requirement with respect to the
destination. The path length in a sub-minimal routing is
the corresponding minimal path plus two. In either case,
the source first forwards the routing packet to the selected
neighbor (preferred or spare) and the proposed routing
process is applied with the selected neighbor being the new
source. Other possible extensions of the sufficient condition
are discussed in the section on extensions.

5.2. Minimal routing based on planar-adaptive routing

Deadlock due to dependencies on consumption resources
(such as channels) is a fundamental problem in routing. A
deadlock involving several routing processes occurs when
there is a cyclic dependency for consumption channels.
Livelock occurs when a routing packet travels around its
destination node, never reaching it because the channels
required to do so are occupied by other packets. Livelock
is relatively easy to avoid, in fact any minimal routing is
livelock-free.

To ensure freedom of deadlock and to support a
‘truly’ fully-adaptive routing without using the flow control
mechanism, Linder and Harden [27] showed a virtual
network approach that requires O(2n) virtual channels [28]
in an n-D mesh. In this approach, each physical channel
may support several logical or virtual channels multiplexed
across the physical channel. The reason for using multiple
channels is to avoid cyclic dependencies among channels to
prevent deadlock. Other simpler approaches [29, 30] exist

that support fully-adaptive routing using a constant number
of virtual channels. However, routing decisions have to be
made based on accurate buffer status, i.e. routing and flow
control have to be coupled.

Planar-adaptive routing [17] is one of the popular
partially-adaptive routings that requires few virtual channels
(three), which, at the same time, allows flow control and
routing to be decoupled. It offers cost-effectiveness in
preventing deadlock while still keeping a certain degree of
adaptivity. Planar-adaptive routing restricts the way the
routing packet is routed. Specifically, the routing packet
is routed following a series of 2-D planes, A1, A2, . . . , An,
in an n-D mesh. Each 2-D plane Ai is formed by two
dimensions di and di+1. Plane An consists of dimensions
dn and d1. Planes Ai and Ai+1 share dimension di+1.
However, the order of dimensions is arbitrary. If the offset
in dimension di is reduced to zero, then routing can be
immediately shifted to plane Ai+1. Applying this routing
approach to 3-D meshes, we first construct two planes A1
and A2. Assume A1 contains dimensions d1 and d2 and
plane A2 contains d2 and d3 (see Figure 8a). Again, assume
that the source is (u1, u2, u3) and the destination is (0, 0, 0).
The routing starts from (u1, u2, u3) along plane A1 which is
plane d3 = u3; once the offset in dimension d1 is reduced
to zero it switches to plane A2 which is plane d1 = 0 (see
Figure 8a).

Unfortunately, planar-adaptive routing cannot be directly
applied to achieve fault-tolerant and minimal routing using
our model. Consider a routing example in a 3-D mesh with
source (3, 3, 3) and destination (0, 0, 0). Assume that there
is a faulty cube [1:2,−1:4, 2:4]. Clearly, all the minimal
paths from (3, 3, 3) in plane A1, d3 = 3, to any node along
an adjacent line, d3 = 3 and d1 = 0, of planes A1 and A2
are blocked by the faulty cube.

However, if we strengthen the constraint at destination
(0, 0, 0) in a 3-D mesh to the statement that: there is no
faulty cube that intersects with planes d1 = 0, d2 = 0 and
d3 = 0, then the planar-adaptive routing can still be applied.

THEOREM 4. Consider a 3-D mesh with faulty cubes. If
there is no faulty cube that intersects with planes d1 = 0,
d2 = 0 and d3 = 0, then the planar-adaptive routing can
be applied in FT-ROUTING IN n-D-MESHES to any source
(u1, u2, u3) to generate a minimal path to (0, 0, 0).

The above result can be extended to n-D meshes using a
similar proof.

