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Abstract
Dynamic Graph Neural Networks (DyGNNs) are widely used to
model web-scale semantic-rich graph data (e.g., social networks,
knowledge graphs), but their inability to explain predictions ground-
ed in structured knowledge remains a challenge, especially when
predictions rely on complex higher-order substructures. We pro-
pose CausalSKyHop, a semantic- and knowledge-aware framework
that explains DyGNNs by uncovering causal higher-order patterns
in evolving knowledge structures. To model the semantic fabric of
the graph, CausalSKyHop incorporates a Higher-Order Structural
Causal Model to capture multi-node knowledge dependencies, and
uses contrastive learning to isolate semantically-meaningful causal
relationships from spurious ones. A dynamic correlation module
further separates persistent knowledge from evolving semantic
contexts. Through knowledge-infused, structure-aware variational
graph autoencoders, our method produces interpretable causal sub-
graphs that capture the dynamic flow of knowledge and semantics.
Experimental evaluations on multiple web and knowledge-rich
graph benchmarks demonstrate that CausalSKyHop consistently
outperforms state-of-the-art explainable DyGNNs, achieving no-
table improvements in both explanation fidelity and downstream
prediction accuracy. A detailed case study further illustrates how
our method uncovers stable, semantically coherent causal path-
ways—in contrast to the fragmented explanations of baseline meth-
ods—providing intuitive evidence for its superior interpretability.
This work establishes the critical role of explicit semantic and
knowledge integration through higher-order causal reasoning for
building transparent and trustworthy DyGNNs on the web.

CCS Concepts
• Theory of computation→ Semantics and reasoning; • Com-
puting methodologies→ Causal reasoning and diagnostics.
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1 Introduction
The web is fundamentally a dynamic and interconnected tapestry
of knowledge, where semantic-rich structures—from social net-
works [18] to knowledge graphs [19]—continuously evolve, car-
rying complex meaning and relationships. These temporal evolu-
tions not only alter the topological structure but also transform the
semantic contexts and knowledge dependencies that drive down-
stream tasks such as recommendation, anomaly detection in finan-
cial systems [1], and traffic flow prediction [26].

Dynamic Graph Neural Networks (DyGNNs) [25, 31, 32] have
emerged as a powerful approach to capture both structural and
temporal dependencies in evolving graphs. Recent models includ-
ing WinGNN [34], DGA-GNN [4], and KEDGN [12] have achieved
impressive predictive performance through sophisticated temporal
embeddings and dynamic aggregation mechanisms. However, their
black-box nature severely limits deployment in trust-sensitive appli-
cations, where explanations grounded in semantic and knowledge
contexts are as crucial as predictions.

Existing explainability methods for GNNs—such as GNNEx-
plainer [27], PGExplainer [11], OrphicX [9] and FORGE [17]—are
primarily designed for static graphs and struggle to adapt to tempo-
ral settings. Despite the remarkable success of DyGNNs in model-
ing temporal graph data, their “black-box” nature severely hinders
deployment in trust-sensitive applications. Existing explanation
methods, such as DyGNNExplainer [33], DyExplainer [23], and DG-
Explainer [10] are confined to first-order node-edge relationships,
failing to capture the semantically rich higher-order structures that
are ubiquitous in graphs. This limitation results in fragmented and
semantically deficient explanations that are inadequate for uncover-
ing the genuine causal mechanisms underlying model predictions.
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Figure 1: From Fragmented First-Order to Coherent Higher-
Order Explanations.

To address the critical gap in higher-order semantic reasoning,
we argue that effective explanations must capture both local se-
mantic patterns and global complex dependencies inherent in dy-
namic knowledge structures (see Figure 1). This necessitates the
integration of complementary higher-order structures: (1) Motifs
capture recurring local subgraph patterns (e.g., triangles in social
cliques) that serve as stable, interpretable causal units essential for
semantic coherence. (2) Hypergraphs naturally model multi-node
dependencies beyond pairwise interactions, preserving complex
semantic relationships often lost in graph approximations and en-
abling knowledge-aware reasoning. The synergistic integration of
these structures enables deeper higher-order semantic reasoning,
overcoming the fragmentation of first-order methods.

To this end, we proposeCausalSKyHop, a semantic- and knowle-
dge-aware framework that explains DyGNNs by uncovering causal
higher-order patterns in evolving knowledge structures. Our ap-
proach integrates explicit semantic reasoning with higher-order
causal discovery to produce interpretable, semantically coherent
explanations. The key contributions of this work are:

(1) Causal Higher-Order Pattern Discovery. We introduce a
Higher-Order Structural Causal Model (HOSCM) to capture multi-
node knowledge dependencies and leverage contrastive learning to
isolate semantically meaningful causal relationships from spurious
correlations. This enables the discovery of stable, interpretable
causal pathways in dynamic graphs.

(2) Semantic- and Knowledge-Aware Explanation Frame-
work. CausalSKyHop incorporates knowledge-infused, structure
aware variational graph autoencoders to generate view-consistent
explanations across diverse higher-order structures. Our theoret-
ical analysis provides guarantees on the preservation of causal
mechanisms during explanation generation.

(3) Dynamic Correlation Disentanglement. We design a dy-
namic correlation module with tailored disentanglement losses to
separate persistent knowledge from evolving semantic contexts,
enabling interpretable tracking of causal changes over time while
filtering out spurious and static relationships.

(4)Empirical Advancements. Extensive evaluations on six web
and knowledge-rich graph benchmarks demonstrate that Causal-
SKyHop consistently outperforms state-of-the-art explainable DyG-
NNs, improving explanation fidelity by 1.3%–7.1% and boosting
downstream prediction accuracy by 4.6%–33.9% across all datasets
while maintaining efficient scalability.

Paper Organization. The rest of this paper is organized as fol-
lows. Section 2 reviews related work. Section 3 details the proposed
CausalSKyHop framework. Section 4 presents extensive experi-
mental results and analysis. Finally, Section 5 concludes the paper
and discusses future directions.

2 Related Work
2.1 Interpretability of Graph Neural Networks
Existing GNN explanation methods can be broadly categorized
into non-generative and generative approaches. Non-generative
methods target instance-level explanations by identifying critical
substructures via gradients [13], perturbations [15, 16], or mask op-
timization [27], with representative examples including Zorro [6],
SubgraphX [29], and game-theoretic counterfactual methods based
on semivalues (e.g., the Banzhaf value) that estimate feature con-
tributions without additional training [3]. Generative methods, in
contrast, learn distributions over explanatory subgraphs to im-
prove automation and generalization, such as XGNN [28], PGM-
Explainer [20], and GNNInterpreter [24].

Despite their prevalence, most methods remain structurally shal-
low and semantically unaware. They primarily model first-order
node–edge relationswithout explicitly incorporating domain knowl-
edge or semantic context, which is particularly limiting in knowled-
ge-rich settings such as social networks and knowledge graphs
where predictions often rely on higher-order semantic patterns.

