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Abstract

The explosive growth of multimodal web data demands commu-
nication that transmits meaning rather than raw bits. Existing
semantic-communication systems often fail under noise, missing
modalities, and distribution shifts because they optimize surface fea-
tures instead of modality-invariant knowledge. We present Grasp,
a knowledge-centric framework for cross-modal communication.
Grasp segments streams into semantic blocks and builds a graph
over them; a lightweight Graph Neural Networks (GNN) produces
schedulable, importance-weighted representations. At its core is
knowledge purification: we minimize a conditional mutual informa-
tion upper bound to perform a three-way disentanglement—strongly
related, weakly related, and task-irrelevant components—so that
only essential semantics are transmitted while non-essential fac-
tors are suppressed. To maintain synchrony, we introduce one-to-
two temporal contrastive learning to achieve triple alignment of
video, audio, and text despite sampling asynchrony. For efficient
transmission, Grasp uses a cross-modal shared vector-quantization
codebook—a discrete knowledge codebook—updated by multimodal
attention. At the receiver, a soft-recovery mechanism leverages
this shared knowledge to robustly reconstruct semantics under low
signal-to-noise ratio (SNR) or missing modalities, yielding graceful
degradation. Across web tasks—including cross-modal retrieval and
missing-modality inference—Grasp improves knowledge consis-
tency, semantic fidelity, and downstream performance over strong
baselines while maintaining low latency. These results show that
communication structured around purified knowledge is key to
building robust, semantic-aware systems for the modern web.

CCS Concepts

« Theory of computation — Semantics and reasoning; « Com-
puting methodologies — Machine learning.
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1 Introduction

The exponential growth of multimodal web data—spanning video,
audio, and text—demands communication paradigms that priori-
tize the transmission of meaning over raw bits. While semantic
communication aims to address this fundamental shift by encoding
and reconstructing task-relevant meaning directly [3], current ap-
proaches face significant limitations in handling the complexities
of real-world multimodal environments. As applications prolifer-
ate across vehicle-to-everything coordination, telemedicine, and
Internet of Things systems [6, 8], communication frameworks must
operate under stringent bandwidth constraints while maintain-
ing semantic coherence amid channel noise, packet loss, and the
intrinsic challenges of multimodal data: sampling asynchrony, am-
biguous semantic boundaries, and mismatched granularity. The
central challenge escalates under low SNR, missing modalities, or
distribution drift, where conventional approaches focused on mini-
mizing reconstruction error often fail to preserve semantic validity
and robustness [18, 21].

The root limitation of current methods lies in their focus on
surface-level feature alignment rather than extracting and commu-
nicating the underlying, modality-invariant knowledge that guaran-
tees cross-modal coherence. This semantics-knowledge gap mani-
fests in three fundamental challenges for real-world deployment.
First, under the rate-distortion-semantics trade-off [15], existing
pipelines remain frame-level reconstruction-centric and lack trans-
missible knowledge units [23] explicitly conditioned on channel
constraints. The absence of structured, compact knowledge rep-
resentations hinders efficient scheduling and compression within
fixed bandwidth and latency budgets. Second, shared semantics
often remain entangled with modality-specific features, where un-
der noise, asynchrony, or missing data, this entanglement leads to
alignment drift and semantic incoherence [14]. This highlights the
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critical need to disentangle what is essential (the knowledge) from
how it is presented (the modality). Third, discrete representations
(e.g., vector-quantized codebooks) often lack adaptability to main-
tain semantic integrity under channel impairments, where at low
SNR or with missing modalities, bias amplification during dequan-
tization undermines reliable knowledge recovery [30]. Collectively,
these challenges impede the simultaneous achievement of low com-
munication cost, high semantic fidelity, and strong robustness [7].

To bridge these gaps, we introduce Grasp, a framework that re-
casts multimodal semantic communication as knowledge extraction
and alignment. Unlike prior work, Grasp distills and transmits puri-
fied knowledge—modality-invariant core semantics that remain ro-
bust under diverse web conditions. We first build a semantic graph
from raw multimodal streams: kernel-based self-representation
with spectral regularization [25] segments streams into coherent
blocks and links them by semantic relations. A lightweight GNN
then extracts enhanced features and estimates block importance,
yielding prioritized knowledge units for subsequent processing.

The core innovation of Grasp lies in its knowledge purification
stage, where we employ mutual information minimization to explic-
itly disentangle modality-invariant core knowledge from modality-
specific features. Drawing on conditional information theory [4],
we derive a decoupling objective based on a conditional CLUB
bound, effectively isolating the essential semantics from modality-
specific variations. This purification process is further enhanced by
a novel one-to-two temporal contrastive criterion that maintains
knowledge synchrony across modalities despite sampling asyn-
chrony, ensuring temporal coherence in the purified knowledge
representations.

For efficient transmission, the purified knowledge undergoes
discretization through a cross-modally shared vector quantization
codebook, functioning as a discrete knowledge codebook. Updated
via EMA and constrained by a cross-modal commitment term, this
codebook ensures consistent representation of purified knowledge
across different modalities. Finally, at the receiver, a soft knowledge
recovery mechanism leverages cross-modal attention to robustly
reconstruct semantics under low SNR or missing modalities, en-
abling graceful degradation while preserving task performance.
This integrated pipeline represents a significant departure from
conventional semantic communication approaches, as it prioritizes
the extraction and communication of purified knowledge rather
than attempting to reconstruct surface-level features.