COROLLARY 4. Consider an n-D mesh with fault regions.
If there is no fault region that intersects with planes d ′

1 =
d ′

2 = . . . = d ′
n−2 = 0, where {d ′

ii | ∈ {1, 2, . . . , n − 2}} is
a subset of {di | i ∈ {1, 2, . . . , n}} then the planar-adaptive
routing can be applied in FT-ROUTING IN n-D-MESHES

to any source (u1, u2, . . . , un) to generate a minimal path to
(0, 0, . . . , 0).

The above result shows that planar-adaptive routing can
still be applied in an n-D mesh with fault regions under a
strengthened constraint (i.e. a weaker sufficient condition
associated with the destination node). Note that there are
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FIGURE 8. Planar-adaptive routing.

(
n
2

)
planes defined in Corollary 4, compared with n axes

in Theorem 3. That is, it is less likely for a destination
to meet the strengthened constraint than the one based on
the extended safety level. Moreover, it is more difficult
and expensive for each node to calculate its safety status
under the strengthened constraint: each node needs to collect
information in

(
n
2

)
adjacent planes instead of nodes along n

dimensions.
Clearly, the above problem stems from the planar-adaptive

routing itself, which is too restrictive. The question is
whether other partially-adaptive and minimal routing exists
that can still be used in FT-ROUTING IN n-D-MESHES.

5.3. Partially-adaptive and minimal routing

The proposed fault-tolerant and minimal routing applies to
any fully-adaptive routing in a regular n-D mesh but fails
to apply to the planar-adaptive routing. The traditional X–
Y routing in 2-D meshes is not a partially-adaptive routing,
since at any step the routing process can have only one
choice. The planar-adaptive routing also fails to meet the
partially-adaptive routing requirement. In the 2-D plane Ai ,
when the offset in dimension di+1 is first reduced to zero,
the planar adaptive routing is forced to reduce the offset of
di before switching to the 2-D plane Ai+1. That is, only one
preferred direction can be selected even though more than
one exists.

Partially-adaptive and minimal routing can also be ranked
in terms of the degree of adaptivity. A set of preferred
directions that can be selected at an intermediate node
(including the source) is called a set of legitimate preferred
directions at this node. A partially-adaptive routing R1 is
more restrictive than another one R2 if at any intermediate
node (including the source) the set of legitimate preferred
directions of R1 is a subset of that of R2; in addition, the
set of legitimate preferred directions of R1 is a proper subset
of that of R2 at at least one intermediate node (including
the source). Note that the relation ‘more restrictive’ is a
partial order; that is, not every two partially-adaptive routing
algorithms can be compared under this relation.

We introduce here a most restrictive partially-adaptive
routing, called dynamic planar-adaptive routing. Like

regular planar-adaptive routing, the routing packet is routed
through a series of 2-D planes. Two adjacent planes still
share a common dimension. The difference is that the planes
in the series are dynamically generated. Again we use
3-D meshes to illustrate this approach. Suppose we select
dimensions d1 and d2 in A1, then there are two possible
choices in selecting dimensions in A2. One possibility is
dimensions d1 and d3 and the other one is dimensions d2
and d3. Again, the routing starts from plane A1, d3 = u3,
and within this plane randomly reduces offsets in dimension
d1 and dimension d2. If the offset in dimension d1 is
reduced to zero before that in dimension d2, A2 which spans
dimensions d2 and d3 is selected (see Figure 8a); otherwise,
A2 that spans dimensions d1 and d3 is used (see Figure 8b).

LEMMA 5. Consider a 3-D mesh with faulty cubes.
If there is no faulty cube that intersects with the axes d1,
d2 and d3, then the dynamic planar-adaptive routing can
be applied in FT-ROUTING IN n-D-MESHES to any source
(u1, u2, u3) to generate a minimal path to (0, 0, 0) (assume
that destination (0, 0, 0) is extended safe with respect to the
source).

THEOREM 5. Consider an n-D mesh with fault regions.
If there is no fault region that intersects with any axis di , i ∈
{1, 2, . . . , n}, then the dynamic planar-adaptive routing can
be applied in FT-ROUTING IN n-D-MESHES to any source
(u1, u2, . . . , un) to generate a minimal path to (0, 0, . . . , 0)

(assume that destination (0, 0, . . . , 0) is extended safe with
respect to the source).