DyGNNExplainer [33] is the first explainer tailored to dynamic
GNNs. It disentangles spurious, static, and dynamic relations to
account for temporal behaviors, yet it still overlooks higher-order
structures and semantic dependencies that are fundamental to
knowledge-intensive graphs. For semantic-rich web data, effec-
tive dynamic explanations should satisfy two criteria: fidelity [14],
requiring the explanation subgraph to preserve the original model
behavior, and semantic interpretability, requiring it to highlight
meaningful knowledge patterns while filtering semantically irrele-
vant components.

2.2 Higher-Order Structures and Semantic
Modeling

Higher-order structures—including motifs [30] and hypergraphs [5]
—capture both local and global topological patterns, enhancing fea-
ture expressiveness beyond simple node-edge relationships. Recent
works have leveraged such structures to improve graph learning:
DyHGN [22] employs hypergraphs to enhance temporal graph
modeling, while MOTIF-GNN [2] extracts higher-order patterns to
boost predictive accuracy.

However, these approaches primarily focus on structural en-
hancement rather than semantic explicability. They lack mecha-
nisms to ground higher-order patterns in domain knowledge or
to establish causal relationships within semantic contexts. This
represents a significant gap in knowledge-aware graph learning,
particularly for dynamic environments where both structure and
semantics evolve over time. Our work bridges this gap by intro-
ducing higher-order causal reasoning that explicitly incorporates
structured knowledge to explain DyGNN predictions through se-
mantically coherent pathways.
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Figure 2: The CausalSKyHop framework for explainable dynamic GNNs. The framework integrates (1) a Higher-Order Structural
Causal Model (HOSCM) (see the flow directions of each block diagram in the figure) that captures knowledge-intensive patterns
through causal reasoning, and (2) a temporal reasoning module that constructs dynamic masks while preserving knowledge
coherence across time. Blue solid arrows indicate genuine causal paths, while gray dashed arrows represent backdoor paths
that are blocked through semantic backdoor adjustment.

3 Learning Knowledge-Aware Causal
Higher-Order Patterns for Explainable
Dynamic GNNs

This paper formulates the DyGNN model as 𝑓 = 𝑓𝑑 ◦ 𝑓𝑎 , where
𝑓𝑎 : 𝐺1:𝑇 → R aggregates both structural topology and knowledge
patterns from dynamic graphs 𝐺1:𝑇 , producing high-dimensional
representations, and 𝑓𝑑 : R→ 𝑌 maps these representations to the
label space 𝑌 . At each time step 𝑡 , the input graph 𝐺𝑡 = (𝑋𝑡 , 𝐴𝑡 )
includes a node attribute matrix 𝑋𝑡 ∈ R |𝑉 |×𝐷 (encoding node se-
mantics and knowledge) and an adjacency matrix 𝐴𝑡 ∈ R |𝑉 |× |𝑉 | ,
with 𝑉 being the node set and 𝐷 the attribute dimension.

Interpreting knowledge-richDyGNNs requires: knowledge aware-
ness to identify meaningful causal patterns grounded in domain
knowledge, spatial interpretability to locate critical graph com-
ponents, and temporal interpretability to pinpoint evolution of
knowledge contexts—all while remaining model-agnostic to ex-
plain any black-box model effectively. Our goal is to develop a
generative interpreter that identifies knowledge-grounded causal
subgraphs contributing to DyGNN predictions while maintaining
fidelity. We focus on generating knowledge-aware spatiotempo-
ral explanations—specifically, dynamic subgraph sets that capture
evolving knowledge relationships—under a black-box setting where
ground truth labels and model internals are unavailable.

3.1 Knowledge-Aware Causal Reasoning
Framework

We propose CausalSKyHop, a causality-inspired multi-scale spa-
tiotemporal explanation framework designed to perform knowledge-
aware causal reasoning over dynamic graphs (see Figure 2). The

core of our framework is the Knowledge-Infused Higher-Order
Structural CausalModel (HOSCM), which formally characterizes
causal relationships among a set of key variables that jointly capture
both the structural and semantic aspects of dynamic graphs. These
variables include: the original graph𝐺 , the higher-order graph 𝐻𝐺 ,
spurious factors 𝑆 , causal factors 𝐶 , higher-order spurious factors
𝐻𝑆 , higher-order causal factors 𝐻𝐶 , dynamic factors 𝐷𝐶 , static
factors 𝑆𝐶 , higher-order dynamic factors 𝐷𝐻𝐶 , higher-order static
factors 𝑆𝐻𝐶 , node representation 𝑅, and the downstream task 𝑌 . A
detailed exposition of the HOSCM is provided in Appendix A.

The causal links in the HOSCM represent both structural in-
fluences and semantic dependencies. Crucially, the higher-order
factors—𝐻𝐶 ,𝐻𝑆 ,𝐷𝐻𝐶 , and 𝑆𝐻𝐶—are designed to explicitly capture
knowledge-intensive patterns that extend beyond simple pairwise
node-edge interactions. In our framework, “knowledge” refers to
structured, higher-order patterns—specifically motifs and hyper-
graphs (see Appendix B for definitions)—that are explicitly extracted
and leveraged. Meanwhile, “causal reasoning” denotes our method-
ology to systematically distinguish genuine causal relationships
from spurious correlations, thereby yielding more faithful and in-
terpretable explanations.

To operationalize this reasoning, we extract a variety of higher-
order subgraph structures (motifs and hypergraphs) from each
graph snapshot, and generate causal soft masks that encode knowl-
edge aware patterns. These masks enable semantic backdoor adjust-
ment, a mechanism that allows us to intervene on target causal and
dynamic factors while controlling for confounding effects.

To ensure semantic coherence across higher-order structures,
we employ a consistency loss combined with contrastive learning.
A dynamic correlation module separates persistent and evolving
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knowledge, while prediction and sparsity losses enhance explana-
tion quality.

3.2 Semantic Backdoor Adjustment
Based on HOSCM, we identify four critical backdoor paths that
introduce knowledge confounding into the learned representation:

(1) Path 1:𝐶 ← 𝐺 → 𝑆 → 𝑅 → 𝑌 - spurious factor 𝑆 confounds
the causal relationship between 𝐶 and 𝑌 .

(2) Path 2: 𝐻𝐶 ← 𝐻𝐺 → 𝐻𝑆 → 𝑅 → 𝑌 - higher-order spurious
factor 𝐻𝑆 disrupts the knowledge connection between 𝐻𝐶 and 𝑌 .

(3) Path 3: 𝐷𝐶 ← 𝐶 → 𝑆𝐶 → 𝑅 → 𝑌 - static component 𝑆𝐶
interferes with the dynamic factor 𝐷𝐶’s effect on 𝑌 .

(4) Path 4: 𝐷𝐻𝐶 ← 𝐻𝐶 → 𝑆𝐻𝐶 → 𝑅 → 𝑌 - higher-order static
factor 𝑆𝐻𝐶 introduces spurious dependency between 𝐷𝐻𝐶 and 𝑌 .