Our work makes four key contributions toward advancing mul-
timodal semantic communication, as follows.

(1)We introduce Grasp as a knowledge-centric framework that
leverages graph-structured representations for semantic organi-
zation, providing a principled approach to extract and prioritize
transmissible knowledge units.

(2)We develop a knowledge purification mechanism that mini-
mizes a conditional mutual information upper bound to perform a
three-way disentanglement—strongly related, weakly related, and
task-irrelevant components—thereby ensuring robust triple modal
alignment.

(3)We design a unified knowledge processing pipeline that inte-
grates graph-based semantic modeling, information-theoretic pu-
rification, shared knowledge coding, and attention based recovery
into an end-to-end system.
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(4)Through extensive experiments across multiple web tasks, we
demonstrate that Grasp significantly advances the semantic quality
vs. bit-cost frontier while maintaining low latency, with detailed
ablations substantiating the value of each component.

Paper Organization. The rest of this paper is organized as fol-
lows. Section 2 reviews related work. Section 3 details the Grasp
framework. Section 4 presents the experimental results and analysis.
Finally, Section 5 concludes with discussions and future directions.

2 Related Work

This section reviews key advancements and challenges in semantic
communication, multimodal learning, and knowledge representa-
tion, highlighting gaps that motivate our proposed framework.

Semantic Communication and End-to-End Learning. Modern se-
mantic communication, driven by end-to-end learning, has shifted
the goal from bit-level reconstruction to semantic fidelity [1, 10].
Yet, these methods remain largely limited to single-modality inputs
and idealized channels. This renders them fragile in real-world web
and packet networks, which suffer from bandwidth volatility, delay,
and loss [24]. Crucially, they lack a structured representation for
semantics that can be efficiently scheduled and transmitted—a gap
that nascent work on semantic-aware rate control and transport-
layer integration has started to address [27].

Multimodal Representation and Alignment. Learning consistent
representations across heterogeneous modalities is a cornerstone of
multimodal understanding. A second strand focuses on cross-modal
representation learning that extracts factors genuinely shared across
heterogeneous signals [9]. Contrastive learning, cross-attention,
and temporal context modeling have significantly advanced cross-
modal alignment under clean, synchronized conditions [11]. Yet, in
practical web environments, modalities are often asynchronously
sampled, suffer from intermittent availability, and are subject to
dynamic distribution shifts. This leads to temporal drift and se-
mantic misalighment, undermining the consistency of the shared
semantics [12, 26]. Current methods typically address alignment
as a post-hoc or offline process, rather than explicitly enforcing
temporal synchrony and factor disentanglement as an integral part
of the communication pipeline.

Information-Theoretic Disentanglement and Purification. An in-
formation theoretic perspective provides a principled foundation
for disentangling shared and private factors. Mutual information es-
timation and minimization have been employed to improve discrim-
inability and suppress redundancy [2]. However, many approaches
focus on marginal mutual information or contrastive lower bounds,
lacking explicit conditional control to isolate modality-invariant
core knowledge from modality-specific variations [13]. This short-
fall becomes critical under channel noise and quantization, where
unconstrained specific features can corrupt the transmitted seman-
tics, leading to semantic drift. A rigorous, conditional purification
strategy is therefore needed to ensure the stability and purity of
the communicated knowledge.

Discrete Representation and Structured Semantic Scheduling. Vec-
tor quantization and codebook learning offer a pathway to efficient,
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Figure 1: The Grasp Framework. An overview of our knowledge-centric pipeline: from multimodal input, to semantic graph
construction, knowledge purification, efficient coding via a shared codebook, and robust semantic recovery at the receiver.

discrete semantic transmission. Stabilization techniques like mo-
mentum updates and commitment loss have improved the com-
pactness and training stability of discrete representations [17]. In
multimodal settings, key challenges remain: maintaining a con-
sistent, shared discrete space across modalities; mitigating early
codebook assignment bias; and enabling robust, soft recovery at
the receiver under missing data or corruption [16, 20]. Concur-
rently, structured modeling—using graphs and self-representation
methods—has proven effective for capturing semantic affinities and
importance at a block level [22, 28]. However, these techniques have
seldom been integrated into an end-to-end communication system
that connects semantic structure with network-aware scheduling
and rate adaptation [5].

Summary and Motivation. Prior work has advanced semantic
communication, multimodal alignment, discrete representation,
and structured modeling. However, a key gap remains: there is
still no unified, knowledge-centric pipeline that purifies and struc-
tures semantics into schedulable units, transmits them through a
shared discrete codebook robust to network dynamics, and supports
reliable recovery under realistic web conditions. This motivates
an end-to-end chain that organizes block-level semantics, stabi-
lizes cross-modal consistency and limits semantic leakage before
transmission, maps meaning into a shared discrete space, and re-
constructs with soft information at the receiver—pushing the rate—
semantics frontier toward real packet networks [19]. Grasp bridges
this gap by refining raw multimodal data into purified, structured
knowledge for consistent and efficient cross-modal communication.