Based on the result of Theorem 5, we conclude that
any partially-adaptive and minimal routing (which is less
restrictive than the dynamic planar-adaptive routing) can be
applied in our model.

6. EXTENSIONS

In this section, we discuss possible extensions, including
an enhanced sufficient condition, the application of the
proposed approach in an n-D torus and deadlock-free and
livelock-free routing.
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d: (0,0,0)

s: (10, 9, 7)
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d

FIGURE 9. (a) A failure condition. (b) An enhanced sufficient condition.

6.1. An enhanced sufficient condition

Before considering possible extensions of the proposed
model, we first re-examine the sufficient condition. The
EXTENDED FLEXIBILITY CHECK N-D MESHES extends
the sufficient condition of Theorem 3. That is, a minimal
path exists even if a fault region intersects with the section
[0, ui] along the di-axes. However, the sufficient condition
still fails when fault regions intersect two or more axes. On
the other hand, a minimal path may still exist as in the case
of Figure 9a where two faulty cubes F1 and F2 intersect
the d2 and d1 axes, respectively. However, a minimal path
exists between nodes (10, 9, 7) and (0, 0, 0). Clearly, a
stronger condition cannot be directly associated with source
or destination node.

The following result provides an enhanced sufficient
condition for the existence of a minimal path between nodes
(0, 0, 0) and (u1, u2, u3). The condition is associated with
node v in region [0:u1, 0:u2, 0:u3] (see Figure 9b).

THEOREM 6. Consider two nodes (0, 0, 0) and
(u1, u2, u3) in a 3-D mesh. If there exists a node v,
(v1, v2, v3), with 0 ≤ vi ≤ ui , such that nodes along three
line sections d1 = v1 and d2 = v2, d1 = v1 and d3 = v3,
d2 = v2 and d3 = v3 within region [0:u1, 0:u2, 0:u3]
are fault-free, a minimal path exists between (0, 0, 0) and
(u1, u2, u3).

Clearly, Theorem 3 is a special case of Theorem 6 with
node s chosen as node v. Theorem 6 can be easily extended
to n-D meshes using a similar proof. In the following,
we use (v1, v2, . . . , vi−1, ∗, vi+1, . . . , vn) to represent a line
section (d1 = v1) ∧ (d2 = v2) ∧ . . . ∧ (di−1 = vi−1) ∧
(di+1 = vi+1) ∧ . . . ∧ (dn = vn), that is, this line section is
along dimension di .

COROLLARY 7. Consider two nodes (0, 0, . . . , 0)

and (u1, u2, . . . , un) in an n-D mesh. If there exists

a node v, (v1, v2, . . . , vn), with 0 ≤ vi ≤ ui ,
such that nodes along n line sections (∗, v2, . . . , vn),
(v1, ∗, . . . , vn), . . . , (v1, v2, . . . , vn−1, ∗) within region
[0:u1, 0:u2, . . . , 0:un] are fault-free, a minimal path exists
between (0, 0, . . . , 0) and (u1, u2, . . . , un).

6.2. Extensions to 3-D meshes with boundary

The proposed approach can also be applied to k-ary n-D
meshes; that is, the number of nodes along a dimension is
bounded by k. Healthy ‘ghost’ nodes are added along the
boundary of each dimension. In this way, a given mesh with
boundary is converted to one without boundary. Again, 3-D
meshes are used to illustrate the approach. Faulty cubes can
still be defined in the same way. For example, the south-
west and front corner (a node with three adjacent ‘ghost’
nodes along west, south and front) has an extended safety
level (∗,−, ∗,−,−, ∗), where ∗ represents a component that
depends on the fault distribution in the given 3-D mesh.