These backdoor paths contaminate the causal knowledge of
learned representations, reducing robustness and interpretability.
While do-calculus can theoretically eliminate confounding, prac-
tical application is challenging due to unobserved spurious and
static factors. We propose a knowledge-infused masking strategy
that explicitly suppresses non-causal components during training,
effectively blocking these interference pathways while preserving
knowledge coherence.

3.3 Disentangling Semantic Causal Relations
Given a dynamic graph sequence 𝐺1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ) for 1 ≤ 𝑡 ≤ 𝑇 ,
we employ causal soft masks to decompose the graph into semanti-
cally meaningful components as follows.

(1) Causal/Spurious Decomposition: 𝑀𝐶
𝑡 ∈ R |𝑉 |× |𝑉 | parti-

tions the graph into causal set𝐺𝐶
1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ⊙𝑀𝐶

1:𝑡 ) and spurious
set 𝐺𝑆

1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ⊙ 𝑀
𝐶

1:𝑡 ).
(2) Dynamic/Static Decomposition:𝑀𝐷𝐶

𝑡 further decomposes
causal set into dynamic causal set𝐺𝐷𝐶

1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ⊙𝑀𝐶
1:𝑡 ⊙𝑀𝐷𝐶

1:𝑡 )
and static causal set 𝐺𝑆𝐶

1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ⊙ 𝑀𝐶
1:𝑡 ⊙ 𝑀𝐷𝐶

1:𝑡 ).
We extend this mask-based decomposition to higher-order pat-

terns that capture rich semantic relationships.
Let S𝑡 = {motifs, hypergraphs} denote the set of higher-order

structures, where each structure 𝑠𝑡 ∈ S𝑡 is assigned a causal mask
𝑀𝐶

𝑠𝑡
. These structure-specific masks aggregate into a unified higher-

order causal mask𝑀𝐻𝐶
𝑡 , enabling extraction of higher-order causal

set 𝐺𝐻𝐶
1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ⊙ 𝑀𝐻𝐶

1:𝑡 ) and its complementary spurious set
𝐺𝐻𝑆
1:𝑡 = (𝑋1:𝑡 , 𝐴1:𝑡 ⊙ 𝑀𝐻𝐶

1:𝑡 ). A higher-order dynamic mask 𝑀𝐷𝐻𝐶
𝑡

further divides the higher-order causal subgraph into dynamic and
static components.

Since these semantic sets are typically unobserved, our objective
is to learn masks that effectively disentangle spurious, dynamic,
and static relationships while preserving knowledge coherence.

3.3.1 Knowledge-Enhanced Original Causal Mask Estimation. We
adopt a dynamic variational graph autoencoder enhanced with
semantic constraints to estimate causal soft mask matrices 𝑀𝐶

1:𝑇 ,
capturing both temporal dependencies and structural semantics.

𝑀𝐶
𝑡 = 𝑓𝑣 (𝑋1:𝑡 , 𝐴1:𝑡 ;𝜗𝐶 ), (1)

where 𝑓𝑣 is the semantic-aware encoder with parameters 𝜗𝐶 . The
encoder-decoder architecture learns latent representations to infer

dynamic subgraph structures with semantic fidelity (see Appen-
dix C for details).

3.3.2 Semantic-Rich Higher-Order Patterns Causal Mask Estimation.
We propose two knowledge-enhanced variational graph autoen-
coders (VGAEs) to estimate causal masks by capturing semantically
meaningful higher-order interaction patterns: motifs and hyper-
graphs.

Unified Semantic Framework. For each structure 𝑠𝑡 ∈ S𝑡 with
𝑠𝑡 = {𝑣1, 𝑣2, . . . , 𝑣𝑚}, we encode both structural and semantic infor-
mation by concatenating node features and processing through a
multilayer perceptron.

ℎ𝑠𝑡 =MLPstruct ( [𝑥𝑣1 ;𝑥𝑣2 ; . . . ;𝑥𝑣𝑚 ]), (2)

where 𝑥𝑣𝑖 captures the semantic attributes of node 𝑣𝑖 . For each node
𝑣𝑖 , we aggregate embeddings of all participating structures.

𝐻struct𝑖 =
(∑︁

𝑣𝑖 ∈𝑠𝑡
ℎ𝑠𝑡

)
/|{𝑠𝑡 ∈ S𝑡 | 𝑣𝑖 ∈ 𝑠𝑡 }|. (3)

Node-level semantic features 𝐻node𝑡 = MLPnode (𝑋𝑡 ) are com-
bined with structure-aware features.

𝐻combined𝑡 =MLPcombined ( [𝐻node𝑡 ;𝐻struct𝑡 ]). (4)

We then compute the latent distribution and decode to obtain
the following causal mask.

𝑧𝑡 = 𝜇𝑡 + 𝜎𝑡 ⊙ 𝜖, 𝜖 ∼ N(0, 𝐼 ), 𝑀𝐶
struct𝑡 = Decoder(𝑧𝑡 ). (5)

Semantic Specialization for Each Pattern. (1) Motifs: Capture
diverse semantic interaction patterns beyond simple triangles,
defined as

motifs =
⋃

𝑀𝑖 ∈M
{{𝑣1, . . . , 𝑣𝑚} | 𝐺 [{𝑣1, . . . , 𝑣𝑚}] � 𝑀} , (6)

where each motif𝑀𝑖 represents a meaningful semantic template.
(2) Hypergraphs: Model complex multi-way semantic relation-

ships through hyperedges derived from motifs. The hypergraph
Laplacian is defined as

𝐿hyper = 𝐼 − 𝐷−1/2𝑣 𝐻𝐷−1𝑒 𝐻⊤𝐷−1/2𝑣 (7)

This operator captures higher-order semantic dependencies unified
with node representations.

The resulting causal masks 𝑀𝐶
motif𝑡

and 𝑀𝐶
hyper𝑡

encode struc-
turally grounded semantic patterns.

3.3.3 Multi-Level Semantic Mask Fusion. We propose a multi-level
structural mask fusion mechanism that integrates both topological
information and higher-order semantic contexts through adaptive
weights and enhancement factors.

Semantic Mask Verification. To address potential noise in individ-
ual higher-order masks, we introduce a cross-validation mechanism
that ensures semantic consistency.

𝑀
structverified
𝑡 =𝑀𝐶

𝑡 ⊙ 𝑀𝐶
struct𝑡 . (8)

This step filters noisy components while preserving semantically
meaningful patterns.

Semantic Weight Computation. We compute structure weights
based on semantic importance rather than purely structural prop-
erties (detailed in Appendix D).
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Semantic-Aware Fusion. Based on computed semantic weights,
we perform weighted fusion as follows.

𝑀𝐻𝐶
𝑡 =𝑤1 ·𝑀motifverified

𝑡 +𝑤2 ·𝑀
hyperverified
𝑡 . (9)

We obtain causal adjacencymatrices𝐴𝐶
1:𝑡 = 𝐴1:𝑡⊙𝑀𝐶

1:𝑡 and higher-
order causal adjacency matrices 𝐴𝐻𝐶

1:𝑡 = 𝐴1:𝑡 ⊙ 𝑀𝐻𝐶
1:𝑡 , forming the

basis for semantically coherent graph sets 𝐺𝐶
1:𝑡 and 𝐺

𝐻𝐶
1:𝑡 .