3 Methodology

As shown in Figure 1, we propose Grasp, a novel framework that
reformulates multimodal semantic communication as a process of
knowledge extraction, purification, and alignment. It converts raw
multimodal inputs (video, audio, text) into structured and purified
knowledge representations, tailored for robust transmission over
packet-switched networks. Grasp tackles four core challenges: (i)
extracting knowledge units under varying bandwidth and latency,
(ii) ensuring robustness to SNR fluctuations and packet loss, (iii)
achieving cross-modal synchrony despite temporal misalignment,
and (iv) optimizing the rate-knowledge trade-off end-to-end.

3.1 Semantic Graph Construction via
Kernel-Based Blocking

We introduce Semantic Graph Construction via Kernel-Based Block-
ing (KBB) as the foundational step for constructing structured
semantic representations from raw multimodal sequences. This
module transforms continuous streams into semantically coherent
blocks and estimates their relative importance, forming the initial
semantic graph that subsequent knowledge purification stages will
refine.

3.1.1  Kernel-Space Self-Representation for Semantic Blocking. Our
approach begins by processing each modality stream independently
to extract semantically meaningful units. Along the temporal axis,
we detect content changes under duration constraints to obtain
variable-length candidate segments. For each segment, a pretrained
encoder extracts features, which are aggregated via mean pooling
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or attention mechanisms to form block embeddings {x;})¥, (repre-

senting audio windows, video snippets, or text spans). We preserve
temporal extents [s;, e;] for downstream synchronization.

Rather than applying direct clustering, we model semantic rela-
tionships through kernel-space self-representation, constructing the
kernel matrix K;; = k(x;, x;) using a Gaussian RBF kernel as the
similarity backbone, as follows.

K(xi,x) = exp( = i = x1/20%). (1)

In the reproducing kernel Hilbert space (RKHS), we formulate each
block as a linear combination of other blocks, capturing semantic
dependencies.

Ow) x ) Zi0(x)), @

where ®(-) denotes the nonlinear feature map, Z € RN*N is the
self-representation coefficient matrix, and K;; = (®(x;), ®(x;)) is
the kernel matrix. To ensure interpretability and support subse-
quent graph construction, we impose structural constraints on Z:
symmetry Z = Z" (yielding undirected semantic relationships),
nonnegativity Z > 0 (maintaining semantic coherence), zero diago-
nal diag(Z) = 0 (eliminating self-loops), and column normalization
15,Z = 13;. Under symmetry, this implies Z1y = 1, making Z
doubly stochastic. Each semantic block is represented as a convex
combination of other blocks (3; Z;; = 1, Z;; > 0). These constraints
enhance stability and allow Z to directly serve as a within-modality
weighted adjacency matrix for graph construction.

3.1.2  Spectral Regularization for Semantic Group Discovery. We
transform the self-representation matrix Z into an affinity struc-
ture that explicitly reveals latent semantic groupings, enabling the
formation of stable semantic blocks for downstream knowledge
processing. To enable spectral analysis, we first symmetrize Z by
W = (Z + Z7)/2. To capture intra-block consistency and inter-
block separation—key properties for knowledge unit formation—we
define the degree matrix D = diag(W1y) and graph Laplacian
L =D - W.Here D;; = },; W; represents node i’s total semantic
connectivity. The Laplacian quadratic form is as follows.

2
x'Lx =3 Zi’j Wij (% — %)%, (3)

penalizes large differences between strongly connected nodes, nat-
urally encouraging within-group consistency and across-group
separation—essential for identifying coherent knowledge units.

Let the eigenvalues of L be ordered as 0 = A1 (L) < Ap(L) < -+ <
AN (L). We employ the spectral regularizer as follows.

1zl 2 S 2w, @

Minimizing this quantity drives the smallest k eigenvalues toward
zero, pushing the graph toward k nearly disconnected compo-
nents—equivalent to a near block-diagonal structure in W that
aligns with k semantic groups, directly enforcing the block struc-
ture needed for knowledge extraction.

For numerical stability and scale invariance, we apply symmetric
degree normalization G = D~Y2 W D~/2, Spectral clustering on W
(or L) then yields semantic block groups, with within- and between-
group affinities aggregated to form the block-level semantic graph
for downstream knowledge purification.
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Following the kernel-learning formulation, we construct a data-
dependent positive semi-definite kernel matrix K (with diagonal
shift & > 0) from G, as follows.

exp( - 2max(G) + Gyj), i#j,
Zq# exp( — 2max(G) + qu) +& i=j.

With K fixed, we estimate the optimal self-representation Z by

Kij = (5

ming 1 ToK + Z"KZ) - aTr(KZ) + yﬁjilm(m. (6)

The first two terms enforce self-representation consistency in the
kernel space while preserving local semantic similarity, and the
spectral term shapes the affinity toward a block-diagonal structure
via Laplacian spectrum manipulation. After obtaining optimal Z,
we form W = (Z + Z7)/2, perform spectral clustering to assign
semantic cluster labels, and merge temporally adjacent segments
with identical labels to produce the final semantic blocks—the fun-
damental units for subsequent knowledge purification.

3.2 Semantic Feature Extraction via
Graph-Structured Propagation

The foundation of our knowledge purification framework lies in
effectively extracting semantically rich features from multimodal
data. We transform raw segments into structured semantic rep-
resentations through graph-based feature propagation, capturing
both intrinsic content value and relational semantics.