Notice the difference between our approach and the
one proposed by Chien and Kim [16]. In [16], ‘ghost’
nodes along the boundary of each dimension are considered
faulty. In fact, the rule for enabled/disabled nodes is more
complicated. Corner nodes (including ones with two or
more adjacent ‘ghost’ nodes) are considered to have only
one adjacent ‘ghost’ node. Based on Chien and Kim’s
fault region definition which is the same as the faulty cube
definition, a faulty boundary node (a node with at least one
adjacent ‘ghost’ node) will disable the whole 2-D boundary
plane that contains this node (one of the six 2-D boundary
planes of a 3-D mesh)! We can easily prove that if there is
one fault in each cross-section (along an axis) of a given 3-D
mesh, all the nodes in the 3-D mesh will be marked disabled
based on Chien and Kim’s model.

Consider an example of a k × k × k mesh as shown in
Figure 10. Suppose there is one column of faulty nodes (the
black column in Figure 10a) in the d3 = c cross-section.
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FIGURE 10. (a) Plane d3 = c and (b) plane d2 = i, i ∈ {0, 1, . . . , k − 1}, in a k × k × k mesh.

Based on Chien and Kim’s fault region definition, the
complete d3 = c cross-section will be disabled. Then for
each cross section d2 = i, i ∈ {0, 1, . . . , k − 1}, as shown
in Figure 10, since one strip (marked as gray) is marked
disabled, the corresponding cross-section is also disabled.
Therefore, all the nodes in the given 3-D mesh are marked
disabled (although there are only as few as k faulty nodes
among k3 nodes!). However, using our faulty cube model,
all non-faulty nodes are marked enabled in the example
of Figure 10. In other words, any partially-adaptive and
minimal routing can still be applied as long as the destination
meets the safety requirement.

Note that Chien and Kim’s planar-adaptive routing cannot
be applied using the fault model proposed in this paper, not
even for non-minimal routing. Consider again the example
of Figure 10, with two planes A1 (d1 and d2) and A2 (d2
and d3). Suppose the source is on cross-section d3 = c and
is at the east side of the faulty column, and the destination
is at the south-west corner of another cross-section d3 = c′
(c �= c′). Clearly, regular planar-adaptive routing fails, since
the offset in dimension d1 cannot be reduced to zero using
any non-minimal path in plane d3 = c, although there exists
a minimal path in the 3-D mesh. Applying adaptive planar-
adaptive routing, the offset in dimension d2 will be first
reduced to zero and then the routing continues on A2 (d1
and d3) to the destination. The above argument and results
can be easily extended to n-D meshes with boundary.

6.3. Extensions to n-D tori

Our results here can be easily extended to an n-D torus.
A torus is a mesh with wraparound connections. Since an
n-D mesh is a subgraph of an n-D torus, any solutions for
n-D meshes can be directly applied to n-D tori. However,
since an n-D torus has extra connections, solutions can be
simplified and cost can be reduced. Another difference is
that a fault region in an n-D torus may affect the safety level
of a node in both directions of a dimension because of the
wraparound links.

However, once the extended safety level has been decided
at each node, the same sufficient condition (Theorem 3 and

Corollary 3) can be applied in an n-D torus. Specifically,
when the source and destination nodes are randomly
distributed, say source (u1, u2, . . . , un) with safety vector
(p1, n1, p2, n2, . . . , pn, nn) and destination (0, 0, . . . , 0),
the conditions in Corollary 3 can be changed to the
following: |ui | < pi (if ui mod k ≥ −ui mod k) or |ui | <

ni (if ui mod k ≤ −ui mod k) for all i, where 1 ≤ i ≤ n.

6.4. Deadlock and livelock freedom

Unlike many non-minimal fault-tolerant routing algorithms,
the deadlock issue in the proposed model can be easily
solved through the use of virtual networks [27], where a
given physical network consists of several virtual networks.
Each virtual network is partitioned into several virtual
channels arranged in such a way that no cycle exists among
channels, i.e. there is no intra-virtual-network cycle.