Following the causal graph semantics, we compute dynamic
masks using the same VGAE with specialized parameters.

𝑀𝐷𝐶
𝑡 = 𝑓𝑣 (𝑋1:𝑡 , 𝐴

𝐶
1:𝑡⊙𝑀𝐶

1:𝑡 ;𝜗𝐷𝐶 ), 𝑀𝐷𝐻𝐶
𝑡 = 𝑓𝑣 (𝑋1:𝑡 , 𝐴

𝐶
1:𝑡⊙𝑀𝐻𝐶

1:𝑡 ;𝜗𝐷𝐻𝐶 ) .
(10)

This produces dynamic and static causal sets with corresponding
higher-order variants, enabling comprehensive disentanglement of
spurious, dynamic causal, and static causal relationships through
semantically informed constraints.

3.4 Ensuring Semantic Consistency Across
Structural Perspectives

To maintain semantic coherence across different higher-order struc-
tural masks, we propose the Higher-Order Structural Consistency
Loss. This loss ensures that diverse structural perspectives capture
complementary aspects of the underlying knowledge fabric rather
than redundant information.

For time step 𝑡 , with S𝑡 = {motifs, hypergraphs} and the corre-
sponding mask set𝑀𝑡 , the consistency loss is

Lhigh
𝑡 = Lverify

𝑡 + 𝛽 · Lbalance
𝑡 , (11)

whereLverify
𝑡 ensures semantic verification consistency andLbalance

𝑡

maintains integrated mask balance (detailed in Appendix E). The
overall higher-order consistency loss is:

Lhigh =
1
𝑇

∑︁𝑇

𝑡=1
Lhigh

𝑡 . (12)

This loss serves as critical regularization that enforces semantic
alignment across structural granularities, significantly improving
robustness and interpretability.

3.4.1 Semantic-Aware Decoupling of Spurious and Causal Rela-
tionships. Since our targets are the causal and higher-order causal
subgraph sets containing meaningful knowledge patterns, we treat
spurious sets as semantic noise. We employ the pre-trained model’s
aggregation function 𝑓𝑎 (·) to extract semantically rich embeddings.

𝑅𝑡 = 𝑓𝑎 (𝐺1:𝑡 ), 𝑅𝐶𝑡 = 𝑓𝑎 (𝐺𝐶
1:𝑡 ), 𝑅𝑆𝑡 = 𝑓𝑎 (𝐺𝑆

1:𝑡 ),
𝑅𝐻𝐶
𝑡 = 𝑓𝑎 (𝐺𝐻𝐶

1:𝑡 ), 𝑅𝐻𝑆
𝑡 = 𝑓𝑎 (𝐺𝐻𝑆

1:𝑡 ).
(13)

We adopt contrastive learning to ensure semantic similarity
between causal embeddings (𝑒𝐶𝑡 , 𝑒𝐻𝐶

𝑡 ) and raw embedding 𝑒𝑡 , while
maximizing distance from spurious embeddings (𝑒𝑆𝑡 , 𝑒𝐻𝑆

𝑡 ).

L𝑐 =
1
𝑇

∑︁𝑇

𝑡=1
log

exp(𝑠 (e𝑡 , e𝐶𝑡 , e𝐻𝐶
𝑡 )/𝜏)

exp(𝑠 (e𝑡 , e𝐶𝑡 , e𝐻𝐶
𝑡 )/𝜏) + 𝑍𝐶

𝑡 + 𝑍𝐻𝐶
𝑡

, (14)

where 𝑍𝐶
𝑡 and 𝑍𝐻𝐶

𝑡 contrast causal against spurious semantics.

3.4.2 Disentangling Semantic Dynamics from Static Knowledge. We
utilize Graph Convolutional Networks (GCNs) to extract dynamic
and static relationships from corresponding causal subgraph sets
(detailed in Appendix F). The key insight is that dynamic semantics
evolve over time and can be inferred from historical contexts, while
static knowledge remains context-independent.

𝐻𝐷𝐶
1:(𝑡−1) → 𝐻𝐷𝐶

𝑡 , 𝐻𝐷𝐻𝐶
1:(𝑡−1) → 𝐻𝐷𝐻𝐶

𝑡 ,

𝐻𝑆𝐶
1:(𝑡−1) ⊥ 𝐻

𝑆𝐶
𝑡 , 𝐻𝑆𝐻𝐶

1:(𝑡−1) ⊥ 𝐻
𝑆𝐻𝐶
𝑡 .

(15)

To ensure temporal semantic consistency, we introduce dynamic
losses as follows.

L𝑑 =

(∑︁𝑇

𝑡=2
𝑑 (𝑓𝑎 (𝐺𝐷𝐶

1:(𝑡−1) ), 𝐻
𝐷𝐶
𝑡 )

)
/(𝑇 − 1),

Lℎ𝑑 =

(∑︁𝑇

𝑡=2
𝑑 (𝑓𝑎 (𝐺𝐷𝐻𝐶

1:(𝑡−1) ), 𝐻
𝐷𝐻𝐶
𝑡 )

)
/(𝑇 − 1),

(16)

where 𝑑 (·, ·) measures distribution distance. These losses ensure
that extracted dynamic relationships maintain semantic continuity
over time, while static knowledge remains temporally invariant.

3.4.3 Knowledge-Grounded Spatiotemporal Explanation. From the
structural causalmodel, both original and higher-order dynamic/sta-
tic relationships jointly influence predictions through their seman-
tic contributions. We treat dynamic relationships at time 𝑡 as inter-
ventions and define their causal effects as

Δ𝐻𝐷𝐶
𝑡 = 𝑓𝑎 (𝐺𝐷𝐶

1:𝑡 )−𝑓𝑎 (𝐺𝐷𝐶
1:(𝑡−1) ),Δ𝐻

𝐷𝐻𝐶
𝑡 = 𝑓𝑎 (𝐺𝐷𝐻𝐶

1:𝑡 )−𝑓𝑎 (𝐺𝐷𝐻𝐶
1:(𝑡−1) ).

(17)
We combine these dynamic causal effects with corresponding

static relationships and employ a learnable aggregation mechanism
to integrate temporally evolving semantics.

