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Abstract

The explosive growth of multimodal web data demands commu-

nication that transmits meaning rather than raw bits. Existing

semantic-communication systems often fail under noise, missing

modalities, and distribution shifts because they optimize surface fea-

tures instead of modality-invariant knowledge. We present Grasp,
a knowledge-centric framework for cross-modal communication.

Grasp segments streams into semantic blocks and builds a graph

over them; a lightweight Graph Neural Networks (GNN) produces

schedulable, importance-weighted representations. At its core is

knowledge purification: we minimize a conditional mutual informa-

tion upper bound to perform a three-way disentanglement—strongly

related, weakly related, and task-irrelevant components—so that

only essential semantics are transmitted while non-essential fac-

tors are suppressed. To maintain synchrony, we introduce one-to-

two temporal contrastive learning to achieve triple alignment of

video, audio, and text despite sampling asynchrony. For efficient

transmission, Grasp uses a cross-modal shared vector-quantization

codebook—a discrete knowledge codebook—updated by multimodal

attention. At the receiver, a soft-recovery mechanism leverages

this shared knowledge to robustly reconstruct semantics under low

signal-to-noise ratio (SNR) or missing modalities, yielding graceful

degradation. Across web tasks—including cross-modal retrieval and

missing-modality inference—Grasp improves knowledge consis-

tency, semantic fidelity, and downstream performance over strong

baselines while maintaining low latency. These results show that

communication structured around purified knowledge is key to

building robust, semantic-aware systems for the modern web.

CCS Concepts

• Theory of computation→ Semantics and reasoning; • Com-

puting methodologies→Machine learning.
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1 Introduction

The exponential growth of multimodal web data—spanning video,

audio, and text—demands communication paradigms that priori-

tize the transmission of meaning over raw bits. While semantic

communication aims to address this fundamental shift by encoding

and reconstructing task-relevant meaning directly [3], current ap-

proaches face significant limitations in handling the complexities

of real-world multimodal environments. As applications prolifer-

ate across vehicle-to-everything coordination, telemedicine, and

Internet of Things systems [6, 8], communication frameworks must

operate under stringent bandwidth constraints while maintain-

ing semantic coherence amid channel noise, packet loss, and the

intrinsic challenges of multimodal data: sampling asynchrony, am-

biguous semantic boundaries, and mismatched granularity. The

central challenge escalates under low SNR, missing modalities, or

distribution drift, where conventional approaches focused on mini-

mizing reconstruction error often fail to preserve semantic validity

and robustness [18, 21].

The root limitation of current methods lies in their focus on

surface-level feature alignment rather than extracting and commu-

nicating the underlying, modality-invariant knowledge that guaran-
tees cross-modal coherence. This semantics-knowledge gap mani-

fests in three fundamental challenges for real-world deployment.

First, under the rate-distortion-semantics trade-off [15], existing

pipelines remain frame-level reconstruction-centric and lack trans-
missible knowledge units [23] explicitly conditioned on channel

constraints. The absence of structured, compact knowledge rep-

resentations hinders efficient scheduling and compression within

fixed bandwidth and latency budgets. Second, shared semantics

often remain entangled with modality-specific features, where un-

der noise, asynchrony, or missing data, this entanglement leads to

alignment drift and semantic incoherence [14]. This highlights the
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critical need to disentangle what is essential (the knowledge) from
how it is presented (the modality). Third, discrete representations

(e.g., vector-quantized codebooks) often lack adaptability to main-

tain semantic integrity under channel impairments, where at low

SNR or with missing modalities, bias amplification during dequan-

tization undermines reliable knowledge recovery [30]. Collectively,

these challenges impede the simultaneous achievement of low com-

munication cost, high semantic fidelity, and strong robustness [7].

To bridge these gaps, we introduce Grasp, a framework that re-

casts multimodal semantic communication as knowledge extraction
and alignment. Unlike prior work, Grasp distills and transmits puri-
fied knowledge—modality-invariant core semantics that remain ro-

bust under diverse web conditions. We first build a semantic graph

from raw multimodal streams: kernel-based self-representation

with spectral regularization [25] segments streams into coherent

blocks and links them by semantic relations. A lightweight GNN

then extracts enhanced features and estimates block importance,

yielding prioritized knowledge units for subsequent processing.

The core innovation of Grasp lies in its knowledge purification

stage, where we employ mutual information minimization to explic-

itly disentangle modality-invariant core knowledge from modality-

specific features. Drawing on conditional information theory [4],

we derive a decoupling objective based on a conditional CLUB

bound, effectively isolating the essential semantics from modality-

specific variations. This purification process is further enhanced by

a novel one-to-two temporal contrastive criterion that maintains

knowledge synchrony across modalities despite sampling asyn-

chrony, ensuring temporal coherence in the purified knowledge

representations.

For efficient transmission, the purified knowledge undergoes

discretization through a cross-modally shared vector quantization

codebook, functioning as a discrete knowledge codebook. Updated
via EMA and constrained by a cross-modal commitment term, this

codebook ensures consistent representation of purified knowledge

across different modalities. Finally, at the receiver, a soft knowledge

recovery mechanism leverages cross-modal attention to robustly

reconstruct semantics under low SNR or missing modalities, en-

abling graceful degradation while preserving task performance.

This integrated pipeline represents a significant departure from

conventional semantic communication approaches, as it prioritizes

the extraction and communication of purified knowledge rather

than attempting to reconstruct surface-level features.

Our work makes four key contributions toward advancing mul-

timodal semantic communication, as follows.

(1)We introduce Grasp as a knowledge-centric framework that

leverages graph-structured representations for semantic organi-

zation, providing a principled approach to extract and prioritize

transmissible knowledge units.

(2)We develop a knowledge purification mechanism that mini-

mizes a conditional mutual information upper bound to perform a

three-way disentanglement—strongly related, weakly related, and

task-irrelevant components—thereby ensuring robust triple modal

alignment.

(3)We design a unified knowledge processing pipeline that inte-

grates graph-based semantic modeling, information-theoretic pu-

rification, shared knowledge coding, and attention based recovery

into an end-to-end system.

