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Abstract—Local Area Networks (LANs), as interconnected
networks, are susceptible to numerous security threats. Existing
intrusion detection systems (IDS) heavily rely on large, fully-
labeled datasets to have accurate detection, facing challenges
when only a few malicious samples are available. In addition,
previous studies have identified the deterioration of IDS’s per-
formance when the test dataset deviates from the training dataset
distribution. To mitigate these issues, we propose a Prototypical
Network-based IDS within a meta-learning framework. Our
method adopts a Few-Shot Learning (FSL) approach, aiming
to distinguish and compare network traffic samples to classify
them as either normal or malicious. Notably, our model not only
identifies benign or malicious traffic but also accurately identifies
the specific types of attacks. We evaluate the effectiveness of our
approach in different scenarios for few-shot network intrusion
detection using real-world network traffic data. Additionally,
we conduct a comprehensive sensitivity analysis to assess the
impact of key factors such as model hyperparameters, support
set size, attack type distribution, and distance metrics within the
prototypical network model.

Index Terms—Few-shot learning, Intrusion Detection Sys-
tem(IDS), Meta-learning, Multi-class classification, Prototypical
Network(PTN).

I. INTRODUCTION

Network intrusion detection (IDS) [1] plays a pivotal role in
ensuring network security, particularly in the context of local
area networks (LANs), which are interconnected networks
vulnerable to various security threats [2]. In recent years,
the application of deep learning (DL) [3]–[5] technology in
intrusion detection has attracted considerable attention from
researchers. Leveraging DL techniques, IDSs aim to classify
network traffic into normal and attack categories, thereby
fortifying network defenses against potential threats. Numer-
ous studies have demonstrated the efficacy of DL-based IDS,
showcasing their stability and high detection rates [6] [7].
However, despite the advancements in DL-based IDS, several
challenges persist with existing approaches, especially within
LAN environments. Issues such as imbalanced training data,
elevated false alarm rates, and the inability to detect unknown
attacks remain unresolved. The detection of malicious at-
tack traffic within LANs is imperative for network security,
especially in light of emerging threats such as Zero-day
attacks [8]. These attacks exploit vulnerabilities on the same
day they are discovered, presenting a significant challenge for
traditional intrusion detection systems reliant on supervised
machine learning approaches. Fig. 1 illustrates a LAN with a
structured defense strategy against cybersecurity threats. The
red-highlighted computers represent compromised systems or

Fig. 1: Zero-day Attacks in Local Area Networks.

attackers within the network, indicating a security breach in
sections 2 and 5, as well as among some consumers and in
Branch 2. These threats are actively being monitored by the
green-highlighted components, dedicated to traffic monitoring
and an IDS. The IDSs deployed within this network are
effective at identifying known attacks based on pre-existing
signatures. However, they face significant challenges when it
comes to detecting unseen or Zero-day attacks.

Changes in network topology or traffic scale can signifi-
cantly impact the performance of an IDS in various ways.
Firstly, alterations in these factors can lead to an increase in
both false positives (misclassifying normal traffic as malicious)
and false negatives (failing to detect actual intrusions). This
discrepancy occurs because the IDS may struggle to adapt its
detection mechanisms to the new environment. Moreover, sub-
stantial changes can overwhelm the computational resources
of the IDS, resulting in performance degradation or even
system failures. Adapting IDS to the new conditions may pose
challenges, necessitating recalibration or retraining, which
is often time-consuming and resource-intensive. Therefore,
addressing changes in network topology or traffic scale is
crucial to maintain the effectiveness of IDS.