3.2.1 Graph-Based Semantic Feature Encoding. Given segment-
level undirected affinity matrix W and pre-partitioned semantic
blocks {8;}M,, we construct a semantic graph to enable structured
feature extraction. Let 7; C {1,..., M} denote the index set of
segments within block $;. We compute the block-level adjacency

matrix A € RM*M that captures inter-block semantic relationships.

A= (Y Drer Wo) (T 1T,

This defines our semantic feature graph G = (V, &, A) where
the vertex set V = {B;}, represent semantic blocks, the edge
set & = {(i,j) | Aij > 0} encode their semantic affinities, and
A = (Aj;). The graph structure serves as a relational inductive bias
for feature extraction, ensuring that semantically related blocks
influence each other’s representations.

A;i=0. (7)

3.2.2  lterative Semantic Feature Enhancement. We employ an itera-
tive propagation mechanism to enhance semantic features through
graph neighborhoods. First, we normalize the adjacency matrix to
obtain feature propagation weights.

Ry = exp(Ay/0)/ D exp(An/o). ®)

where 7 controls the selectivity of semantic influence.
Each block’s semantic feature is initialized with its embedded
representation z;, augmented by structural importance, as follows.

£O =7, (142 deg(0), ©

where deg(i) is the node degree and A balances intrinsic seman-
tics versus structural context. Semantic features are then refined
through T iterations of neighborhood aggregation.

FO =FUDA  ¢=1,....T = FD=FOAT  (10)
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This propagation mechanism performs semantic feature enrich-
ment by iteratively blending features across semantically related
blocks. The process enhances discriminative semantic patterns
while suppressing noise, resulting in features that capture both
local content and global semantic context.

3.2.3  Semantic Salience Scoring and Feature Prioritization. To quan-
tify the semantic importance of each block, we compute salience
scores from the enhanced features.

si = N6 |12 /max(1, Vdy), 1)

The semantic salience scores are normalized into transmission pri-
orities.

M

pi = exp(s,—)/z“j:1 exp(s;). (12)
These priorities p; are further used as a score-guided routing signal
to obtain an initial triplet decomposition of the enhanced block
features fi(T). Specifically, each block is assigned (or weighted) into
three preliminary components: x; denoting modality-invariant core
candidates, y; capturing strongly modality-specific yet semantically
relevant information, and z] representing weakly modality-specific
features and noise.

3.3 Knowledge Purification via Mutual
Information Minimization

We introduce the Mutual Information Minimization and Cross-
Modal Alignment (MICA) module, which operates on the semantic
block representations constructed in the previous stage. MICA
addresses the core challenge of distilling modality-invariant puri-
fied knowledge from modality-specific representations through two
synergistic components: (1) Conditional Mutual Information Mini-
mization to explicitly disentangle shared semantics from modality-
specific factors, and (2) Anchored Joint Alignment to maintain tem-
poral synchrony of semantic trajectories across modalities despite
sampling asynchrony.

3.3.1 Knowledge Purification via Conditional MI Minimization. At
the heart of our knowledge purification approach is the explicit
separation of semantic representations into distinct components
that capture different aspects of the multimodal data. For each
modality m € M = {a, b, c}, we further refine the score-routed pre-
liminary triplet features (x;™,y}™, z{™) into three complementary
components, as follows.

ylm = gstr(y;m)’ Zlm = gweak(zgm): (13)
where x represents the modal-agnostic core knowledge—the puri-
fied semantic content that should be invariant across modalities; y
captures strongly modal-specific characteristics that are distinctive
to each modality but semantically relevant; and z contains weakly
modal-specific features and noise that should be discarded during
knowledge transmission.

To achieve effective knowledge purification, we minimize an
upper bound of the conditional mutual information between the
shared and specific components. This optimization explicitly en-
courages the separation of core knowledge from modality-specific
artifacts. Using a learnable estimator qo(y | x, z), we define

Iemi(x;y | 2) = Ep(x,y,z) [logqe(y | x,2)]
= Ep(2) pxlz) p(ylz) [logqa(y | x,2)] .

xim = ginv(xz{m%

(14)
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The first term maximizes the conditional log-likelihood on matched
triplets, guiding the estimator toward the true conditional distribu-
tion of modality-specific features given the shared knowledge and
weak specifics. The second term evaluates the same quantity under
a conditional independence assumption, serving as a contrastive
baseline that encourages statistical independence between x and
y when conditioned on z. Aggregating across all modalities yields
the complete purification objective.

Lpurify = ZmEM Temi (x™; ym | 2™). (15)

By minimizing the difference between the joint expectation and
the conditional independence baseline, we systematically reduce
the conditional mutual information I(x;y | z), thereby purifying
the shared component x and isolating the modality-invariant core
knowledge essential for robust cross-modal communication.

3.3.2  Temporal Knowledge Synchronization via Anchored Joint Align-
ment. To maintain semantic coherence across modalities despite
temporal sampling asynchrony, we introduce an anchored joint
alignment mechanism that implements the “one-to-two” temporal
contrastive learning scheme mentioned in the abstract. This ap-
proach ensures that the purified knowledge remains synchronized
across modalities over time, addressing the critical challenge of
dynamic semantic alignment in real-world web data.