(4)Through extensive experiments across multiple web tasks, we

demonstrate that Grasp significantly advances the semantic quality

vs. bit-cost frontier while maintaining low latency, with detailed

ablations substantiating the value of each component.

Paper Organization. The rest of this paper is organized as fol-

lows. Section 2 reviews related work. Section 3 details the Grasp

framework. Section 4 presents the experimental results and analysis.

Finally, Section 5 concludes with discussions and future directions.

2 Related Work

This section reviews key advancements and challenges in semantic

communication, multimodal learning, and knowledge representa-

tion, highlighting gaps that motivate our proposed framework.

Semantic Communication and End-to-End Learning. Modern se-

mantic communication, driven by end-to-end learning, has shifted

the goal from bit-level reconstruction to semantic fidelity [1, 10].

Yet, these methods remain largely limited to single-modality inputs

and idealized channels. This renders them fragile in real-world web

and packet networks, which suffer from bandwidth volatility, delay,

and loss [24]. Crucially, they lack a structured representation for

semantics that can be efficiently scheduled and transmitted—a gap

that nascent work on semantic-aware rate control and transport-

layer integration has started to address [27].

Multimodal Representation and Alignment. Learning consistent

representations across heterogeneous modalities is a cornerstone of

multimodal understanding. A second strand focuses on cross-modal

representation learning that extracts factors genuinely shared across

heterogeneous signals [9]. Contrastive learning, cross-attention,

and temporal context modeling have significantly advanced cross-

modal alignment under clean, synchronized conditions [11]. Yet, in

practical web environments, modalities are often asynchronously

sampled, suffer from intermittent availability, and are subject to

dynamic distribution shifts. This leads to temporal drift and se-

mantic misalignment, undermining the consistency of the shared

semantics [12, 26]. Current methods typically address alignment

as a post-hoc or offline process, rather than explicitly enforcing

temporal synchrony and factor disentanglement as an integral part

of the communication pipeline.

Information-Theoretic Disentanglement and Purification. An in-

formation theoretic perspective provides a principled foundation

for disentangling shared and private factors. Mutual information es-

timation and minimization have been employed to improve discrim-

inability and suppress redundancy [2]. However, many approaches

focus on marginal mutual information or contrastive lower bounds,

lacking explicit conditional control to isolate modality-invariant

core knowledge from modality-specific variations [13]. This short-

fall becomes critical under channel noise and quantization, where

unconstrained specific features can corrupt the transmitted seman-

tics, leading to semantic drift. A rigorous, conditional purification

strategy is therefore needed to ensure the stability and purity of

the communicated knowledge.

Discrete Representation and Structured Semantic Scheduling. Vec-
tor quantization and codebook learning offer a pathway to efficient,
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Figure 1: The Grasp Framework. An overview of our knowledge-centric pipeline: from multimodal input, to semantic graph

construction, knowledge purification, efficient coding via a shared codebook, and robust semantic recovery at the receiver.

discrete semantic transmission. Stabilization techniques like mo-

mentum updates and commitment loss have improved the com-

pactness and training stability of discrete representations [17]. In

multimodal settings, key challenges remain: maintaining a con-

sistent, shared discrete space across modalities; mitigating early

codebook assignment bias; and enabling robust, soft recovery at

the receiver under missing data or corruption [16, 20]. Concur-

rently, structured modeling—using graphs and self-representation

methods—has proven effective for capturing semantic affinities and

importance at a block level [22, 28]. However, these techniques have

seldom been integrated into an end-to-end communication system

that connects semantic structure with network-aware scheduling

and rate adaptation [5].

Summary and Motivation. Prior work has advanced semantic

communication, multimodal alignment, discrete representation,

and structured modeling. However, a key gap remains: there is

still no unified, knowledge-centric pipeline that purifies and struc-

tures semantics into schedulable units, transmits them through a

shared discrete codebook robust to network dynamics, and supports

reliable recovery under realistic web conditions. This motivates

an end-to-end chain that organizes block-level semantics, stabi-

lizes cross-modal consistency and limits semantic leakage before

transmission, maps meaning into a shared discrete space, and re-

constructs with soft information at the receiver—pushing the rate–

semantics frontier toward real packet networks [19]. Grasp bridges

this gap by refining raw multimodal data into purified, structured

knowledge for consistent and efficient cross-modal communication.

3 Methodology

As shown in Figure 1, we propose Grasp, a novel framework that

reformulates multimodal semantic communication as a process of

knowledge extraction, purification, and alignment. It converts raw
multimodal inputs (video, audio, text) into structured and purified

knowledge representations, tailored for robust transmission over

packet-switched networks. Grasp tackles four core challenges: (i)

extracting knowledge units under varying bandwidth and latency,

(ii) ensuring robustness to SNR fluctuations and packet loss, (iii)

achieving cross-modal synchrony despite temporal misalignment,

and (iv) optimizing the rate-knowledge trade-off end-to-end.

3.1 Semantic Graph Construction via

Kernel-Based Blocking

We introduce Semantic Graph Construction via Kernel-Based Block-

ing (KBB) as the foundational step for constructing structured

semantic representations from raw multimodal sequences. This

module transforms continuous streams into semantically coherent

blocks and estimates their relative importance, forming the initial

semantic graph that subsequent knowledge purification stages will

refine.

3.1.1 Kernel-Space Self-Representation for Semantic Blocking. Our
approach begins by processing each modality stream independently

to extract semantically meaningful units. Along the temporal axis,

we detect content changes under duration constraints to obtain

variable-length candidate segments. For each segment, a pretrained

encoder extracts features, which are aggregated via mean pooling
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or attention mechanisms to form block embeddings {𝑥𝑖 }𝑁𝑖=1
(repre-

senting audio windows, video snippets, or text spans). We preserve

temporal extents [𝑠𝑖 , 𝑒𝑖 ] for downstream synchronization.