In our analysis, we consider two key challenges for IDSs.
The first challenge is Domain Shift, which refers to differences
between the distribution of data in the training domain and
the deployment or test domain. This disparity can cause the
model to struggle with generalization, leading to a decline in
IDS performance. Attack Diversity presents another challenge
for IDSs, where models trained on one set of attacks may not
generalize well to novel attack types or variations encountered
in the new environment. Designing distinct IDS for every



network type and potential attack scenario remains impractical.
In scenarios with a scarcity of labeled traffic samples, IDS’
effectiveness diminishes, highlighting the significance of ad-
dressing the few-shot intrusion detection problem within LAN
environments. Studies have highlighted the potential of Few-
Shot Learning (FSL) [9] in mitigating the drawbacks of DL,
notably by reducing the time and resources needed for dataset
collection and labeling [10]. FSL emerges as a promising
approach, seeking to enhance classification performance using
minimal labeled data. Similar to human learning processes,
FSL leverages prior knowledge to adapt to new tasks, requiring
only limited data for task acquisition. Few-shot classification
tasks train a classifier on novel classes not present in the
training data, utilizing only a few examples for each new class.

In this paper, we propose a Prototypical Network (PTN)
classification approach to effectively categorize network traffic
into various classes and detect novel attacks. The model is
trained on labeled traffic data and is evaluated for its ability to
identify new attack types when only limited labeled samples
are available. Our primary focus is developing a few-shot-
based classification algorithm suitable for practical scenarios
with limited and potentially erroneous data. Addressing the
challenge of learning from a small training dataset is crucial,
and our approach emphasizes extracting meaningful informa-
tion to enhance classification performance. Additionally, we
aim to maximize data utilization to enable efficient learning
with minimal labeled samples. Leveraging a meta-learning
framework, our neural network learns to differentiate between
samples during training, even when encountering tasks not
encountered before. This paper makes the key contributions
to addressing the existing issues above as follows:

• We propose a PTN-based IDS capable of detecting
unseen attacks using only a few labeled samples with
acceptable accuracy. Our model not only distinguishes
between benign and malicious traffic but also accurately
identifies specific types of attacks.

• We address the challenges of Zero-day attacks and do-
main shift in intrusion detection by considering two
different datasets containing a wide range of attacks,
demonstrating the performance of our approach.

• Our proposed network intrusion detection method is uni-
versal and not limited to specific attack types. It leverages
learned prior knowledge to detect new types of samples
based on a limited number of labels in a target dataset.

• We conduct a comprehensive sensitivity analysis of the
PTN model, examining hyperparameters, support set size,
attack type distribution, and distance metrics to under-
stand the model’s performance and robustness in real-
world scenarios.

II. BACKGROUND AND RELATED WORKS

A. Few-shot Learning

Few-shot learning presents a unique challenge in machine
learning, where the availability of labeled samples for training
is severely limited, often leading to overfitting. To address

this, few-shot learning (FSL) divides the dataset into meta-
training and meta-testing sets, employing a training procedure
consisting of multiple episodes. In practical scenarios, the
model may be tasked with classifying instances from N
different classes, each with only K examples, termed an N -
way K-shot task. During meta-training, two batches of N -way
K-shot data are sampled in each episode, forming a support
set S and a query set Q. The model is then trained using
the support set and evaluated using the query set. Therefore,
each episode encompasses its own training and testing sets,
allowing the model to learn to solve specific tasks with only
N ×K samples [11]–[13].

B. Prototypical Networks (PTN)

PTN [14] learns a metric space where classification is
conducted by computing distances to prototype representations
of each class. Compared to recent approaches for FSL, PTNs
exhibit a simpler inductive bias that proves beneficial in
the limited-data regime, yielding excellent results. The PTN
framework is grounded in the notion that an embedding exists
wherein points cluster around a single prototype representation
for each class. To achieve this, we employ a neural network
to learn a non-linear mapping of the input into an embedding
space. The prototype for each class is then determined as the
mean of its support set in the embedding space. Classification
is straightforward: for an embedded query point, the nearest
class prototype is identified. Each class is accompanied by
meta-data providing a high-level description of the class, rather
than a small number of labeled examples. The Prototypical
Network demonstrates remarkable performance across diverse
applications, including image classification [14], text classifi-
cation [15], and radio frequency fingerprinting [16].