𝐻𝑇 =
∑︁𝑇

𝑡=1
𝑡𝑝 (Δ𝐻𝐷𝐶

𝑡 ⊙ 𝐻𝑆𝐶
𝑡 )Δ𝐻𝐷𝐶

𝑡 ⊙ 𝐻𝑆𝐶
𝑡 ,

𝐻𝐻
𝑇 =

∑︁𝑇

𝑡=1
𝑡𝑝 (Δ𝐻𝐷𝐻𝐶

𝑡 ⊙ 𝐻𝑆𝐻𝐶
𝑡 )Δ𝐻𝐷𝐻𝐶

𝑡 ⊙ 𝐻𝑆𝐻𝐶
𝑡 ,

𝑡𝑝 (𝐻 ) = Softmax((𝜔𝜌𝐻 )/


𝜔𝜌



), (18)

where𝜔𝜌 learns the temporal importance of semantic contributions,
enhancing interpretability. Using a pre-trained classifier 𝑓𝑑 (·), we
predict labels with prediction losses L𝑝 = 𝑙 (𝑓𝑑 (𝐻𝑇 ), 𝑦) and Lℎ𝑝 =

𝑙 (𝑓𝑑 (𝐻𝐻
𝑇
), 𝑦). To ensure human interpretability, we impose sparsity

constraints on explained subgraphs.

L𝑠 =
∑︁𝑇

𝑡=1
(∥𝐴𝐶

𝑡 ∥1 + ∥𝐴𝐷𝐶
𝑡 ∥1)/∥𝐴𝐶

𝑡 ∥1,

Lℎ𝑠 =
∑︁𝑇

𝑡=1
(∥𝐴𝐻𝐶

𝑡 ∥1 + ∥𝐴𝐷𝐻𝐶
𝑡 ∥1)/∥𝐴𝐻𝐶

𝑡 ∥1 .
(19)

We jointly learn optimal interpretable causal subgraphs through
unified optimization.

min
(𝜗,𝜔 )
L(𝜗,𝜔) =𝜉1L𝑐 + 𝜉2L𝑠 + 𝜉3Lℎ𝑠 + 𝜉4L𝑝 + 𝜉5Lℎ𝑝

+ 𝜉6L𝑑 + 𝜉7Lℎ𝑑 + 𝜉8Lℎ𝑖𝑔ℎ,
(20)

where 𝜗 and 𝜔 encompass all model parameters, and 𝜉1-𝜉8 balance
different semantic objectives.

4 Experiments
Detailed descriptions of the datasets, baseline methods, and imple-
mentation settings are provided in Appendix G.
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Figure 3: Interpretability analysis of CausalSKyHop versus baselines. Our method produces more sparse and semantically
coherent explanations by leveraging higher-order structures (motifs and hypergraphs), effectively isolating causal pathways
from spurious correlations.

4.1 Explanation Fidelity and Interpretability
Evaluations

Table 1: The number of high-order structures that appear in
different datasets and at different time steps.

Number 𝑡 DBA-S DTree-C DTree-G Ell Meme

No. of motifs

1 9240 2115 5317 2529 118
2 9240 2114 5330 1604 138
3 9240 2115 5329 3012 95
4 9240 2112 5335 2491 95
5 9239 2115 5322 2921 68

No. of hypergraphs

1 5 5 5 163 45
2 5 5 5 208 52
3 5 5 5 485 34
4 5 5 5 345 31
5 5 5 5 517 25

4.1.1 Explanation Interpretability. Figure 3 provides a comparative
analysis of explanation quality, where CausalSKyHop generates
significantly more interpretable and sparse causal subgraphs than
competing methods. Our framework’s integration of higher-order
structural reasoning enables it to isolate semantically meaningful
causal pathways while filtering out spurious correlations. The use
of motifs (m) captures local stable patterns, while hypergraphs (h)
model global multi-node dependencies—together providing a com-
prehensive semantic fabric for explanation. This structural synergy
allows our method to maintain high fidelity to the original model’s
behavior while producing human-intelligible explanations that are
both concise and semantically coherent, addressing a key limitation
of fragmented explanations produced by first-order methods [7].

4.1.2 Explanation Fidelity. As quantitatively demonstrated in Fig-
ure 4,CausalSKyHop achieves state-of-the-art performance across
all benchmark datasets, surpassing existing explainable DyGNNs
by a significant margin. This consistent superiority stems from our

framework’s ability to systematically uncover causal higher-order
patterns in evolving knowledge structures. Unlike baselines that
operate on first-order neighborhoods, our method leverages motifs
and hypergraphs to capture semantically rich substructures that are
critical for accurate predictions. The performance gains—ranging
from 1.3% to 7.1% in explanation fidelity—provide strong empirical
evidence that explicit modeling of higher-order semantic dependen-
cies is essential for both interpretability and predictive performance
in dynamic graph learning.

4.1.3 Persistence of High-order Structures. The persistent presence
of higher-order structures over time (Table 1) indicates that incorpo-
rating bothmotifs and hypergraphs into the framework is necessary.
In datasets such as DBA-S, DTree-C, and DTree-G, these structures
remain stable and abundant at every time step, suggesting that they
are not transient phenomena but long-term organizational princi-
ples of the graphs. Even in more dynamic datasets such as Ell and
Meme, they consistently appear and never disappear. Therefore,
explicitly modeling these persistent higher-order structures helps
CausalSkyHop capture the core “skeleton” of the graph, enabling
more stable and robust explanations under temporal fluctuations.

4.2 Comprehensive Performance Evaluation
4.2.1 Performance Comparison with Baselines. As shown in Fig-
ure 5 (a), CausalSkyHop achieves remarkable performance gains
across both benchmark datasets. On the DBA-Shapes dataset, our
method reaches 47.2% accuracy, outperforming the next best base-
line (Target DyGNNEx at 44.6%) by 2.6 percentage points. The im-
provement is even more pronounced on the Elliptic dataset, where
CausalSkyHop achieves 95.8% accuracy compared to 89.2% for Tar-
get DyGNNEx, representing a 6.6 percentage point improvement.

This consistent superiority across diverse graph types–from syn-
thetic structural patterns in DBA-Shapes to real-world financial
transactions in Elliptic–validates the effectiveness of our higher-
order causal reasoning approach. The significant performance gap,
particularly on the complex Elliptic dataset, underscores Causal-
SkyHop’s capability to capture semantically meaningful patterns
in dynamic graph structures.
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Figure 4: Comparative performance analysis of explainable
DyGNN methods across multiple benchmarks. The heatmap
visualization highlights the consistent superiority of Causal-
SkyHop in terms of explanation fidelity across all evaluated
datasets. The color intensity corresponds to performance
metrics, with darker shades indicating higher scores.

Figure 5: (a) Performance comparison with state-of-the-art
methods on two representative benchmarks, demonstrat-
ing superior overall accuracy. (b) Ablation study across five
datasets, revealing the critical contribution of each compo-
nent. The color intensity in the heatmap corresponds to ac-
curacy levels.

4.2.2 Ablation Study on Component Contributions. Figure 5(b)
presents ablation results across multiple datasets, evaluating the
contribution of each core component: (1) Contrastive Loss (L𝑐 ):
Removing L𝑐 causes the most significant performance degrada-
tion across all datasets, confirming its crucial role in distinguishing
causal relationships from spurious correlations. (2) Dynamic Loss
(L𝑑 ): Ablating L𝑑 leads to noticeable performance drops, particu-
larly in temporally dynamic datasets, validating the importance of
separating persistent and evolving information. (3) Higher-order
Dynamic Loss (Lℎ𝑑 ): Removing Lℎ𝑑 significantly degrades per-
formance due to the inability to capture the temporal evolution
of higher-order semantics, indicating that jointly modeling their
temporal consistency and dynamics is necessary. (4)Higher-order
Consistency Loss (Lℎ): While having relatively smaller impact,

Figure 6: Ablation study on the contribution of different
higher-order structures (motif: m, hypergraph: h) and loss
components.

removing Lℎ still causes performance deterioration, emphasizing
the value of coordinated multi-structural integration.