Partition a 3-D mesh into eight subnetworks: d1 + d2 +
d3+, d1 + d2 + d3−, d1 + d2 − d3+, d1 + d2 − d3−,
d1 −d2 +d3+, d1 −d2 +d3−, d1 −d2 −d2+, d1 −d2 −d3−.
Figure 11a shows the subnetwork d1 +d2 +d3+. Depending
on the relative location of the source and destination nodes,
one of the eight virtual subnetworks is selected and the
corresponding routing can be completed within the selected
subnetwork without using any other subnetwork. In this
way, any inter-virtual-network cycle is avoided. Converting
to virtual channel usage, this approach needs four virtual
channels. For example, if source and destination are
(u1, u2, u3) and (0, 0, 0), respectively, if u1 > 0, u2 < 0 and
u3 > 0, subnetwork d1 − d2 + d3− is selected. To reduce
the number of virtual channels, eight subnetworks can be
paired together to form four subnetworks: d1 − d2 − d3∗,
d1 ∗ d2 + d3−, d1 ∗ d2 + d3+ and d1 + d2 − d3∗, where ∗
stands for + and −, i.e. a bidirectional channel. Figure 11b
shows the d1 ∗ d2 + d3+ subnetwork. Clearly, at most
three virtual channels are required along each dimension. It
can be easily shown that three virtual channels are required
for dynamic planar-adaptive routing for minimal routing.
Therefore, within the context of minimal routing in 3-D
meshes, dynamic planar-adaptive routing offers better fault
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FIGURE 11. (a) A network partition d1 + d2 + d3+. (b) A network partition d1 ∗ d2 + d3+.
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FIGURE 12. (a) The tree structure of adjacent 2-D planes. (b) The compact tree structure.

tolerance and adaptivity without using extra virtual channels
compared with planar-adaptive routing.

In general, the adjacent 2-D planes in the dynamic planar-
adaptive routing form a tree as shown in Figure 12a. Here,
ij (i, j ∈ {1, 2, . . . , n} and i < j ) represents a plane that
includes dimensions d1 and d2. Clearly, planes that have
the same dimensions can be combined to form a compact
tree structure as shown in Figure 12b. Based on Figure 12b,
a series of virtual subnetworks VSNij is constructed, with
one subnetwork for each node ij of the tree in Figure 12b.
Specifically,

VSNij : di + dj+, di + dj−, di − dj+, di − dj − .

Clearly, two virtual channels are used in SNij . Since each,
i ∈ {1, 2, . . . , n}, appears exactly n−1 times in the compact
tree in Figure 12b, 2(n − 1) virtual channels are needed. A
total order on VSN can be defined based on the partial order
defined in Figure 12b. The use of these subnetworks strictly
follows the total order to avoid cyclic dependency among
virtual subnetworks VSN. To reduce the overall number of
virtual channels, VSNij can be defined as

VSNij : di + dj∗, di − dj ∗ .

Three virtual channels are used for VSNij with one for di

and two for dj . Since there are n(n − 1)/2 VSN’s and
n dimensions, based on the pigeon hole principle, at least

3(n − 1)/2 virtual channels are needed. The following
theorem shows that it is possible to further reduce the
number of virtual channels to n (n + 1 is n is even) in an
n-D mesh.

THEOREM 7. It is possible to construct a set of virtual
networks with n (n + 1 when n is even) virtual channels for
an n-D mesh to ensure freedom of deadlock using dynamic
planar-adaptive routing.

7. CONCLUSIONS

We have proposed a general theory of minimal routing in
n-D meshes with fault regions. Unlike many traditional
models that assume all the nodes know the global fault
distribution or only adjacent fault information, our approach
is based on the limited distribution of fault information.
Specifically, we have proposed three fault-tolerant adaptive
and minimal routing algorithms based on the proposed
Extended Safety Level information associated with each
node in n-D meshes. Our approach is the first attempt
to provide insight into the design of fault-tolerant and
minimal routing in n-D meshes. The Extended Safety Level
model is a practical one that captures fault information
in a concise format and supports various applications
such as minimal routing. This study has shown that the
safety level concept for binary hypercubes can still be
effectively used in low-dimensional meshes with a proper
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extension. We have also shown that any partially-adaptive
and minimal routing can be applied as long as the destination
node meets a certain condition. Our future research will
focus on extending the proposed approach to collective
communications [31], which include multicast, broadcast
and barrier synchronization.
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APPENDIX