C. Few-shot Learning in Intrusion Detection

Detection based on only a limited number of attack samples
is considered to be a few-shot intrusion detection problem, for
which some researchers have begun to apply meta-learning
ideas and related algorithms to network intrusion detection
and its data analysis [17]–[20]. Xu et al. [21] were the first
to apply meta-learning to network intrusion detection. They
took raw traffic bytes as input and achieved few-shot traffic
classification by training on meta-tasks. Meta-learning models
can quickly adjust through a small amount of new data to
adapt to the new situation. It has advantages in quick learning
and adaptation to new tasks and scenarios, such as strong
generalization ability, low resource overhead, and easy scene
transfer. Yang et al. [22] proposed an improved traffic classi-
fication model, FS-IDS, which improved the performance of
model in few-shot classification by integrating raw traffic and
traffic statistical features. However, FS-IDS is only applicable
for detecting specific malicious samples and is unable to
detect unknown attacks. Lu et al. [23] propose FSL solutions
based on Model-Agnostic Meta-Learning (MAML) to detect
anomalous traffic with only few samples. MAML is a popular
FSL approach that continuously updates the model parameters



through a meta-learning process and a fine-tuning phase to
quickly adapt to new FSL task.

Through our investigation of few-shot intrusion detection
models, we have observed that most researchers concentrate
on model-based meta-learning. Their proposed models rely on
network data using a complex deep neural network during
training. Also, they investigate the performance on a single
dataset while overlooking the domain shift problem. In this
paper, we introduce a Prototypical Network-based IDS ca-
pable of identifying unseen attacks with only a few labeled
samples, achieving acceptable accuracy. Our model not only
distinguishes between benign and malicious traffic, but also
accurately identifies specific attack types. By addressing the
challenges of Zero-day attacks and domain shift, we evaluate
our approach on two diverse datasets containing a wide array
of attacks, showcasing its performance.

III. PTN-IDS: PROTOTYPICAL NETWORK-BASED IDS

IDS can be reliable in detecting various types of attacks
if sufficient data are available from all the attack types. To
verify this, we start by conducting a multi-class classification
on CICIDS2017 dataset [24] using a Feed Forward Neural
Network and we were able to get 0.97 as accuracy on test
dataset. This result shows that if we have sufficient labeled
data from each attack and benign case, we can get a very high
accuracy. By extracting a 25-dimensional embedding from the
neural network’s last hidden layer and applying t-SNE [25],
we obtained a 2D representation illustrated in Fig. 2 that
visually confirms the effectiveness of our model in clustering
and therefore a high accuracy. Also, it can be observed that
there is considerable overlap between various traffic classes.

However, in this paper, we suppose that sufficient la-
beled data from each attack is not available and we aim to
tackle such a challenging problem. To do so, we propose
a Prototypical Network-based IDS within a meta-learning
framework. Our method adopts a FSL approach, aiming to
distinguish and compare network traffic samples to classify
them as either normal or malicious. Furthermore, we aim to
investigate whether the classifier is able to transfer the learned
patterns when evaluated on a new dataset originating from
a different network than the one used for training. Consider
datasets CICIDS2017 and CICIDS2018 [24], the number of
attack types, the number of flows belonging to each attack
type, and the ratio of the number of flows in each attack
type to total flows are different in each dataset. Contrary to
grouped binary classification training, where all attack classes
are grouped under a single label, we performed single-attack
experiments, utilizing samples pertaining to a singular class
of attack, alongside samples representing benign traffic. We
aim to examine the transferability of knowledge between
different attacks for generalization across datasets, considering
the nature and modalities of specific attacks, as well as the
correlation between attack type and generalization.