The alignment operates through an anchor modality that pro-
vides temporal context, while the remaining modalities are con-
strained to maintain joint consistency with this anchor across multi-
ple future steps. Let modality a serve as the anchor with contextual
representation, as follows.

h = ContextAgg({x7}r<t), (16)

which aggregates the purified knowledge components up to time ¢,
capturing the evolving semantic context.

For each future horizon k = 1,.. ., K, we employ step-dependent
projection matrices W,® to map the anchor context to an appropri-
ate future-alignment space. The target representations from the
other modalities are denoted as zf+k and z;, . To enable effective
contrastive learning, we define the in-batch negative pair set.

Zpe(1,k) ={(0,2) | j € B, j# 1}, (17)

which contains mismatched temporal pairs from the same batch.
The anchored joint alignment objective is then formulated as

t+k

Z exp (zjb» Wk + ;W7 h?)

(5.2 €Zpc (1)

exp(z}t’Jrka“h? +z¢ W]fhf)

K
-1
2bc _
L:ligri - ? Z log
k=1

(18)

This formulation possesses several key properties that make it
particularly suitable for knowledge synchronization:

(1) Joint Consistency: The numerator computes the joint score
of the positive pair (z’[’ i Z145) conditioned on the anchor A, while
the denominator aggregates joint scores of all negative pairs. The
additive structure of the joint score (exp(u + v) = exp(u) exp(v))
corresponds to a product of per-modality likelihoods under the
anchor context, enforcing genuine multi-modal consistency rather
than mere pairwise alignment.
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(2) Temporal Robustness: By aligning across multiple future
horizons (k =1, ..., K), the method maintains semantic synchrony
despite temporal misalignments and varying sampling rates com-
mon in web multimedia.

(3) Flexible Configuration: The framework naturally adapts
to different scenarios—setting K = 1 and k = 0 with h{ = x{ yields
same-time alignment, while with only two modalities the objective
reduces to standard pairwise cross-modal alignment.

The complete MICA objective combines both components is

Lyvica = Lpuity + ALalign, (19)

where A balances the knowledge purification and temporal align-
ment objectives. Together, these mechanisms ensure that the system
extracts and maintains synchronized, purified knowledge represen-
tations—the foundation for robust cross-modal communication in
dynamic web environments.

3.4 Knowledge Codec and Cross-Modal
Enhancement

Building upon the purified knowledge representations from previ-
ous stages, we now introduce the discrete knowledge coding and
enhancement mechanism that enables efficient and robust cross-
modal communication. This component implements the shared vec-
tor quantization codebook described in the abstract, functioning as
a discrete knowledge repository that facilitates semantic-consistent
transmission and graceful degradation under channel impairments.

3.4.1 Shared Knowledge Codebook with Cross-Modal Commitment.
The purified block-level knowledge representations undergo dis-
cretization into semantic codes through a cross-modally shared
vector quantization (VQ) codebook. This codebook serves as the
fundamental knowledge vocabulary for all modalities, ensuring that
identical semantic concepts map to consistent discrete representa-
tions regardless of their originating modality.

For each semantic block, the nearest-neighbor encoding in the
shared knowledge space is formulated as

q(x") = e where k =argmin; [|¢"(x]") —e;ll2, (20)

where ¢™(-) denotes the modality-specific projection head, and e;
are the codeword embeddings in the shared knowledge codebook.
To enforce semantic consistency across modalities, we introduce
a cross-modal commitment loss that regularizes the same semantic
content to converge to consistent discrete representations as

it = Bl () = sglef1|[> + f | .

+ 2 ety — satefl:

27

¢ (x%) - sgle?]

(21)

where sg[-] denotes the stop-gradient operator, ei“, ef , eiC are the
codeword representations of the same semantic content across
three modalities, and f controls the commitment strength. This loss
ensures that the purified knowledge components from different
modalities representing the same underlying semantics are mapped
to proximate regions in the discrete code space.

The knowledge codebook dynamically adapts to multimodal

distributions through an exponential moving average (EMA) update
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mechanism that accumulates cross-modal statistics, as follows.

() _ (z-1) a(t) b(t) c(¢) (&) _ (@) A7)
N;”’ =yN,; +(1=y)[n;" +n " +n, e =0, /N,

(22)

counts assignments to

where y € (0,1) is the decay rate, n:"(t)

codeword e; from modality m at step ¢, and o;t) aggregates the
feature contributions.

Crucially, the codebook update integrates cross-modal knowl-
edge through attention-guided feature enhancement, as follows.

_ 1- a(®)
ol@ :yolgt n Y[Zjil (Za(t) +rbc(t))

2 i Tl
(23)
b et w0 ab(o)
ey (@) 0 (= ) |
Here, z?;.(t) represents the j-th knowledge representation from

modality m assigned to codeword e;, while r~ denotes complemen-
tary features derived through cross-modal attention. This mecha-
nism preserves a unified knowledge repository while incorporat-
ing multimodal evidence, thereby stabilizing the discrete semantic
space and mitigating assignment biases during early training stages.

3.4.2 Cross-Modal Knowledge Enhancement for Robust Recovery.
At the receiver side, we implement a soft recovery mechanism that
leverages the shared knowledge base to reconstruct semantics under
challenging conditions such as low SNR or missing modalities. This
process begins with soft demodulation and channel decoding that
produce codeword confidence scores 31”3 for modality m, block i,
and codeword index j € {1,..., M}.