Rather than applying direct clustering, we model semantic rela-

tionships through kernel-space self-representation, constructing the

kernel matrix 𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖 , 𝑥 𝑗 ) using a Gaussian RBF kernel as the

similarity backbone, as follows.

𝐾 (𝑥𝑖 , 𝑥 𝑗 ) = exp

(
− ∥𝑥𝑖 − 𝑥 𝑗 ∥2/2𝜎2

)
. (1)

In the reproducing kernel Hilbert space (RKHS), we formulate each

block as a linear combination of other blocks, capturing semantic

dependencies.

Φ(𝑥𝑖 ) ≈
∑︁

𝑗
𝑍𝑖 𝑗 Φ(𝑥 𝑗 ), (2)

where Φ(·) denotes the nonlinear feature map, 𝑍 ∈ R𝑁×𝑁
is the

self-representation coefficient matrix, and 𝐾𝑖 𝑗 = ⟨Φ(𝑥𝑖 ),Φ(𝑥 𝑗 )⟩ is
the kernel matrix. To ensure interpretability and support subse-

quent graph construction, we impose structural constraints on 𝑍 :

symmetry 𝑍 = 𝑍⊤
(yielding undirected semantic relationships),

nonnegativity 𝑍 ≥ 0 (maintaining semantic coherence), zero diago-

nal diag(𝑍 ) = 0 (eliminating self-loops), and column normalization

1⊤
𝑁
𝑍 = 1⊤

𝑁
. Under symmetry, this implies 𝑍1𝑁 = 1𝑁 , making 𝑍

doubly stochastic. Each semantic block is represented as a convex

combination of other blocks (

∑
𝑗 𝑍𝑖 𝑗 = 1,𝑍𝑖 𝑗 ≥ 0). These constraints

enhance stability and allow 𝑍 to directly serve as a within-modality

weighted adjacency matrix for graph construction.

3.1.2 Spectral Regularization for Semantic Group Discovery. We

transform the self-representation matrix 𝑍 into an affinity struc-

ture that explicitly reveals latent semantic groupings, enabling the

formation of stable semantic blocks for downstream knowledge

processing. To enable spectral analysis, we first symmetrize 𝑍 by

𝑊 = (𝑍 + 𝑍⊤)/2. To capture intra-block consistency and inter-

block separation—key properties for knowledge unit formation—we

define the degree matrix 𝐷 = diag(𝑊 1𝑁 ) and graph Laplacian

𝐿 = 𝐷 −𝑊 . Here 𝐷𝑖𝑖 =
∑
𝑗𝑊𝑖 𝑗 represents node 𝑖’s total semantic

connectivity. The Laplacian quadratic form is as follows.

𝑥⊤𝐿𝑥 = 1

2

∑︁
𝑖, 𝑗
𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗 )2, (3)

penalizes large differences between strongly connected nodes, nat-

urally encouraging within-group consistency and across-group

separation—essential for identifying coherent knowledge units.

Let the eigenvalues of 𝐿 be ordered as 0 = 𝜆1 (𝐿) ≤ 𝜆2 (𝐿) ≤ · · · ≤
𝜆𝑁 (𝐿). We employ the spectral regularizer as follows.

∥𝑍 ∥𝑘 ≜
∑︁𝑘

𝑖=1

𝜆𝑖 (𝐿). (4)

Minimizing this quantity drives the smallest 𝑘 eigenvalues toward

zero, pushing the graph toward 𝑘 nearly disconnected compo-

nents—equivalent to a near block-diagonal structure in 𝑊 that

aligns with 𝑘 semantic groups, directly enforcing the block struc-

ture needed for knowledge extraction.

For numerical stability and scale invariance, we apply symmetric

degree normalization𝐺 = 𝐷−1/2𝑊 𝐷−1/2
. Spectral clustering on𝑊

(or 𝐿) then yields semantic block groups, with within- and between-

group affinities aggregated to form the block-level semantic graph

for downstream knowledge purification.

Following the kernel-learning formulation, we construct a data-

dependent positive semi-definite kernel matrix 𝐾 (with diagonal

shift 𝜉 > 0) from 𝐺 , as follows.

𝐾𝑖 𝑗 =


exp

(
− 2 max(𝐺) +𝐺𝑖 𝑗

)
, 𝑖 ≠ 𝑗,∑︁

𝑞≠𝑖
exp

(
− 2 max(𝐺) +𝐺𝑖𝑞

)
+ 𝜉, 𝑖 = 𝑗 .

(5)

With 𝐾 fixed, we estimate the optimal self-representation 𝑍 by

min𝑍
1

2
Tr

(
𝐾 + 𝑍⊤𝐾𝑍

)
− 𝛼 Tr(𝐾𝑍 ) + 𝛾

∑︁𝑘

𝑖=1

𝜆𝑖 (𝐿). (6)

The first two terms enforce self-representation consistency in the

kernel space while preserving local semantic similarity, and the

spectral term shapes the affinity toward a block-diagonal structure

via Laplacian spectrum manipulation. After obtaining optimal 𝑍 ,

we form𝑊 = (𝑍 + 𝑍⊤)/2, perform spectral clustering to assign

semantic cluster labels, and merge temporally adjacent segments

with identical labels to produce the final semantic blocks—the fun-

damental units for subsequent knowledge purification.

3.2 Semantic Feature Extraction via

Graph-Structured Propagation

The foundation of our knowledge purification framework lies in

effectively extracting semantically rich features from multimodal

data. We transform raw segments into structured semantic rep-

resentations through graph-based feature propagation, capturing

both intrinsic content value and relational semantics.

3.2.1 Graph-Based Semantic Feature Encoding. Given segment-

level undirected affinity matrix W and pre-partitioned semantic

blocks {B𝑖 }𝑀𝑖=1
, we construct a semantic graph to enable structured

feature extraction. Let I𝑖 ⊂ {1, . . . , 𝑀} denote the index set of

segments within block B𝑖 . We compute the block-level adjacency

matrix A ∈ R𝑀×𝑀
that captures inter-block semantic relationships.