We approach this problem as a binary classification task,
wherein each type of attack is labeled as Malicious, while

Fig. 2: Multi-class classification embedding.

the remaining traffic is labeled as Benign. To ensure balanced
training, we adjust both the CICIDS2017 and CICIDS2018
datasets to have an equal number of instances for each label.
We treat each label as a distinct subset. Our methodology
involves training a feed-forward neural network on the vertical
axis (source task) for binary classification and evaluating its
performance on the horizontal axis (target task) under similar
conditions. In Figs. 3 and 4, the results demonstrate nearly
perfect classification performance when the models are trained
and tested on the same task. However, in a cross-dataset
scenario, where models are trained and tested on different
datasets, the classification accuracy is largely equivalent to
random chance, except for a few combinations of attacks
and datasets. In these figures, “All” signifies training on all
datasets, while “leave-one-out” indicates training on all subsets
except the one being tested. Additionally, we explore an alter-
native scenario where the model is trained on all subsets from
the CICIDS2017 dataset and then tested on the CICIDS2018
dataset, and vice versa. Furthermore, in most cases of cross-
dataset testing, the models show poor generalizability due to
significant domain shifts. Therefore, we identify two main
issues in the results of this experiment as Detecting Zero-day
Attack and Domain Shift.

A. Problem Definition

In this section, we provide more details. We define the first
problem as Detecting Zero-day Attack as follows:

Problem 1 (Detecting Zero-day Attack): A Zero-day
attack, in the context of training and testing neural networks,
is a cyberattack exploiting a vulnerability for which no prior
training data exists to train the model on it.

Few-shot learning is a promising field in DL, which aims
to train a model only on a small number of labeled training
data. It sounds fascinating in intrusion detection, since it
solves the problem of Zero-day attack detection. From another
angle, current approaches to anomaly detection assume similar
feature distributions for training and test data sets.

The majority of the proposed ML-based IDSs are evaluated
only on domain-specific datasets, i.e., the training and eval-



Fig. 3: The detection accuracy across different training and
testing tasks within the CICIDS2018 dataset.

uation samples are drawn from the same dataset, and cross-
domain evaluation is rarely considered. Therefore, these mod-
els fail to perform well when there is a distribution difference
between the train (i.e., source) and test (i.e., target) data. We
define the second problem as Domain Shift as follows:

Problem 2 (Domain Shift): Domain Shift in the context of
training and testing neural networks refers to a scenario where
the distribution of data in the testing phase significantly differs
from that of the training phase.

Domain Shift refers to the differences between the distri-
bution of data in the training domain and the deployment
domain. As a result, the model may struggle to generalize to
the new domain due to discrepancies in data characteristics,
leading to a decline in performance. In Figs. 3 and 4, cross-
dataset experiments show some generalization capabilities
depending on the attack type and also on the specific train-test
combination used for cross-dataset evaluation.

In Fig. 3, the last row illustrates the scenario where the
source dataset is CICIDS2018, and the test dataset is CI-
CIDS2017. Similarly, in Fig. 4, the last row depicts the
scenario in which the source data set is CICIDS2017 and
the test data set is CICIDS2018. These datasets originate
from different networks with varying hardware and software
environments, and they feature different types of attacks.
The accuracy values highlight the challenge of domain shift,
leading to a deterioration in the performance of IDS for most
attack types. We investigate the extent to which detection
becomes challenging in the presence of domain shift.

B. Methodology

In this section, we elaborate on the architecture of our
proposed IDS framework based on FSL. We introduce our
approach as “PTN-IDS” which is abbreviation of “PTN-based
Intrusion Detection System”. The methodology of this paper
is shown in Fig. 5. A network traffic dataset will be divided
into two distinct tasks: a source task and a target task. The

Fig. 4: The detection accuracy across different training and
testing tasks within the CICIDS2017 dataset.

division is structured so that there is no overlap in the label
spaces (attack types) between these two tasks. The goal of the
embedding function is to extract essential features, reduce the
dimension of data, and retain all the information of the original
data to the maximum extent. Various embedding models can
be used to extract features. Here, we choose the Feed Forward
Neural Network as our embedding function.

We use PTNs for the problem of few-shot classification,
where a classifier must generalize to new classes not seen
in the training set, given only a small number of examples
of each new class. PTNs learn a metric space in which
classification can be performed by computing distances to
prototype representations of each class. In training our PTN-
based IDS, we begin by constructing multiple tasks from
our source task. This involves the creation of support sets
and query sets for each task. Once the tasks are defined, we
process the support set through the neural network. This step is
crucial as it transforms the input data into embeddings, which
are high-dimensional vectors representing the features of each
input. These embeddings capture the essential characteristics
of the data, enabling the model to learn more effectively. Next,
we calculate prototypes for each label within the support set.