The posterior distribution over the knowledge codewords and
the corresponding soft reconstruction are computed as

M M
= exp(SZ’j)/ZH exp(siy)s m = Zj:l e, (24)
where e; denotes the j-th codeword embedding from the shared
knowledge codebook. This soft dequantization provides a proba-
bilistic reconstruction that gracefully handles uncertainty in the
received signals.

We then enhance the recovered knowledge through cross-modal
knowledge attention, which refines the target modality represen-
tation by incorporating complementary evidence from auxiliary
modalities. Let the scaled dot-product attention be defined as

Attn(Q,K,V) = soﬁmax(QKT/\/E) V. (25)

The knowledge refinement process for the modality a using

evidence from the modalities b and ¢ continues as follows.

rbe = Attn(Q =38 K =[20.251, v = [z}, zf]), 26)
where ribC represents the residual knowledge collected from the
auxiliary modalities. The target representation is then augmented
through z = 27 + ribc.

This cross-modal knowledge enhancement mechanism embodies
the soft recovery principle outlined in the abstract: it leverages the
shared knowledge base to robustly reconstruct semantics by selec-
tively attending to complementary evidence from other modalities.
When certain modalities are corrupted or missing, the attention



Grasp: Refining Semantic Graphs into Purified Knowledge for Cross-Modal Communication

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

85 T-DeepSC(-2) MAE —Acc-7 MAE = Acc-7
~T-DeepSC(12) —V- V— 0.901 m Corr  —F1-2 0.90{ ™ Corr —F1-2
—U-DeeeeZSC(-Z) v/' — H —Acc-2 —F1-7 0.575 —Acc2 ~F17 —n—"—8—pg—n—n [0575
U-DeepSC(12) 0.85 0.85 —
80|~ Grasp '/ —a—n E ——0—9—0—0¢ o550 5 - 99— V===0—V 10.550
—— o >~ o / 4 o Ay A
A — > ¢ ~ 0.80 ~0.80{ W
= y P H o 05257 O 0.525
g % o - A
e //‘/ s L0775 L owors / £
% v ox » o 0500 & ¢ 05003
o] Y 0.70 g go70 ¥
& o} S 9 S
« g < 0475< < 0.475<
70 7 S =
py w065 4 0.65
= 0450 = 0.450
0.60 0.60
65 ° 0.425 0.425
0.55 0.55
6 4 -2 0 2 4 6 8 10 12 6 -4 -2 6 8 10 12 6 -4 2 0 2 4 6 8 10 12

(a) AWGN——SNR (dB)

0 2 4
(b) AWGN——SNR(dB)

(c) Rayleigh——SNR (dB)

Figure 2: Experimental results on the CMU-MOSEI dataset. Grasp is compared with representative baselines under different
SNR conditions, and additional evaluations are reported under AWGN and Rayleigh fading channels.
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Figure 3: Comparison of Grasp with existing methods on the
VQA-v2 dataset under different SNR conditions.

mechanism automatically reweights the available evidence, ensur-
ing that the system maintains semantic fidelity through intelligent
knowledge fusion rather than relying on fragile single-modality
reconstructions.

4 Experiments

To evaluate Grasp, we conduct experiments on three multimodal
benchmarks (see Appendix A): CMU-MOSEI for video-audio-text
sentiment analysis, VQA-v2 for visual question answering, and
MM-IMDB for genre classification. This diverse setup tests robust-
ness across modalities and tasks under practical constraints like
channel interference. (More experimental setup see Appendix B).

Results on CMU-MOSEL Figure 2 compares the performance of
Grasp with T-DeepSC and U-DeepSC [29] under different channel

Figure 4: Performance comparison of Grasp and base-
line methods on the MM-IMDB dataset under AWGN and
Rayleigh channels.

conditions on the CMU-MOSEI dataset, which involves video, audio,
and text for multimodal sentiment analysis. GRASP consistently
outperforms the baselines across all SNR levels, achieving an Acc-2
of 73.55% at —6 dB, outperforming T-DeepSC and U-DeepSC by
1.9% and 2.6%, respectively. At 8 dB, the Acc-2 rises to 83.98%,
demonstrating strong robustness under noisy conditions.

Additionally, regression and seven-class evaluations show steady
improvements in MAE and F1-7 scores. MAE decreases from 0.7132
at —6 dB to 0.5144 at 8 dB, while the F1-7 score improves by over
0.08, confirming stable cross-modal sentiment understanding.

Under the Rayleigh fading channel, GRASP remains robust, with
Acc-2 rising from 72.5% at —6 dB to 83.86% at 8 dB. Despite slightly
lower performance compared to AWGN, the consistent upward
trend verifies GRASP’s noise tolerance and adaptability.

Results on VQA-v2. As shown in Figure 3, GRAsP achieves the best
performance across all SNR conditions on the VQA-v2 dataset. At
—6 dB, it attains 38.21% and 36.41% accuracy for two test configura-
tions, surpassing MFSC [31] by around 3%. When SNR rises to 0 dB,
Grasp reaches 59.71% and 53.83%, outperforming T-DeepSC by 19%
and 13%, respectively. Even under high SNR (12-18 dB), it main-
tains the highest scores (~ 70%), illustrating stable upper-bound
performance. The performance gap widens under lower SNR, high-
lighting Grasp’s robustness to channel noise, which stems from its
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Figure 5: Ablation study of Grasp framework under AWGN and Rayleigh fading channels at an SNR of 12 dB. (a)—(b) show the
performance when removing specific modules , while (c)—(d) present results when retaining only a single module .

ability to extract and transmit purified, modality-invariant seman-
tics. These results demonstrate that GRAsP’s semantic refinement
and cross-modal alignment mechanisms are highly effective in mit-
igating semantic degradation and ensuring robust vision-language
reasoning.