A𝑖 𝑗 = (
∑︁

𝑝∈I𝑖

∑︁
𝑞∈I𝑗

W𝑝𝑞)/(|I𝑖 | · |I𝑗 |), A𝑖𝑖 = 0. (7)

This defines our semantic feature graph G = (V, E,A) where
the vertex set V = {B𝑖 }𝑀𝑖=1

represent semantic blocks, the edge

set E = {(𝑖, 𝑗) | 𝐴𝑖 𝑗 > 0} encode their semantic affinities, and

𝐴 = (𝐴𝑖 𝑗 ). The graph structure serves as a relational inductive bias

for feature extraction, ensuring that semantically related blocks

influence each other’s representations.

3.2.2 Iterative Semantic Feature Enhancement. We employ an itera-

tive propagation mechanism to enhance semantic features through

graph neighborhoods. First, we normalize the adjacency matrix to

obtain feature propagation weights.

Â𝑖 𝑗 = exp(A𝑖 𝑗/𝜏)/
∑︁𝑀

𝑘=1

exp(A𝑖𝑘/𝜏), (8)

where 𝜏 controls the selectivity of semantic influence.

Each block’s semantic feature is initialized with its embedded

representation z𝑖 , augmented by structural importance, as follows.

f (0)
𝑖

= z𝑖 · (1 + 𝜆 · deg(𝑖)), (9)

where deg(𝑖) is the node degree and 𝜆 balances intrinsic seman-

tics versus structural context. Semantic features are then refined

through 𝑇 iterations of neighborhood aggregation.

F(𝑡 ) = F(𝑡−1) Â, 𝑡 = 1, . . . ,𝑇 ⇒ F(𝑇 ) = F(0) Â𝑇 . (10)
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This propagation mechanism performs semantic feature enrich-
ment by iteratively blending features across semantically related

blocks. The process enhances discriminative semantic patterns

while suppressing noise, resulting in features that capture both

local content and global semantic context.

3.2.3 Semantic Salience Scoring and Feature Prioritization. To quan-
tify the semantic importance of each block, we compute salience

scores from the enhanced features.

𝑠𝑖 = ∥f (𝑇 )
𝑖

∥2/max(1,
√︁
𝑑𝑖 ), (11)

The semantic salience scores are normalized into transmission pri-

orities.

𝑝𝑖 = exp(𝑠𝑖 )/
∑︁𝑀

𝑗=1

exp(𝑠 𝑗 ). (12)

These priorities 𝑝𝑖 are further used as a score-guided routing signal

to obtain an initial triplet decomposition of the enhanced block

features f (𝑇 )
𝑖

. Specifically, each block is assigned (or weighted) into

three preliminary components: x′𝑖 denoting modality-invariant core

candidates, y′𝑖 capturing strongly modality-specific yet semantically

relevant information, and z′𝑖 representing weakly modality-specific

features and noise.

3.3 Knowledge Purification via Mutual

Information Minimization

We introduce the Mutual Information Minimization and Cross-

Modal Alignment (MICA) module, which operates on the semantic

block representations constructed in the previous stage. MICA

addresses the core challenge of distilling modality-invariant puri-
fied knowledge from modality-specific representations through two

synergistic components: (1) Conditional Mutual Information Mini-

mization to explicitly disentangle shared semantics from modality-

specific factors, and (2) Anchored Joint Alignment to maintain tem-

poral synchrony of semantic trajectories across modalities despite

sampling asynchrony.

3.3.1 Knowledge Purification via Conditional MI Minimization. At
the heart of our knowledge purification approach is the explicit

separation of semantic representations into distinct components

that capture different aspects of the multimodal data. For each

modality𝑚 ∈ M = {𝑎, 𝑏, 𝑐}, we further refine the score-routed pre-

liminary triplet features

(
x′𝑚𝑖 , y′𝑚𝑖 , z′𝑚𝑖

)
into three complementary

components, as follows.

𝑥𝑚𝑖 = 𝑔inv (x′𝑚𝑖 ), 𝑦𝑚𝑖 = 𝑔str (y′𝑚𝑖 ), 𝑧𝑚𝑖 = 𝑔weak (z′𝑚𝑖 ), (13)

where 𝑥 represents the modal-agnostic core knowledge—the puri-
fied semantic content that should be invariant across modalities; 𝑦

captures strongly modal-specific characteristics that are distinctive
to each modality but semantically relevant; and 𝑧 contains weakly
modal-specific features and noise that should be discarded during

knowledge transmission.

To achieve effective knowledge purification, we minimize an

upper bound of the conditional mutual information between the

shared and specific components. This optimization explicitly en-

courages the separation of core knowledge from modality-specific

artifacts. Using a learnable estimator 𝑞𝜃 (𝑦 | 𝑥, 𝑧), we define
𝐼cmi (𝑥 ;𝑦 | 𝑧) = E𝑝 (𝑥,𝑦,𝑧 ) [log𝑞𝜃 (𝑦 | 𝑥, 𝑧)]

− E𝑝 (𝑧 ) 𝑝 (𝑥 |𝑧 ) 𝑝 (𝑦 |𝑧 ) [log𝑞𝜃 (𝑦 | 𝑥, 𝑧)] . (14)

The first termmaximizes the conditional log-likelihood onmatched

triplets, guiding the estimator toward the true conditional distribu-

tion of modality-specific features given the shared knowledge and

weak specifics. The second term evaluates the same quantity under

a conditional independence assumption, serving as a contrastive

baseline that encourages statistical independence between 𝑥 and

𝑦 when conditioned on 𝑧. Aggregating across all modalities yields

the complete purification objective.

Lpurify =
∑︁

𝑚∈M
𝐼cmi (𝑥𝑚 ;𝑦𝑚 | 𝑧𝑚) . (15)

By minimizing the difference between the joint expectation and

the conditional independence baseline, we systematically reduce

the conditional mutual information 𝐼 (𝑥 ;𝑦 | 𝑧), thereby purifying

the shared component 𝑥 and isolating the modality-invariant core

knowledge essential for robust cross-modal communication.