Proof of Theorem 1. (1) can be derived straightforwardly
from the definition of fault region. In order to show that
the distance between any two fault regions is at least two,
we show that the distance is at least two and distance-two
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cases exist. If two fault regions are less than distance two,
they are adjacent and must be grouped into one based on the
definition. When an n-D mesh contains two faulty nodes that
are distance two apart along one dimension and they have
the same coordinates along the other two dimensions, these
two nodes form two fault regions. For example, faulty nodes
(u1, u2, . . . , un) and (u1+2, u2, . . . , un) are such examples.
The common adjacent node (u1 + 1, u2, . . . , un) is marked
enabled. ✷

Proof of Theorem 2. Construct two 2-D planes that are
perpendicular to an axis and both intersect with a given
faulty cube. Without loss of generality, we assume that these
two planes are adjacent, d1 = u1 and d1 = u1 + 1, and are
perpendicular to the d1-axis. If we can show that the two
regions generated from the intersections of the faulty cube
and these two planes are two identical rectangles, we prove
that the faulty cube is a cube (since dimension d1 can be
replaced by d2 and d3 to show cases for other cross-sections).
The shapes of the regions in both planes are rectangles
based on the definition of faulty blocks in 2-D meshes [14].
Suppose the two rectangles are not identical. Without loss
of generality, we assume that there exists a node (u1, u2, u3)

that is just outside the fault region in plane d1 = u1 (i.e. it
has one neighbor on plane d1 = u1 that is inside the faulty
region); however, node (u1 + 1, u2, u3) is inside the fault
region in plane d1 = u1 + 1. Since node (u1, u2, u3) is
adjacent to two disabled nodes, it should be marked disabled
based on Definition 1. This contradicts the condition that
it is outside the fault region. Therefore, any cross-section
perpendicular to the d1-axis generates two rectangles of the
same size and shape. The same procedure can be applied to
the other two cross-sections. Therefore, the faulty cube is a
cube. In addition, each of the six surfaces of the faulty cube
is perpendicular to an axis in 3-D meshes. ✷

Proof of Theorem 3. We assume that ui ≥ 0 for all i

∈ {1, 2, . . . , n}. Other cases can be proved in a similar way.
This theorem is proved by induction on n, the dimension
of the given mesh. When n = 2, it has been proved [14]
that this theorem hold for 2-D meshes. Assume this theorem
holds for all n-D meshes with n < l, we then prove this
theorem holds for l-D meshes. It is assumed that ui are non-
zero in destination (u1, u2, . . . , ul); otherwise, the routing is
reduced to that within a mesh with a smaller dimension and,
based on the induction assumption, the theorem holds.

We can take another level of induction on the number of
fault regions (f ) in an l-D mesh. When f = 1, i.e. there is
only one fault region in the l-D mesh, the following minimal
routing approach can be followed.

• Route along the negative dl dimension, i.e. starting at
the destination node, ul (the distance to the destination
along dimension dl) is reduced (to zero) by going along
the negative dl dimension.

• If the fault region is not along the path, the routing
process is reduced to that in an (l − 1)-D mesh.

• If the fault region is along the path, assume the fault
region is [f1: f ′

1, . . . , fl−1: f ′
l−1, fl : f ′

l ]. Clearly,

f ′
1 < ul . The routing process is blocked at node

(u1, u2, . . . , ul−1, f
′
l + 1). The remaining routing

process is done by going along the negative dl−1
dimension to node (u1, u2, . . . , 0, f ′

l +1). The problem
is again reduced to that in an (l − 1)-D mesh.

It is assumed that the theorem holds for l-D meshes with
up to f = k − 1 faulty regions. Cases for l-D meshes
with f = k faulty regions are considered. Again, the above
minimal routing approach is adopted.