Results on MM-IMDB. Figure 4 reports results under both AWGN
and Rayleigh channels. Under AWGN, Grasp achieves an F1-score
of 34.02 at —6 dB, outperforming T-DeepSC (18.35) and U-DeepSC
(20.60) by over 13-15 points. As the SNR increases, its F1-score rises
to 61.97 at 18 dB, maintaining a clear lead over MFMSC (57.48)[31].
Under Rayleigh fading, although performance slightly drops, Grasp
still achieves 31.31 at —6 dB and 60.67 at 18 dB, remaining consis-
tently superior. These results verify that Grasp effectively preserves
essential cross-modal semantics and resists channel-induced degra-
dation across modalities.

Across CMU-MOSEIL VQA-v2 and MM-IMDB, GRrASP consis-
tently achieves state-of-the-art results in both the AWGN and
Rayleigh channels. It demonstrates significant robustness at low
SNR, steady performance improvement with increasing channel
quality, and superior cross-modal generalization. These results con-
firm that GrAsp can effectively extract and transmit purified se-
mantic representations across heterogeneous multimodal tasks and
challenging communication environments.

Ablation Study. To further verify the contribution of each key
component in GRAsP, we conduct a comprehensive ablation study
by progressively removing or isolating the three major modules: (1)
Kernel-Based Blocking (KBB) for semantic graph construction,
(2) Graph-Structured Propagation (GSP) for relational semantic
enhancement, and (3) Mutual Information-Based Knowledge
Purification (MICA) for modality-invariant knowledge extraction.
The results are summarized in Figure 5 (more detailed in Appen-
dix C), which presents a radar chart comparing multiple evaluation
metrics across configurations.

As shown, removing MICA causes the largest performance
degradation across all metrics, particularly in correlation and F1-
score, confirming that knowledge purification is crucial for disen-
tangling modality-invariant semantics and suppressing redundant

or noisy factors. When KBB is excluded, the model exhibits a no-
table drop in accuracy and semantic consistency, indicating that
kernel-based graph construction effectively captures structured
dependencies and provides stable semantic grouping. The absence
of GSP results in reduced overall coherence and weaker robust-
ness under channel variations, verifying that graph propagation
significantly enhances relational reasoning among semantic blocks.

When all three modules are combined, Grasp achieves balanced
and superior performance across all metrics, as reflected by the
radar chart’s uniformly expanded contour. This demonstrates that
the three components are complementary: KBB ensures structural
organization, GSP strengthens contextual feature propagation, and
MICA purifies and aligns the extracted knowledge. Together, they
form a theoretically coherent and empirically validated foundation
for robust multimodal semantic communication.

5 Conclusion

This paper presented Grasp, a tri-modal communication framework
that transmits purified knowledge rather than raw data. Grasp
structures inputs as semantic graphs and performs knowledge pu-
rification as a three-way disentanglement—strongly related, weakly
related, and task-irrelevant—to isolate modality-invariant seman-
tics. A one-to-two temporal contrastive objective enforces triple
alignment across video, audio, and text under sampling asynchrony,
while a shared vector-quantized knowledge codebook enables effi-
cient transmission. A soft-recovery receiver preserves semantics
at low SNR or with missing modalities. Across web tasks, Grasp
improves semantic fidelity, robustness, and downstream perfor-
mance, supporting knowledge-centric design for reliable semantic
communication; future work will scale to richer modalities and
dynamic settings.
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input features are normalized to ensure cross-modal consistency.

1 VQA-v2

The VQA-v2 dataset is a large-scale visual question answering
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Table 1: Ablation results of GrRasp under AWGN and Rayleigh channels.