A prototype represents the mean vector of the embeddings
corresponding to each class or label. Subsequently, the model
is trained to compare the embeddings of the query set with
these prototypes, with the aim of minimizing the distance
between the query embeddings and the corresponding class
prototype. In the Euclidean-based distance metric module, we
utilize the Euclidean distance as the metric to measure the
distance of each query point to the calculated prototypes from
the support points. Specifically, the distance metric module
calculates the Euclidean distance between the received query
point and prototypes of all classes. By applying the softmax
function, the module outputs a probability distribution of
received query samples over different classes. The model
then assigns the query sample to the class with the highest



Fig. 5: Proposed PTN-based intrusion detection system.

Algorithm 1 Meta-learning Task Generator

1: Input: D: dataset, Label, N -way, K-shot, N -query
2: Output: Meta task set M = {Mj}N -tasks

j=1 , support set Sj ,
query set Qj

3: for j=1 to N − tasks do
4: L← Randomly sample N -way labels from Label
5: for each label in L do
6: Sj ← Randomly sample K-shot samples from D
7: Qj ← Randomly sample N -query samples from D
8: end for
9: Mj ← {Sj , Qj}

10: end for

probability, corresponding to the nearest prototype in the
embedding space.

C. Few-Shot Training Strategy

PTN-IDS is a neural network designed for FSL, and there-
fore, its underlying training method is different from those
employed in conventional DNNs. As described in Section II,
the whole dataset is no longer simply divided into a training
set and a testing one. Instead, a meta-training set containing
multiple tasks needs to be generated so that each task includes
a sample set and a query set for simulating the meta-testing
set that comprises a support set and a test set. Once the
task generator constructs a specific task, i.e., the support set
and query set, the feature extraction network extracts their
embedding features. The distance metric module calculates the
prototype representation of each class according to the support
point, and identifies categories of query points based on its pre-
defined metric measure. Finally, on the basis of discriminant
results, the loss function is computed and is optimized through
back-propagation.

Algorithm 1 provides the pseudocode of meta-learning task
generator in our approach. Given a dataset D along with label
information Label and parameters N -way, K-shot, and N -
query, the algorithm generates a set of meta-tasks. Each meta-
task consists of a support set Sj and a query set Qj , where j
iterates over the number of tasks to generate. First, PTN-IDS
proceeds to generate N -tasks, each representing a meta-task.
For each meta-task, a set of N -way labels is randomly sampled
from the provided label information. Subsequently, for each

Algorithm 2 PTN-IDS

1: Input: Meta-learning task M = {Mj}N−tasks
j=1 , distance

function d(x1, x2), N-way, K-shot
2: Output: Trained PTN (fW ) with parameters W
3: Randomly initialize network parameters W
4: while Accuracy is improving do
5: Mk = (Sk, Qk)← Sample a task from M
6: fW (Sk)← Calculate embedding for Sk

7: fW (Qk)← Calculate embedding for Qk

8: ρ← Initialize a vector of size N-way for prototypes
9: for each class c in Sk do

10: ρ(c)← 1
K-shot

∑
(X,c)∈Sk

fW (X)
11: end for
12: L← 0 ▷ Initialize the loss for the episode
13: P ← Initialize a vector for p(yi|X)
14: for each (X, y) in Qk do
15: P ← softmax (−d (fW (X), ρ))
16: L← L+ CrossEntropy (P, y)
17: end for
18: Perform Adam optimizer on W to minimize L
19: end while

label in the sampled label set L, the algorithm randomly selects
K-shot instances from the dataset D to form the support set
Sj . Additionally, N -query instances are randomly sampled
from the dataset D to construct the query set Qj . These
support and query sets together constitute the meta-task Mj .
This process continues until N -tasks are generated.