3.3.2 Temporal Knowledge Synchronization via Anchored Joint Align-
ment. To maintain semantic coherence across modalities despite

temporal sampling asynchrony, we introduce an anchored joint
alignment mechanism that implements the “one-to-two” temporal

contrastive learning scheme mentioned in the abstract. This ap-

proach ensures that the purified knowledge remains synchronized

across modalities over time, addressing the critical challenge of

dynamic semantic alignment in real-world web data.

The alignment operates through an anchor modality that pro-

vides temporal context, while the remaining modalities are con-

strained to maintain joint consistency with this anchor across multi-

ple future steps. Let modality 𝑎 serve as the anchor with contextual

representation, as follows.

ℎ𝑎𝑡 = ContextAgg

(
{𝑥𝑎𝜏 }𝜏≤𝑡

)
, (16)

which aggregates the purified knowledge components up to time 𝑡 ,

capturing the evolving semantic context.

For each future horizon 𝑘 = 1, . . . , 𝐾 , we employ step-dependent

projection matrices𝑊 𝑎
𝑘
to map the anchor context to an appropri-

ate future-alignment space. The target representations from the

other modalities are denoted as 𝑧𝑏
𝑡+𝑘 and 𝑧

𝑐
𝑡+𝑘 . To enable effective

contrastive learning, we define the in-batch negative pair set.

𝑍𝑏𝑐 (𝑡, 𝑘) = {(𝑧𝑏𝑗 , 𝑧𝑐𝑗 ) | 𝑗 ∈ B, 𝑗 ≠ 𝑡}, (17)

which contains mismatched temporal pairs from the same batch.

The anchored joint alignment objective is then formulated as

L𝑎2𝑏𝑐
align

=
−1

𝐾

𝐾∑︁
𝑘=1

log


exp

(
𝑧𝑏
𝑡+𝑘𝑊

𝑎
𝑘
ℎ𝑎𝑡 + 𝑧𝑐𝑡+𝑘𝑊

𝑎
𝑘
ℎ𝑎𝑡

)
∑︁

(𝑧𝑏
𝑗
,𝑧𝑐
𝑗
) ∈𝑍𝑏𝑐 (𝑡,𝑘 )

exp

(
𝑧𝑏𝑗𝑊

𝑎
𝑘
ℎ𝑎𝑡 + 𝑧𝑐𝑗𝑊 𝑎

𝑘
ℎ𝑎𝑡

)

.

(18)

This formulation possesses several key properties that make it

particularly suitable for knowledge synchronization:

(1) Joint Consistency: The numerator computes the joint score

of the positive pair (𝑧𝑏
𝑡+𝑘 , 𝑧

𝑐
𝑡+𝑘 ) conditioned on the anchor ℎ𝑎𝑡 , while

the denominator aggregates joint scores of all negative pairs. The

additive structure of the joint score (exp(𝑢 + 𝑣) = exp(𝑢) exp(𝑣))
corresponds to a product of per-modality likelihoods under the

anchor context, enforcing genuine multi-modal consistency rather

than mere pairwise alignment.
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(2) Temporal Robustness: By aligning across multiple future

horizons (𝑘 = 1, . . . , 𝐾 ), the method maintains semantic synchrony

despite temporal misalignments and varying sampling rates com-

mon in web multimedia.

(3) Flexible Configuration: The framework naturally adapts

to different scenarios—setting 𝐾 = 1 and 𝑘 = 0 with ℎ𝑎𝑡 = 𝑥𝑎𝑡 yields

same-time alignment, while with only two modalities the objective

reduces to standard pairwise cross-modal alignment.

The complete MICA objective combines both components is

LMICA = Lpurify + 𝜆Lalign, (19)

where 𝜆 balances the knowledge purification and temporal align-

ment objectives. Together, thesemechanisms ensure that the system

extracts and maintains synchronized, purified knowledge represen-

tations—the foundation for robust cross-modal communication in

dynamic web environments.

3.4 Knowledge Codec and Cross-Modal

Enhancement

Building upon the purified knowledge representations from previ-

ous stages, we now introduce the discrete knowledge coding and

enhancement mechanism that enables efficient and robust cross-

modal communication. This component implements the shared vec-

tor quantization codebook described in the abstract, functioning as

a discrete knowledge repository that facilitates semantic-consistent

transmission and graceful degradation under channel impairments.

3.4.1 Shared Knowledge Codebook with Cross-Modal Commitment.
The purified block-level knowledge representations undergo dis-

cretization into semantic codes through a cross-modally shared

vector quantization (VQ) codebook. This codebook serves as the

fundamental knowledge vocabulary for all modalities, ensuring that

identical semantic concepts map to consistent discrete representa-

tions regardless of their originating modality.

For each semantic block, the nearest-neighbor encoding in the

shared knowledge space is formulated as

𝑞(𝑥𝑚𝑖 ) = 𝑒𝑘 where 𝑘 = arg min𝑗 ∥𝜙𝑚 (𝑥𝑚𝑖 ) − 𝑒 𝑗 ∥2, (20)

where 𝜙𝑚 (·) denotes the modality-specific projection head, and 𝑒 𝑗
are the codeword embeddings in the shared knowledge codebook.

To enforce semantic consistency across modalities, we introduce

a cross-modal commitment loss that regularizes the same semantic

content to converge to consistent discrete representations as

L𝑎
commit

= 𝛽


𝜙𝑎 (𝑥𝑎𝑖 ) − sg[𝑒𝑎𝑖 ]



2

2
+ 𝛽

4




𝜙𝑎 (𝑥𝑎𝑖 ) − sg[𝑒𝑏𝑖 ]



2

2

+ 𝛽

4



𝜙𝑎 (𝑥𝑎𝑖 ) − sg[𝑒𝑐𝑖 ]


2

2
,

(21)

where sg[·] denotes the stop-gradient operator, 𝑒𝑎𝑖 , 𝑒𝑏𝑖 , 𝑒𝑐𝑖 are the

codeword representations of the same semantic content across

three modalities, and 𝛽 controls the commitment strength. This loss

ensures that the purified knowledge components from different

modalities representing the same underlying semantics are mapped

to proximate regions in the discrete code space.