Variant SNR (dB) AWGN Channel Rayleigh Channel
CC MAE Accy F1, Accy F1; CC MAE Accy F1, Acc; F1y
Grasp -6 0.5605 0.7132 0.7355 0.8083 0.4262 0.4746 0.5654 0.7121 0.7250 0.8006 0.4241 0.4692
0 0.7348 0.5794 0.8209 0.8737 0.5281 0.5483 0.7351 0.5807 0.8267 0.8774 0.5266 0.5474
6 0.7600 0.5534 0.8372 0.8840 0.5395 0.5512 0.7608 0.5520 0.8398 0.8857 0.5429 0.5552
12 0.7619 0.5505 0.8368 0.8833 0.5420 0.5531 0.7618 0.5500 0.8389 0.8847 0.5435 0.5548
w/o KBB -6 0.4873 0.7570 0.6769 0.7420 0.3890 0.4320 0.4837 0.7504 0.6704 0.7408 0.3827 0.4338
0 0.6737 0.6152 0.7623 0.8181 0.4956 0.5123 0.6767 0.6107 0.7647 0.8164 0.4948 0.5103
6 0.6990 0.5892 0.7786 0.8284 0.5070 0.5152 0.6974 0.5868 0.7747 0.8267 0.5079 0.5174
12 0.7009 0.5863 0.7782 0.8277 0.5095 0.5171 0.7005 0.5857 0.7802 0.8290 0.5109 0.5187
w/o GSP -6 0.5021 0.7340 0.6710 0.7530 0.3957 0.4476 0.5014 0.7325 0.6989 0.7520 0.3971 0.4425
0 0.6866 0.6010 0.7651 0.8247 0.4967 0.5146 0.6829 0.6015 0.7657 0.8216 0.4946 0.5182
6 0.7169 0.5724 0.7802 0.8297 0.5034 0.5167 0.7177 0.5778 0.7899 0.8356 0.5133 0.5238
12 0.7177 0.5780 0.7899 0.8356 0.5133 0.5238 0.7176 0.5775 0.7919 0.8369 0.5147 0.5254
w/o MICA -6 0.4544 0.7806 0.6257 0.7207 0.4657 0.4736 0.4565 0.7823 0.6247 0.7243 0.4651 0.4708
0 0.6241 0.6537 0.7186 0.7957 0.4774 0.4866 0.6246 0.6546 0.7171 0.7946 0.4763 0.4875
6 0.6628 0.6215 0.7342 0.7741 0.4864 0.4965 0.6634 0.6275 0.7312 0.7758 0.4873 0.4935
12 0.6629 0.6221 0.7322 0.7729 0.4851 0.4950 0.6628 0.6215 0.7340 0.7741 0.4864 0.4965
w/o all modules -6 -0.0432 1.1366 0.6151 0.6611 0.2808 0.3127 -0.0415 1.1204 0.6107 0.6510 0.2781 0.3148

0 -0.0365 1.0417 0.6414 0.6895
6 -0.0360 0.9477 0.6431 0.6905
12 -0.0360 0.9477 0.6431 0.6905

0.3501 0.3899 -0.0351 1.0573 0.6490 0.6871 0.3538 0.3736
0.3506 0.3905 -0.0344 0.9498 0.6438 0.6931 0.3510 0.3989
0.3506 0.3905 -0.0450 0.9455 0.6399 0.6889 0.3516 0.3912

human-annotated question—-answer pairs. Each image—question
pair requires cross-modal reasoning between visual and textual
modalities to infer the correct answer among multiple candidates.
The VQA-v2 task evaluates the ability of GRAsP to preserve cross-
modal semantic integrity and reasoning capability under noisy
transmission conditions.

A.2 CMU-MOSEI

CMU-MOSEI is a large-scale multimodal sentiment analysis dataset
containing 23,453 annotated video segments from over 1,000 speak-
ers, covering diverse topics and emotional expressions. Each sample
includes synchronized video, audio, and text modalities, annotated
on both binary (Acc-2) and seven-class (Acc-7) sentiment scales.
This dataset is used to evaluate the robustness of GRraAsP in fine-
grained affective reasoning under varying signal-to-noise ratio
(SNR) conditions.

A3 MM-IMDB

MM-IMDB is a multimodal movie genre classification dataset that
combines textual plot summaries with poster images for multilabel
classification. Each sample consists of a text-image pair associated
with one or more of 23 movie genres. This dataset assesses the ca-
pability of GRasP to extract and transmit complementary semantic
cues across heterogeneous modalities, highlighting its strength in
structured multimodal knowledge fusion.

A.4 Channel and Noise Settings

In all experiments, semantic embeddings are transmitted through
simulated wireless channels, including additive white Gaussian

noise (AWGN) and Rayleigh fading. Multiple signal-to-noise ratio
(SNR) levels are applied to evaluate model robustness under diverse
channel conditions.

B Experimental Setup

B.1 Training Configuration

Grasp is implemented in PyTorch and trained with the Adam op-
timizer (learning rate 5 x 10~°) for 50 epochs with a batch size of
32. We apply global £,-norm gradient clipping (threshold 4.0) and
a validation-based, patience-10 early-stopping criterion: training
is terminated if the validation loss shows no improvement for 10
consecutive epochs. Audio and video features are normalized prior
to model input to mitigate cross-modal scale differences. The sys-
tem supports both AWGN and Rayleigh channels; unless otherwise
noted, AWGN is used by default. We vary SNR within [—-6, 12] dB
and use 12 dB as the default operating point. Loss weights are tuned
on the validation set, and all training/channel hyperparameters are
configurable via command-line flags.

B.2 Compute Resources

All experiments were conducted on a dedicated high-performance
machine equipped with an NVIDIA RTX 5090 GPU (32 GB), an
Intel Xeon Platinum 8470Q CPU with 25 cores, and 90 GB of RAM,
running Ubuntu 20.04. Each training epoch of the Grasp framework
typically required about ~20 minutes, depending on the dataset
and modality configuration.
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C Detailed Ablation Results them, the exclusion of the MICA module causes the most significant
performance drop, highlighting its essential role in cross-modal

As shown in Table 1, we conduct detailed ablation experiments un-
semantic alignment. Even under severe channel noise, GRASP main-

der both AWGN and Rayleigh channels. Removing any of the core
components (KBB, GSP, or MICA) leads to a noticeable degradation tains stable correlation and accuracy, demonstrating the robustness
across all metrics, particularly under low SNR conditions. Among and complementarity of its modular design.
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