Algorithm 2 provides the pseudocode for training our PTN.
Once the tasks are defined, we first randomly initialize the
weights W of our neural network fW . Then we learn these
parameters in multiple epochs. In each epoch of training, we
randomly sample a task and calculate the embedding for both
support and query sets through the neural network. Then, we
find the prototype for each label as the mean vector of the
support set embeddings corresponding to each class or label
denoted by ρ(k) for label k. Then, given each sample of the
query set, we find the distance between the embedding of this
sample and a prototype k as d (fW (X), ρ(k)). The array of
distances between the embedding of the query sample and the
class prototypes d (fW (X), ρ), represents the dissimilarities.



To transform these distances into a similarity measure, we
negate them prior to applying the softmax function. The
resulting softmax output yields the likelihood p(yi|x) of the
class labels given the query sample. Given this and the ground-
truth label, we could obtain the CrossEntropy and update
the parameters using the Adam optimizer [26]. We ultimately
assess the PTN model’s generalizability by applying it to target
tasks which have been not seen during the training phase.

IV. EVALUATION

In order to evaluate our method, experiments were con-
ducted on the CICIDS2017 and CICIDS2018 datasets [24].
CICIDS2018 is an extension of the CICIDS2017 dataset,
containing additional network traffic data. These datasets
originate from distinct networks, each representing different
hardware and software environments, and feature varying
types of attacks. As a result, detecting intrusions becomes
more challenging, allowing a thorough evaluation of the
adaptability of our proposed method. The CICIDS2017 dataset
was generated from real network recordings. The similarities
between CICIDS2017 and CICIDS2018 in terms of temporal
and spatial characteristics, as well as collection configuration,
provide the necessary conditions to conduct the evaluation
experiment. Notably, the CICIDS2018 dataset is larger than
the CICIDS2017 dataset, containing over 80 million flows
compared to approximately 3 million flows in the CICIDS2017
dataset. For simplicity, we categorized the different types of
attacks into six groups in both datasets. Table I offers a detailed
overview of this categorization.

TABLE I: Categorizing labels in datasets.

Label Category in CICIDS2017 Category in CICIDS2018
Benign Benign Benign

DoS

DoS Hulk DoS Hulk
DoS Slowloris DoS Slowloris
DoS Slowhttp DoS Slowhttp

DoS GoldenEye DoS GoldenEye
Heartbleed

Web Attack
BruteForce-XSS BruteForce-XSS
BruteForce-Web BruteForce-Web
SQL Injection SQL Injection

DDoS
DDoS DDoS-HOIC

DDoS-LOIC-UDP
DDoS-LOIC-HTTP

Brute-Force FTP-Patator FTP-Patator
SSH-Patator SSH-Patator

Bot Bot Bot
PortScan PortScan -

All the kinds of attacks we selected had a sufficient amount
of samples. According to the data sources of the meta-training
and meta-testing sets, the experiments can be divided into
some types as follows:

• Type 1 (Zero-day Attack): These experiments are binary
classifications performed on the CICIDS2017 dataset.
Any traffic not labeled as benign is considered an attack.

• Type 2 (Zero-day Attack): These experiments are multi-
class classifications conducted on the CICIDS2017

dataset. Multi-class classification extends beyond the bi-
nary classification of benign versus attack traffic, aiming
to not only detect non-benign traffic but also accurately
identify the specific type of attack. For the multi-class
classification experiments, we designate n = 2 and
n = 3.

• Type 3 (Domain-shift): These experiments are multi-
class classification conducted on the basis of type 2
experiments but on both datasets. In this experiment, 6
types of attack traffic in CICIDS2017 were used as the
source task in the meta-training set, and 6 similar types
of attack traffic in CICIDS2018 were considered as the
target task.