The knowledge codebook dynamically adapts to multimodal

distributions through an exponential moving average (EMA) update

mechanism that accumulates cross-modal statistics, as follows.

𝑁
(𝑡 )
𝑖

= 𝛾𝑁
(𝑡−1)
𝑖

+ (1 − 𝛾)
[
𝑛
𝑎 (𝑡 )
𝑖

+ 𝑛𝑏 (𝑡 )
𝑖

+ 𝑛𝑐 (𝑡 )
𝑖

]
, 𝑒

(𝑡 )
𝑖

= 𝑜
(𝑡 )
𝑖

/𝑁 (𝑡 )
𝑖
,

(22)

where 𝛾 ∈ (0, 1) is the decay rate, 𝑛
𝑚 (𝑡 )
𝑖

counts assignments to

codeword 𝑒𝑖 from modality 𝑚 at step 𝑡 , and 𝑜
(𝑡 )
𝑖

aggregates the

feature contributions.

Crucially, the codebook update integrates cross-modal knowl-

edge through attention-guided feature enhancement, as follows.

o(𝑡 )
𝑖

=𝛾 o(𝑡−1)
𝑖

+ 1 − 𝛾
2

[∑︁𝑛
𝑎 (𝑡 )
𝑖

𝑗=1

(
z𝑎 (𝑡 )
𝑖, 𝑗

+ r𝑏𝑐 (𝑡 )
𝑖, 𝑗

)
+
∑︁𝑛

𝑏 (𝑡 )
𝑖

𝑗=1

(
z𝑏 (𝑡 )
𝑖, 𝑗

+ r𝑎𝑐 (𝑡 )
𝑖, 𝑗

)
+
∑︁𝑛

𝑐 (𝑡 )
𝑖

𝑗=1

(
z𝑐 (𝑡 )
𝑖, 𝑗

+ r𝑎𝑏 (𝑡 )
𝑖, 𝑗

) ]
.

(23)

Here, z𝑚 (𝑡 )
𝑖, 𝑗

represents the 𝑗-th knowledge representation from

modality𝑚 assigned to codeword 𝑒𝑖 , while r· · denotes complemen-

tary features derived through cross-modal attention. This mecha-

nism preserves a unified knowledge repository while incorporat-

ing multimodal evidence, thereby stabilizing the discrete semantic

space and mitigating assignment biases during early training stages.

3.4.2 Cross-Modal Knowledge Enhancement for Robust Recovery.
At the receiver side, we implement a soft recovery mechanism that

leverages the shared knowledge base to reconstruct semantics under

challenging conditions such as low SNR or missing modalities. This

process begins with soft demodulation and channel decoding that

produce codeword confidence scores 𝑠𝑚𝑖,𝑗 for modality𝑚, block 𝑖 ,

and codeword index 𝑗 ∈ {1, . . . , 𝑀}.
The posterior distribution over the knowledge codewords and

the corresponding soft reconstruction are computed as

𝜋𝑚𝑖,𝑗 = exp(𝑠𝑚𝑖,𝑗 )/
∑︁𝑀

ℓ=1

exp(𝑠𝑚𝑖,ℓ ), 𝑧𝑚𝑖 =
∑︁𝑀

𝑗=1

𝜋𝑚𝑖,𝑗𝑒 𝑗 , (24)

where 𝑒 𝑗 denotes the 𝑗-th codeword embedding from the shared

knowledge codebook. This soft dequantization provides a proba-

bilistic reconstruction that gracefully handles uncertainty in the

received signals.

We then enhance the recovered knowledge through cross-modal
knowledge attention, which refines the target modality represen-

tation by incorporating complementary evidence from auxiliary

modalities. Let the scaled dot-product attention be defined as

Attn(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾⊤/

√
𝑑

)
𝑉 . (25)

The knowledge refinement process for the modality 𝑎 using

evidence from the modalities 𝑏 and 𝑐 continues as follows.

𝑟 𝑏𝑐𝑖 = Attn

(
𝑄 = 𝑧 𝑎𝑖 , 𝐾 = [𝑧 𝑏𝑖 , 𝑧 𝑐𝑖 ], 𝑉 = [𝑧 𝑏𝑖 , 𝑧 𝑐𝑖 ]

)
, (26)

where 𝑟 𝑏𝑐𝑖 represents the residual knowledge collected from the

auxiliary modalities. The target representation is then augmented

through 𝑧 𝑎𝑖 = 𝑧 𝑎𝑖 + 𝑟 𝑏𝑐𝑖 .

This cross-modal knowledge enhancement mechanism embodies

the soft recovery principle outlined in the abstract: it leverages the

shared knowledge base to robustly reconstruct semantics by selec-

tively attending to complementary evidence from other modalities.

When certain modalities are corrupted or missing, the attention
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Figure 2: Experimental results on the CMU-MOSEI dataset. Grasp is compared with representative baselines under different

SNR conditions, and additional evaluations are reported under AWGN and Rayleigh fading channels.

Figure 3: Comparison of Grasp with existing methods on the

VQA-v2 dataset under different SNR conditions.

mechanism automatically reweights the available evidence, ensur-

ing that the system maintains semantic fidelity through intelligent

knowledge fusion rather than relying on fragile single-modality

reconstructions.

4 Experiments

To evaluate Grasp, we conduct experiments on three multimodal

benchmarks (see Appendix A): CMU-MOSEI for video-audio-text

sentiment analysis, VQA-v2 for visual question answering, and

MM-IMDB for genre classification. This diverse setup tests robust-

ness across modalities and tasks under practical constraints like

channel interference. (More experimental setup see Appendix B).