The full model consistently outperforms all ablated variants,
with the performance ranking (Full > w/o Lℎ𝑑 > w/o L𝑑 > w/o Lℎ

> w/o L𝑐 ) remaining stable across datasets. This demonstrates that
all components work synergistically for optimal performance.

The significant drop when removing L𝑐 suggests that existing
methods may be confounded by spurious correlations, while our ap-
proach successfully isolates genuine causal mechanisms in dynamic
graphs.

4.3 Ablation Study
Figure 6 reports an ablation study on higher-order structures in
CausalSKyHop, where we evaluate motifs (m), hypergraphs (h),
and their combination. The results show that introducing either
structure alone improves over the baseline without higher-order
structures, and motifs yield more pronounced gains because they
better capture stable local patterns. Combining both structures
achieves the best performance, indicating that multi-structural fu-
sion provides a more comprehensive causal modeling capability.
Overall, motifs focus on local recurrent patterns, while hypergraphs
model global multi-node dependencies. Their synergy offers a more
complete semantic support for causal explanations, alleviates the
fragmentation of first-order methods, and delivers robust inter-
pretability across diverse graph structures.
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Figure 7: Parameter sensitivity analysis of different coefficients. Each subfigure varies one parameter; the model remains robust
and peaks near the chosen values.

.

Figure 8: Case study on DBA-Shapes, visualizing the causal
explanations generated by CausalSKyHop and baselines. Our
method consistently identifies the complete “fish” motif
structure across time steps, demonstrating its ability to pro-
vide stable and semantically coherent causal pathways.

4.4 Sensitivity Study
To evaluate the influence of key hyperparameters on model per-
formance, we conducted parameter sensitivity experiments on the
coefficients 𝜉1, 𝜉6, 𝜉7, and 𝜉8 in Eq. (18). Each parameter was in-
dependently varied within 0.2, 0.4, 0.6, 0.8, 1.0 while keeping the
remaining coefficients fixed at 0.2. Specifically, we first tuned 𝜉1
under fixed settings of 𝜉6 = 𝜉7 = 𝜉8 = 0.2 and selected its optimal
value according to the validation performance. Then, 𝜉1 was fixed
to its optimal value while tuning 𝜉6, and this process was repeated
sequentially for 𝜉7 and 𝜉8. The corresponding results are shown
in Figure 7, where each subfigure depicts the effect of varying a
single parameter. As illustrated in the figure, the model maintains
stable and consistent performance across a wide range of parameter
values and achieves optimal performance near the selected values,
demonstrating the robustness of the proposed framework.

4.5 Case Study
The temporal case study in Figure 8 offers qualitative evidence of
CausalSKyHop’s ability to provide stable and semantically co-
herent explanations across time. In the DBA-Shapes dataset, our

method consistently identifies the complete “fish” motif—a com-
plex higher-order structure—across all four time steps, accurately
reconstructing its semantic layout around the target node. In con-
trast, DyGNNExplainer produces incomplete and inconsistent sub-
structures, often including irrelevant edges. This visual comparison
demonstrates how our higher-order causal modeling captures struc-
turally stable and temporally persistent patterns that are essential
for trustworthy explanations. The case study thus validates that
CausalSKyHop not only identifies causally relevant substructures
but also maintains their semantic integrity over time, a critical
requirement for explaining dynamic graph models in real-world
applications. The entire CausalSKyHop analysis process is shown
in Appendix H.

5 Conclusion
We proposed CausalSKyHop, a knowledge-aware framework that
explains Dynamic Graph Neural Networks (DyGNNs) through
higher-order causal reasoning. Our approach enhances DyGNN
interpretability by explicitly modeling semantic dependencies in
dynamic graphs, with three key contributions: (1) a Higher-Order
Structural CausalModel capturingmulti-node patterns; (2) semantic-
aware masking for identifying meaningful causal relationships;
and (3) temporal reasoning separating persistent knowledge from
evolving contexts. Experimental results demonstrate consistent
improvements over state-of-the-art methods in both explanation
fidelity and prediction accuracy. Qualitatively, our method gener-
ates semantically coherent causal pathways, offering more intuitive
explanations than fragmented baseline outputs. This work high-
lights the crucial role of semantic and knowledge integration in
building transparent DyGNNs. Future work will explore adaptive
structure selection, extension to heterogeneous graphs, and scaling
to web-scale dynamic graphs.
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A Explanation of HOSCM
Key Explanations Regarding HOSCM. We adopt a Higher-order
structural Causal Model (HOSCM) to formally describe the causal
mechanisms in dynamic graph neural networks. The notations and
relationships are defined as follows:
• 𝑆 ← 𝐺 → 𝐶: The original graph 𝐺 gives rise to both the
causal factors𝐶 and the spurious factors 𝑆 , the latter typically
resulting from spurious correlations or inherent biases in
the data.
• 𝐻𝑆 ← 𝐻𝐺 → 𝐻𝐶: The higher-order dynamic graph 𝐻𝐺
gives rise to both the higher-order causal factors 𝐻𝐶 and
the higher-order spurious factors 𝐻𝑆 , the latter typically
resulting from spurious correlations or inherent biases in
the data.
• 𝑆 → 𝑅 ← 𝐶: The high-dimensional representation 𝑅 is
jointly influenced by spurious factors 𝑆 and causal factors 𝐶
extracted from the original graph. The spurious factors 𝑆 typ-
ically arise from correlation biases or structural noise, while
the causal factors𝐶 capture task-relevant causal information
essential for accurate reasoning.
• 𝐻𝑆 → 𝑅 ← 𝐻𝐶: In the context of higher-order struc-
tures, the representation 𝑅 is further affected by higher-order
spurious factors 𝐻𝑆 and higher-order causal factors 𝐻𝐶 .
The spurious components 𝐻𝑆 often originate from pseudo-
correlations present in complex structural patterns such as
motifs or cliques, whereas the higher-order causal factors
𝐻𝐶 provide complementary semantic cues beyondwhat stan-
dard causal representations can offer.
• 𝐷𝐶 → 𝑅 ← 𝑆𝐶: In the structure of dynamic graphs, the
causal component 𝐶 is influenced by a combination of time-
varying dynamics𝐷𝐶 and temporally invariant static factors
𝑆𝐶 .
• 𝐷𝐻𝐶 → 𝑅 ← 𝑆𝐻𝐶: In the structure of dynamic graphs, the
higher-order causal component 𝐻𝐶 is influenced by a com-
bination of higher-order dynamic factors 𝐷𝐻𝐶 and higher-
order static factors 𝑆𝐻𝐶 .
• 𝑅 → 𝑌 : The learned representation 𝑅 serves as the basis
for downstream predictive tasks, including inference at the
node or whole-graph level.