To preprocess the data for both datasets, several steps
were undertaken. Firstly, data samples containing NaN values
were eliminated. Secondly, data samples featuring negative
values for attributes that necessitate non-negative values were
discarded. Next, one-hot encoding is applied to the Protocol
column, resulting in three new features. To avoid redundancy,
only two of these characteristics are retained. Subsequently,
columns representing Source IP, Source Port, Destination
IP, and Destination Port were removed, leaving us with 78
features and one column designated for labeling. Finally, the
features are standardized, a process involving centering them
around zero by subtracting the mean and scaling them to unit
variance. During the experiment, we consider n as the number
of classes (attack types) in the target task, with the benign case
always included in the target task.

A. Experimental Results on Different n and k-shot values

In this section, we explored three scenarios on CICIDS2017:
Scenario 1 includes DDoS in the target task; Scenario 2
includes Web Attack and DoS; and Scenario 3 involves Web
Attack, DoS, and PortScan. Table II shows the comparison of
the baseline approach to PTN-IDS across different n and k-
shot values. With n = 1, we perform a binary classification
task. For n = 2 and n = 3, we have multi-class classification
in target task. Baseline in this experiment refers to a use case
in which we train our neural network on the source task in
the traditional manner (train and test rather than meta-learning
setting).

There are no support and query sets in the source data but
there are support and query sets in the target task. It is a kind
of binary classification in which the trained model is tested
on the query sets of the target task as a binary classification
without using any support set. Our methodology considers
the problem as multi-class classification, but baseline is a
binary classification which is a much simpler problem than
multi-class classification. We define this kind of baseline to
demonstrate that even in a more challenging problem, PTN-
IDS outperforms other approaches over different n-values.

The results in Table II demonstrate that our proposed
method with different k-shot significantly outperforms the
baseline. A detailed sensitivity analysis indicates that employ-
ing 5 samples per label (5-shot) notably improves the metrics



TABLE II: Comparison of Baseline and Proposed Method across Different n-values

Models
Scenario1: n=1 Scenario2: n=2 Scenario3: n=3

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Baseline 0.6271 0.5814 0.5957 0.5488 0.5067 0.4541
1-shot Proposed 0.7918 0.7651 0.7014 0.6797 0.6345 0.5924
5-shot Proposed 0.9102 0.9067 0.8297 0.8232 0.7946 0.7785
10-shot Proposed 0.9312 0.9296 0.8445 0.8370 0.8186 0.8084

TABLE III: Comparison of using Different Distance Function in PTN with 5-shot.

Models
Scenario1: n=1 Scenario2: n=2 Scenario3: n=3

Accuracy F1-score Accuracy F1-score Accuracy F1-score

Euclidean Distance 0.9102 0.9067 0.8297 0.8232 0.7946 0.7785
Manhattan Distance 0.8860 0.8779 0.8134 0.8035 0.7797 0.7682

Cosine Distance 0.9098 0.9048 0.7285 0.6964 0.7691 0.7560

TABLE IV: Accuracy of Different Methods on Domain Shift Problem.

Method Individual Classes Overall Accuracy
Benign DDoS BruteForce Bot Web DoS

Baseline 0.9948 0.0399 0.0000 0.0000 0.0000 0.0000 0.1724
Proposed 5-shot 0.7069 0.8700 0.5404 0.5689 0.7649 0.5551 0.6677

Proposed 5-shot + Finetuning 0.8262 1.0000 0.9940 0.9588 0.9812 0.9446 0.9508

compared to the use of a single sample per label (1-shot).
However, there is not much difference between 5-shot and
10-shot. This motivates us to use 5-shot in the rest of the
paper. Specifically, when limited to just one sample (one-shot
learning), our model achieves an accuracy of 79%, surpassing
that of the baseline. Subsequently, with the inclusion of 10
samples (k = 10), the model exhibits a notable increase in
accuracy to 93%, which significantly exceeds the baseline ac-
curacy of 62%. The enhanced accuracy and F1-score confirm
the reliability of the IDS in accurately identifying real attacks
while minimizing both false positives and false negatives.