• Route along the negative dl dimension, i.e. starting at
destination node u, ul is reduced (to zero) by going
along the negative dl dimension.

• If the fault region is not along the path, the routing is
reduced to that in an (l − 1)-D mesh.

• If there is a fault region along the path, assume the
first fault region F is [f1: f ′

1, . . . , fl−1: f ′
l−1, fl : f ′

l ].
Clearly, f ′

l < ul . The routing process is blocked
at node (u1, u2, . . . , ul−1, f

′
1 + 1). The remaining

routing process is done by going along the negative
dl−1 dimension to either node (u1, u2, . . . , fl−1 − 1,

f ′
l + 1) (it is a ‘corner node’ of the fault region) or

node (u1, u2, . . . , 0, f ′
l + 1), whichever comes first.

In the later case, since the dimension size is reduced
by one, the theorem holds true based on the induction
assumption.

• Consider (u1, u2, . . . , fl−1 − 1, f ′
l + 1) as a new

destination (to the source (0, 0, . . . , 0)). Since fault
region F is no longer along any minimal path from the
destination to the source, the number of fault regions is
reduced by at least one in the routing process. Based on
the second induction assumption, a minimal path exists.

• Combining two minimal paths, one from
(u1, u2, . . . , ul) to (u1, u2, . . . , fl−1 − 1, f ′

l + 1)

as a new destination (to the source (0, 0, . . . , 0)) and
another one from (u1, u2, . . . , fl−1 − 1, f ′

l + 1) to
(0, 0, . . . , 0), a minimal path from (u1, u2, . . . , ul) to
(0, 0, . . . , 0) is constructed. ✷

Proof of Theorem 4. Without loss of generality, assume
that plane A1 contains dimensions d1 and d2 and plane A2
contains dimensions d2 and d3. The routing starts from
(u1, u2, u3) along plane A1 (which is plane d3 = u3). Plane
A1 can be represented by that in Figure 5. The condition at
destination (0, 0, 0) ensures that there is no faulty block (a
cross-section of a faulty cube) along the d1- or d2-axis. The
minimal routing in this plane tries to reach any node along
the d2-axis. The existence of Path A ensures its feasibility.
Once the routing packet reaches a node along the d2-axis
(meaning the offset in dimension d1 has been reduced to
zero), the routing process is then switched to plane A2. The
problem is then reduced to a minimal routing in a 2-D mesh.

✷

Proof of Lemma 5. Without loss of generality, assume
that plane A1 contains dimensions d1 and d2 and plane A2
contains dimensions d2 and d3 or dimensions d1 and d3. The
routing starts from (u1, u2, u3) along plane A1 (which is
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FIGURE 13. Routing in plane A1.

plane d3 = u3). Some faulty blocks (cross-sections of faulty
cubes) may intersect with both the d1- and d2-axes in plane
A1. The minimal routing in this plane tries to reach any
node along either the d1- or d2-axis. The existence of such a
minimal path can be proved by induction on f , the number
of faulty blocks in this plane. When f = 1, the path starts
from (u1, u2, u3) and goes straight along negative d2 until
reaching the d1-axis. If it hits the only faulty block, it turns
south and goes along negative d2 until reaching the d1-axis.
Assume that the theorem holds for f = k − 1. When f = k,
we use the same approach for the f = 1 case. Again, the
path starts from (u1, u2, u3) and goes straight along negative
d1 until it reaches the d2-axis. If it hits a faulty block, say F ,
there are two cases: (1) if faulty block F intersects with the
d1 axis, then the routing packet turns south and goes along
negative d2 until it reaches the d1-axis; (2) if faulty block F

does not intersect with the d1-axis, it still turns south to the
lower-right corner v of the faulty block. Clearly, faulty block
F becomes irrelevant to the remaining minimal routing from
v to (0, 0, 0). Since the number of faulty blocks is reduced
to k − 1, a minimal path exists from v to (0, 0, 0) based on
the induction assumption. ✷