B Definition of Higher-Order Patterns
(Motif) A motif is a small-scale, recurring structural pattern in
a graph, used to characterize common local connectivity struc-
tures. LetM = {𝑀𝑖 } be a set of motif templates, where each tem-
plate 𝑀 = (𝑉𝑀 , 𝐸𝑀 ) represents a meaningful semantic pattern.
Given a (snapshot) graph 𝐺 = (𝑉 , 𝐸), a motif instance is a node
set {𝑣1, . . . , 𝑣𝑚} such that the induced subgraph𝐺 [{𝑣1, . . . , 𝑣𝑚}] is
isomorphic to a template𝑀 ∈ M. The formal set definition of motif
instances is given in Eq. (6) in the main text.

(Hypergraph) A hypergraph is a generalization of a standard
graph in which an edge, called a hyperedge, can connect more than
two nodes. Formally, a hypergraph is defined asH = (V, E), where

V is a set of nodes and E ⊆ 2V is a set of hyperedges, each of
which is a non-empty subset ofV .

C Implementation Details of Original Causal
Mask Estimation

The encoder utilizes the posterior probability to embed nodes into
low-dimensional latent vector representations, which can be ex-
pressed as

𝑞(𝐻𝑡 |𝐺1:𝑡 ) =
∏𝑁

𝑖=1
𝑞(ℎ𝑡,𝑖 |𝐺1:𝑡 ),

𝑞(ℎ𝑡,𝑖 |𝐺1:𝑡 ) =N(ℎ𝑡,𝑖 |𝜇𝑡,𝑖 , diag(𝜎2𝑡,𝑖 )),
(21)

where 𝐻𝑡 represents the latent matrix, 𝜇𝑡 and 𝜎𝑡 are means and
variances of node latent embeddings learned by GCN𝜇 (𝐺𝑡 ) and
GCN𝜎 (𝐺𝑡 ) with different parameters, ℎ𝑡,𝑖 , 𝜇𝑡,𝑖 , and 𝜎𝑡,𝑖 are the 𝑖-th
columns of𝐻𝑡 , 𝜇𝑡 , and 𝜎𝑡 , respectively. We employ the reparameter-
ization trick to enable gradient-based optimization of the sampling
process. The decoder then uses these latent representations to pro-
duce dynamically interpretable subgraphs as follows.

𝑝 (𝑀𝐶
𝑡 |𝐻𝑡 ) =

∏𝑁

𝑖=1

∏𝑁

𝑗=1
𝑝 (𝑀𝐶

𝑡,𝑖 𝑗 |ℎ𝑡,𝑖 , ℎ𝑡, 𝑗 ),

𝑝 (𝑀𝐶
𝑡,𝑖 𝑗 = 1|ℎ𝑡,𝑖 , ℎ𝑡, 𝑗 ) = 𝑔(ℎ𝑡,𝑖 , ℎ𝑡, 𝑗 ),

(22)

where 𝑀𝐶
𝑡,𝑖 𝑗 represents the 𝑖-th row and the 𝑗-th column element

of𝑀𝐶
𝑡 , indicating the probability that the edge (𝑣𝑖𝑡 , 𝑣

𝑗
𝑡 ) exists in the

causal graph set at time 𝑡 , and 𝑔(·, ·) represents the probability.

D Structure Weight Computation
To effectively fuse the verified higher-order masks, we propose a
weight computation method based on structural importance. The
structure weight vector is defined as w = [𝑤1,𝑤2], where 𝑤1,𝑤2
represent the individual weights of the two higher-order structures.
The detailed computational steps for determining the weight vector
are as follows:

Constructing the Correlation Matrix. We first construct a correla-
tion matrix 𝑆 ∈ R2×2, where each entry 𝑆𝑖 𝑗 measures the similarity
between the 𝑖-th and 𝑗-th types of higher-order structures:

𝑆𝑖 𝑗 = sim(𝑀𝑣
𝑖 , 𝑀

𝑣
𝑗 ), (𝑖 ≠ 𝑗), (23)

where𝑀𝑣
𝑖 and𝑀𝑣

𝑗 are the verified higher-order masks correspond-
ing to structures 𝑖 and 𝑗 , respectively.

Reducing Redundant Structure Weights. To address redundancy,
we compute the redundancy score of each structure by averaging
its similarity with the other structures:

𝑝𝑖 =
1

𝐾 − 1
∑︁
𝑗≠𝑖

𝑆𝑖 𝑗 , 𝐾 = 2, (24)

where p = [𝑝1, 𝑝2] represents the average redundancy of each
structure.

Adjusting the Weights. Using the redundancy penalty coefficient
𝛼 , we adjust the structure weights w′ by reducing the weights of
redundant structures:

w′ = w ⊙ (1 − 𝛼 · p) , (25)

where ⊙ denotes element-wise multiplication.

https://doi.org/10.1145/3580305.3599551
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FinalWeight Normalization. Finally, the adjusted structureweights
are normalized using the softmax function to obtain the final weight
vector:

w = softmax(w′). (26)
These steps ensure that the structure weights reflect both the impor-
tance of each structure and the redundancy between them, allowing
for more effective fusion of the higher-order masks.

E Loss Functions
In this section, we describe the loss functions used to enforce struc-
tural consistency in our model. Specifically, we define two types
of losses: the Structural Verification Consistency Loss and the Inte-
grated Mask Balance Loss.

Structural Verification Consistency Loss. The structural verifi-
cation consistency loss evaluates the discrepancy between each
higher-order structural mask and its corresponding verified version.
It is defined as follows.

Lverify
𝑡 =

∑︁
𝑠∈S

𝜔𝑠
𝑡 · DMSE (𝑀𝑠

𝑡 , 𝑀
𝑠verified
𝑡 ), (27)

where 𝜔𝑡
𝑠 ∈ R+ is the importance weight of structure 𝑠 at time step

𝑡 , DMSE (·, ·) is the mean squared error (MSE) distance function,
defined as DMSE (A,B) = 1

𝑛

∑𝑛
𝑖=1 (𝑎𝑖 − 𝑏𝑖 )2, where 𝑛 is the vector

dimension, and 𝑎𝑖 and 𝑏𝑖 are the 𝑖-th elements of vectors A and B,
respectively.

Integrated Mask Balance Loss. The higher-order mask balance
loss evaluates the consistency between the final higher-order causal
mask and each verifiedmask, ensuring that the fused result properly
integrates information from different structural views. It is defined
as:

Lbalance
𝑡 =

∑︁
𝑠∈S
DMSE (𝑀𝐻𝐶

𝑡 , 𝑀
𝑠verified
𝑡 ). (28)

This loss encourages the higher-order fused mask to remain aligned
with all structure-specific verified masks, promoting a balanced
integration of multi-structural causal knowledge. By minimizing
the deviation between𝑀𝐻𝐶

𝑡 and each verified component, themodel
learns to generate unified yet structure-aware explanations.