Results on CMU-MOSEI. Figure 2 compares the performance of

Grasp with T-DeepSC and U-DeepSC [29] under different channel

Figure 4: Performance comparison of Grasp and base-

line methods on the MM-IMDB dataset under AWGN and

Rayleigh channels.

conditions on the CMU-MOSEI dataset, which involves video, audio,

and text for multimodal sentiment analysis. Grasp consistently

outperforms the baselines across all SNR levels, achieving an Acc-2

of 73.55% at −6 dB, outperforming T-DeepSC and U-DeepSC by

1.9% and 2.6%, respectively. At 8 dB, the Acc-2 rises to 83.98%,

demonstrating strong robustness under noisy conditions.

Additionally, regression and seven-class evaluations show steady

improvements in MAE and F1-7 scores. MAE decreases from 0.7132

at −6 dB to 0.5144 at 8 dB, while the F1-7 score improves by over

0.08, confirming stable cross-modal sentiment understanding.

Under the Rayleigh fading channel, Grasp remains robust, with

Acc-2 rising from 72.5% at −6 dB to 83.86% at 8 dB. Despite slightly

lower performance compared to AWGN, the consistent upward

trend verifies Grasp’s noise tolerance and adaptability.

Results on VQA-v2. As shown in Figure 3, Grasp achieves the best
performance across all SNR conditions on the VQA-v2 dataset. At

−6 dB, it attains 38.21% and 36.41% accuracy for two test configura-

tions, surpassing MFSC [31] by around 3%. When SNR rises to 0 dB,

Grasp reaches 59.71% and 53.83%, outperforming T-DeepSC by 19%

and 13%, respectively. Even under high SNR (12–18 dB), it main-

tains the highest scores (∼ 70%), illustrating stable upper-bound

performance. The performance gap widens under lower SNR, high-

lighting Grasp’s robustness to channel noise, which stems from its
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Figure 5: Ablation study of Grasp framework under AWGN and Rayleigh fading channels at an SNR of 12 dB. (a)–(b) show the

performance when removing specific modules , while (c)–(d) present results when retaining only a single module .

ability to extract and transmit purified, modality-invariant seman-

tics. These results demonstrate that Grasp’s semantic refinement

and cross-modal alignment mechanisms are highly effective in mit-

igating semantic degradation and ensuring robust vision–language

reasoning.

Results on MM-IMDB. Figure 4 reports results under both AWGN

and Rayleigh channels. Under AWGN, Grasp achieves an F1-score

of 34.02 at −6 dB, outperforming T-DeepSC (18.35) and U-DeepSC

(20.60) by over 13–15 points. As the SNR increases, its F1-score rises

to 61.97 at 18 dB, maintaining a clear lead over MFMSC (57.48)[31].

Under Rayleigh fading, although performance slightly drops, Grasp

still achieves 31.31 at −6 dB and 60.67 at 18 dB, remaining consis-

tently superior. These results verify that Grasp effectively preserves

essential cross-modal semantics and resists channel-induced degra-

dation across modalities.

Across CMU-MOSEI, VQA-v2 and MM-IMDB, Grasp consis-

tently achieves state-of-the-art results in both the AWGN and

Rayleigh channels. It demonstrates significant robustness at low

SNR, steady performance improvement with increasing channel

quality, and superior cross-modal generalization. These results con-

firm that Grasp can effectively extract and transmit purified se-

mantic representations across heterogeneous multimodal tasks and

challenging communication environments.

Ablation Study. To further verify the contribution of each key

component in Grasp, we conduct a comprehensive ablation study

by progressively removing or isolating the three major modules: (1)

Kernel-Based Blocking (KBB) for semantic graph construction,

(2) Graph-Structured Propagation (GSP) for relational semantic

enhancement, and (3)Mutual Information-Based Knowledge

Purification (MICA) for modality-invariant knowledge extraction.

The results are summarized in Figure 5 (more detailed in Appen-

dix C), which presents a radar chart comparing multiple evaluation

metrics across configurations.

As shown, removing MICA causes the largest performance

degradation across all metrics, particularly in correlation and F1-

score, confirming that knowledge purification is crucial for disen-

tangling modality-invariant semantics and suppressing redundant

or noisy factors. When KBB is excluded, the model exhibits a no-

table drop in accuracy and semantic consistency, indicating that

kernel-based graph construction effectively captures structured

dependencies and provides stable semantic grouping. The absence

of GSP results in reduced overall coherence and weaker robust-

ness under channel variations, verifying that graph propagation

significantly enhances relational reasoning among semantic blocks.

When all three modules are combined, Grasp achieves balanced

and superior performance across all metrics, as reflected by the

radar chart’s uniformly expanded contour. This demonstrates that

the three components are complementary: KBB ensures structural

organization, GSP strengthens contextual feature propagation, and

MICA purifies and aligns the extracted knowledge. Together, they

form a theoretically coherent and empirically validated foundation

for robust multimodal semantic communication.

5 Conclusion

This paper presented Grasp, a tri-modal communication framework

that transmits purified knowledge rather than raw data. Grasp

structures inputs as semantic graphs and performs knowledge pu-

rification as a three-way disentanglement—strongly related, weakly

related, and task-irrelevant—to isolate modality-invariant seman-

tics. A one-to-two temporal contrastive objective enforces triple

alignment across video, audio, and text under sampling asynchrony,

while a shared vector-quantized knowledge codebook enables effi-

cient transmission. A soft-recovery receiver preserves semantics

at low SNR or with missing modalities. Across web tasks, Grasp

improves semantic fidelity, robustness, and downstream perfor-

mance, supporting knowledge-centric design for reliable semantic

communication; future work will scale to richer modalities and

dynamic settings.
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Table 1: Ablation results of Grasp under AWGN and Rayleigh channels.