Proof of Theorem 5. The theorem is proved by induction
on dimension n in a given n-D mesh. Based on Lemma 5
the theorem holds for 3-D meshes. Assume the theorem
holds for meshes with up to l − 1 dimensions (with l ≥ 4).
Without loss of generality, assume that plane A1 contains
dimensions d1 and d2 and plane A2 contains dimensions
d1 and d3 or dimensions d2 and d3. The routing starts
from (u1, u2, . . . , ul) along plane A1. Plane A1 can be
represented by that in Figure 13. Some faulty blocks
(cross-sections of fault regions) may go across both the d1-
and d2-axes of node (0, 0, u3, . . . , un). The minimal routing
in this plane tries to reach any node along either the d1- or
d2-axis. The existence of such a minimal path can be proved
by induction on f , the number of faulty blocks in this plane.
When f = 1, the path starts from (u1, u2, . . . , ul) and

goes straight along the negative d1 direction until it reaches
the d2-axis. If it hits the only faulty block, it turns south
and goes along negative d2 until it reaches the d1-axis (of
node (0, 0, u3, . . . , un)). Assume that the theorem holds for
f = k − 1. When f = k, we use the same approach for
the f = 1 case. Again, the path starts from (u1, u2, . . . , ul)

and goes straight along the negative d1 until it reaches the
d1-axis. If it hits a faulty block (a cross-section of a fault
region), say F (see Figure 13), there are two cases: (1) if
faulty block F intersects with the d1-axis, then the routing
packet turns south (negative d2) and goes along negative d2
until it reaches the d2-axis; (2) if faulty block F does not
intersect with the d1-axis, it still turns south to the lower-
right corner v of the faulty block (see Figure 8). Clearly,
faulty block F becomes irrelevant to the remaining minimal
routing from v to (0, 0, . . . , 0). Since the number of faulty
blocks is reduced to k − 1, a minimal path exists from v

to (0, 0, . . . , 0) based on the induction assumption on the
number of faulty blocks.

Once the routing packet reaches the d1- or d2-axis (or
both), the number of dimensions that spans from the (new)
source to the destination nodes reduces by at least one. A
minimal path exists from the new source to the destination
based on the induction assumption on the dimension size. ✷

Proof of Theorem 6. Applying Theorem 3 to nodes v and s

with node v being the source and s the destination, we know
that there exists a minimal path between v and s. We then
apply Theorem 3 to nodes v and d with node v being the
source and d the destination. Again a minimal path between
d and v is found. Combining these two minimal paths, a
minimal path between s and d is constructed. ✷

Proof of Theorem 7. We have the following constructive
proof. Assume dimension n is odd (if the given dimension is
even, add one to it to make it odd) and k = (n − 1)/2. di+j

(including j = 0) should be interpreted as d(i+j−1) mod n+1.
The following n virtual subnetworks are constructed:

VSN1: d1 + d2 ∗ d3 ∗ . . . ∗ dk+1∗,

d1 − d2 ∗ d3 ∗ . . . ∗ dk+1∗,

VSN2: d2 + d3 ∗ d4 ∗ . . . ∗ dk+2∗,

d2 − d3 ∗ d4 ∗ . . . ∗ dk+2∗,

. . . . . .

VSNi : di + di+1 ∗ di+2 ∗ . . . ∗ di+k∗,

di − di+1 ∗ di+2 ∗ . . . ∗ di+k∗,

. . . . . .

VSNn: dn + dn+1 ∗ dn+2 ∗ . . . ∗ dn+k∗,

dn − dn+1 ∗ dn+2 ∗ . . . ∗ dn+k∗.

In the above subnetwork, VSNi covers k nodes didi+1,
didi+2, . . . , didi+k of Figure 12b. Also VSNi , i ∈
{1, 2, . . . , n}, cover all nodes in Figure 12b. The sequence
VSN1, VSN2, . . . , VSNn respects the partial order defined in
Figure 12b. In the VSN each di∗ appears 2k times and di+
and di− once each; therefore, 2k + 1 = n virtual channels
are used. ✷
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