F Construction of Causal Representations
To obtain the causal representations used in our model, we apply
Graph Convolutional Networks (GCNs) to the corresponding causal
subgraphs at each time step. Specifically, four GCNs with learnable
parameters Ψ𝐷𝐶 , Ψ𝑆𝐶 , Ψ𝐷𝐻𝐶 , and Ψ𝑆𝐻𝐶 are employed to extract the
following representations:

𝐻𝐷𝐶
𝑡 =𝐺𝐶𝑁 (𝐴𝐷𝐶

𝑡 , 𝑋𝑡 ;Ψ𝐷𝐶 ),
𝐻𝑆𝐶
𝑡 =𝐺𝐶𝑁 (𝐴𝑆𝐶

𝑡 , 𝑋𝑡 ;Ψ𝑆𝐶 ),
𝐻𝐷𝐻𝐶
𝑡 =𝐺𝐶𝑁 (𝐴𝐷𝐻𝐶

𝑡 , 𝑋𝑡 ;Ψ𝐷𝐻𝐶 ),
𝐻𝑆𝐻𝐶
𝑡 =𝐺𝐶𝑁 (𝐴𝑆𝐻𝐶

𝑡 , 𝑋𝑡 ;Ψ𝑆𝐻𝐶 ),

(29)

where𝐴∗𝑡 denotes the adjacency matrix of the corresponding causal
subgraph, 𝑋𝑡 is the node feature matrix at time step 𝑡 , and Ψ∗
represents the trainable parameters of each GCN module.

G Experimental Settings
G.1 Datasets
For the node classification task and the graph classification task,
we use 4 synthetic datasets and 2 real-world datasets. The statistics

of all datasets are shown in Table 2. To remain consistent with
previous work [33], for the node classification task, we use a real-
world dynamic graph dataset Elliptic2, and construct three synthetic
datasets BA-Shapes, Tree-Cycles, and Tree-Grid [27] into dynamic
graph datasets named DBA-Shapes, DTree-Cycles, and DTree-Grid,
respectively. For the graph classification task, we use a real-world
dataset MemeTracker [21], and convert the benchmark synthetic
dataset BA-2motifs [11] into a dynamic graph dataset named DBA-
2motifs. These datasets are selected to comprehensively evaluate
our model’s capability in handling both synthetic and real-world
dynamic graphs. Synthetic datasets allow us to examine the model’s
ability to capture specific structures and causal patterns in a con-
trolled environment, while real-world datasets validate its practical
applicability under complex temporal and structural variations.

G.2 Baselines
Since there are few existing works on explaining DyGNNs, in addi-
tion to comparing with DyGNNExplainer [33], we mainly compare
ourmethodwith several powerful static GNN interpretability frame-
works, including GNNExplainer [27], PGExplainer [11], Gem [8],
and OrphicX [9]. For these static explanation methods, all nodes
and edges in the graph are treated as occurring simultaneously.

G.3 Experimental Setup
All experiments were conducted on a Windows-based workstation
equipped with an NVIDIA A40 GPU, a 15-core Intel Xeon Platinum
8358P CPU, and sufficient memory. The model was trained for 200
epochs using the Adam optimizer with a fixed learning rate of 0.001.
The dataset was split into training, validation, and test sets with
a ratio of 7:1.5:1.5. During training, we adopted a composite loss
function consisting of multiple components, including contrastive
loss L𝑐 , sparsity loss L𝑠 , higher-order sparsity loss Lℎ𝑠 , prediction
lossL𝑝 , higher-order prediction lossLℎ𝑝 , dynamic consistency loss
L𝑑 , higher-order dynamic loss Lℎ𝑑 , and structural consistency loss
Lhigh. The weights for each component in the overall loss function
were set as follows: 𝜉1 = 0.8, 𝜉2 = 0.2, 𝜉3 = 0.2, 𝜉4 = 0.8, 𝜉5 = 0.5,
𝜉6 = 0.6, 𝜉7 = 0.4, and 𝜉8 = 0.4. We performed discrete sampling
for the hyperparameters 𝜉1 to 𝜉8 within the range of [0.1, 1.0], and
selected the final configuration based on the average performance
on the validation set. Additionally, to ensure the stability and relia-
bility of the results, each experiment was independently repeated
10 times with different random seeds, and the average performance
across these runs is reported. In addition, the experiments were
implemented using Python 3.9 and PyTorch 2.x, with PyTorch Geo-
metric and scikit-learn as the primary libraries.

H Case Study of CausalSKyHop
This case study illustrates the hierarchical explanation framework
implemented in our approach, as depicted in Figure 9. The archi-
tecture operates through two complementary higher-order path-
ways: the motif VGAE branch extracts local semantic patterns
through causal mask estimation and verification, while the hy-
pergraph VGAE branch captures global multi-node dependencies
via hypergraph modeling and higher-order dynamic masking. Both



WWW ’26, April 13–17, 2026, Dubai, United Arab Emirates. Jixuan Wu, Limei Lin, Xiaoding Wang, Kunpeng Xu, &Jie Wu

Table 2: Statistics of datasets for both node and graph classification.

Dataset Node classification Graph classification
DBA-Shapes DTree-Cycles DTree-Grid Elliptic DBA-2motifs MemeTracker

#nodes 700 871 1,231 203,769 25,000 3.3 mil.
#edges 4,110 1,950 3,410 234,355 51,392 27.6 mil.
#labels 7 3 3 2 3 2

Motif

t1 t2 t3

t1

Explanation

t2 t3

Motif  VGAE

Hypergraph VGAE

Extract motif structure

Extract hypergraph structure

VGAE Causal mask

Causal mask

Causal mask

Verified mask

Verified mask

t1

Causal graph

t2 t3

Dynamic mask

t1

Dynamic causal graph

t2 t3

Integrated mask

t1

Higher-order 
causal graph

t2 t3

Higher -order dynamic mask

t1

Higher-order dynamic 
causal graph

t2 t3

t1

Hypergraph

t2 t3

Dynamic graph

t1 t2 t3
Backdoor 
adjustment

VGAE

VGAE

Figure 9: The case study of CausalSKyHop. Using the red node as an example, the figure follows the pipeline “structure
extraction→ dual higher-order modeling branches→mask fusion and adjustment→ dynamic causal graph and explanation
outputs.” From left to right, the panels correspond to the input, intermediate processing states, and the final results (𝑡1→𝑡3).

pathways are enhanced with dedicated causal discovery mecha-
nisms—including causalmask, verifiedmask, and integratedmask—to
ensure structural and semantic coherence. The synergistic integra-
tion of motif- and hypergraph-based reasoning, supported by back-
door adjustment techniques, enables the construction of a unified
higher-order causal graph that systematically disentangles genuine

causal relationships from spurious correlations. This multi-granular
masking strategy ensures that the final explanation is both seman-
tically interpretable and temporally consistent, validating the im-
portance of integrating complementary higher-order structures in
dynamic graph interpretation.
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