Variant SNR (dB) AWGN Channel Rayleigh Channel

CC MAE Acc2 F12 Acc7 F17 CC MAE Acc2 F12 Acc7 F17

Grasp -6 0.5605 0.7132 0.7355 0.8083 0.4262 0.4746 0.5654 0.7121 0.7250 0.8006 0.4241 0.4692

0 0.7348 0.5794 0.8209 0.8737 0.5281 0.5483 0.7351 0.5807 0.8267 0.8774 0.5266 0.5474

6 0.7600 0.5534 0.8372 0.8840 0.5395 0.5512 0.7608 0.5520 0.8398 0.8857 0.5429 0.5552

12 0.7619 0.5505 0.8368 0.8833 0.5420 0.5531 0.7618 0.5500 0.8389 0.8847 0.5435 0.5548

w/o KBB -6 0.4873 0.7570 0.6769 0.7420 0.3890 0.4320 0.4837 0.7504 0.6704 0.7408 0.3827 0.4338

0 0.6737 0.6152 0.7623 0.8181 0.4956 0.5123 0.6767 0.6107 0.7647 0.8164 0.4948 0.5103

6 0.6990 0.5892 0.7786 0.8284 0.5070 0.5152 0.6974 0.5868 0.7747 0.8267 0.5079 0.5174

12 0.7009 0.5863 0.7782 0.8277 0.5095 0.5171 0.7005 0.5857 0.7802 0.8290 0.5109 0.5187

w/o GSP -6 0.5021 0.7340 0.6710 0.7530 0.3957 0.4476 0.5014 0.7325 0.6989 0.7520 0.3971 0.4425

0 0.6866 0.6010 0.7651 0.8247 0.4967 0.5146 0.6829 0.6015 0.7657 0.8216 0.4946 0.5182

6 0.7169 0.5724 0.7802 0.8297 0.5034 0.5167 0.7177 0.5778 0.7899 0.8356 0.5133 0.5238

12 0.7177 0.5780 0.7899 0.8356 0.5133 0.5238 0.7176 0.5775 0.7919 0.8369 0.5147 0.5254

w/o MICA -6 0.4544 0.7806 0.6257 0.7207 0.4657 0.4736 0.4565 0.7823 0.6247 0.7243 0.4651 0.4708

0 0.6241 0.6537 0.7186 0.7957 0.4774 0.4866 0.6246 0.6546 0.7171 0.7946 0.4763 0.4875

6 0.6628 0.6215 0.7342 0.7741 0.4864 0.4965 0.6634 0.6275 0.7312 0.7758 0.4873 0.4935

12 0.6629 0.6221 0.7322 0.7729 0.4851 0.4950 0.6628 0.6215 0.7340 0.7741 0.4864 0.4965

w/o all modules -6 -0.0432 1.1366 0.6151 0.6611 0.2808 0.3127 -0.0415 1.1204 0.6107 0.6510 0.2781 0.3148

0 -0.0365 1.0417 0.6414 0.6895 0.3501 0.3899 -0.0351 1.0573 0.6490 0.6871 0.3538 0.3736

6 -0.0360 0.9477 0.6431 0.6905 0.3506 0.3905 -0.0344 0.9498 0.6438 0.6931 0.3510 0.3989

12 -0.0360 0.9477 0.6431 0.6905 0.3506 0.3905 -0.0450 0.9455 0.6399 0.6889 0.3516 0.3912

human-annotated question–answer pairs. Each image–question

pair requires cross-modal reasoning between visual and textual

modalities to infer the correct answer among multiple candidates.

The VQA-v2 task evaluates the ability of Grasp to preserve cross-

modal semantic integrity and reasoning capability under noisy

transmission conditions.

A.2 CMU-MOSEI

CMU-MOSEI is a large-scale multimodal sentiment analysis dataset

containing 23,453 annotated video segments from over 1,000 speak-

ers, covering diverse topics and emotional expressions. Each sample

includes synchronized video, audio, and text modalities, annotated

on both binary (Acc-2) and seven-class (Acc-7) sentiment scales.

This dataset is used to evaluate the robustness of Grasp in fine-

grained affective reasoning under varying signal-to-noise ratio

(SNR) conditions.

A.3 MM-IMDB

MM-IMDB is a multimodal movie genre classification dataset that

combines textual plot summaries with poster images for multilabel

classification. Each sample consists of a text–image pair associated

with one or more of 23 movie genres. This dataset assesses the ca-

pability of Grasp to extract and transmit complementary semantic

cues across heterogeneous modalities, highlighting its strength in

structured multimodal knowledge fusion.

A.4 Channel and Noise Settings

In all experiments, semantic embeddings are transmitted through

simulated wireless channels, including additive white Gaussian

noise (AWGN) and Rayleigh fading. Multiple signal-to-noise ratio

(SNR) levels are applied to evaluate model robustness under diverse

channel conditions.

B Experimental Setup

B.1 Training Configuration

Grasp is implemented in PyTorch and trained with the Adam op-

timizer (learning rate 5 × 10
−5
) for 50 epochs with a batch size of

32. We apply global ℓ2-norm gradient clipping (threshold 4.0) and

a validation-based, patience-10 early-stopping criterion: training

is terminated if the validation loss shows no improvement for 10

consecutive epochs. Audio and video features are normalized prior

to model input to mitigate cross-modal scale differences. The sys-

tem supports both AWGN and Rayleigh channels; unless otherwise

noted, AWGN is used by default. We vary SNR within [−6, 12] dB
and use 12 dB as the default operating point. Loss weights are tuned

on the validation set, and all training/channel hyperparameters are

configurable via command-line flags.

B.2 Compute Resources

All experiments were conducted on a dedicated high-performance

machine equipped with an NVIDIA RTX 5090 GPU (32GB), an

Intel Xeon Platinum 8470Q CPU with 25 cores, and 90GB of RAM,

running Ubuntu 20.04. Each training epoch of the Grasp framework

typically required about ∼20 minutes, depending on the dataset

and modality configuration.
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C Detailed Ablation Results

As shown in Table 1, we conduct detailed ablation experiments un-

der both AWGN and Rayleigh channels. Removing any of the core

components (KBB, GSP, or MICA) leads to a noticeable degradation

across all metrics, particularly under low SNR conditions. Among

them, the exclusion of theMICAmodule causes the most significant

performance drop, highlighting its essential role in cross-modal

semantic alignment. Even under severe channel noise, Grasp main-

tains stable correlation and accuracy, demonstrating the robustness

and complementarity of its modular design.
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