B. Experimental Results on Different Distance Function
Table III provides a comprehensive comparison of various

distance functions within PTNs under a 5-shot learning sce-
nario. The findings underscore the significance of selecting an
appropriate distance metric in the context of PTNs. The results
suggest that Euclidean distance outperforms both Manhattan
distance and Cosine distance, exhibiting superior accuracy
and F1-score performance. This observation underscores the
efficacy of Euclidean distance in capturing the underlying
relationships between query instances and prototype represen-
tations within the feature space. Therefore, we adopted Eu-
clidean distance as the preferred distance function throughout
the remainder of this paper. This strategic decision aims to
enhance the robustness and efficacy of the proposed method-
ology in handling diverse FSL tasks across various domains.

C. Experimental Results on Varying Source Tasks for n = 1

In this experiment, we investigated a binary classification
task (n = 1) using PTN-IDS. We included three attacks in
the source task and placed another attack in the target task.
According to the results in Fig. 6, the tasks involving Web
Attack or PortScan as the target consistently show high perfor-
mance across different combinations of source tasks and Web

Attack has higher accuracy compared to PortScan. In contrast,
tasks targeting BruteForce display variable performance levels
depending on the source task combination. In particular, the
accuracy decreases significantly when DoS is excluded from
the source tasks for BruteForce as the target task.

D. Experimental Results on Zero-day Attacks

In this experiment, we evaluate the performance of PTN-
IDS in the case of an un-seen attack in the target task. We
consider two scenarios with different source and target tasks:
In Scenario 1, source task is {DDoS, PortScan, Bot} and
target task is {Web, BruteForce, DoS}. In Scenario 2, source
task is {Web, BroutForce, DoS} and target task is {DDoS,
PortScan, Bot}. The results shown in Fig. 7 demonstrate that
our proposed methodology is able to classify the Zero-day
(target) attacks with high accuracy for different scenarios while
also maintaining high accuracy in identifying source attacks.
It demonstrates that the model not only differentiates between
attack types and benign activities, but also precisely identifies
the specific type of attack that has occurred. As k increases, we
see a further improvement in classification accuracy; however,
the difference is not very significant between 5, 10, and 20.

E. Experimental Results on Domain Shift Problem

CICIDS2017 and CICIDS2018 databases are from two
networks corresponding to different hardware and software en-
vironments, and the types of attacks are also different between
them. Therefore, the detection of attacks is more challenging
in the case of domain shift. In this section, we evaluate the
adaptability of the proposed method. Fig. 8 illustrates the
results of our model with the source task on CICIDS2017
and the target task on CICIDS2018 for 1-shot and 5-shot.

Baseline in this experiment refers to a use case in which
a Feed Forward Network has been trained on the source task



(a) Excluding PortScan Attack. (b) Excluding Web Attack. (c) Excluding DoS Attack.

Fig. 6: Comparing accuracy on varying sources and specific attack as target. The value in row i and column j represents the
accuracy of detecting attack j in the target set, which consists of attacks i and j. The source set includes all attack types
excluding attacks i and j, as well as the specific attack being excluded.

(a) Scenario 1 (b) Scenario 2

Fig. 7: Detecting Zero-day attack in different scenarios.

(CICIDS2017 data has been balanced in terms of labels) in
a traditional manner as a multi-class classification and then
tested on the query sets of the target task (CICIDS2018) with-
out using the support sets. In the baseline, the model trained
on CICIDS2017 struggles to generalize well on CICIDS2018
due to domain shift between the datasets, often misclassi-
fying attacks as benign. However, our 5-shot learning PTN,
without any fine-tuning, not only significantly improves the
accuracy of CICIDS2018 compared to the baseline, but also
maintains a high accuracy on the source task, CICIDS2017.
When Fine-tuned method on a few tasks of CICIDS2018,
our PTN outperforms other methodologies in accuracy on
the CICIDS2018 dataset. However, this fine-tuning leads to a
decrease in accuracy on the CICIDS2017 dataset, highlighting
the challenges posed by the existing domain shift between the
two datasets. Both 1-shot and 5-shot learning outperform the
baseline.

The accuracy of various methods with 5-shot was evaluated
across different classes of attacks on CICIDS2018, as sum-
marized in Table IV. Accuracy values for benign case shows
that our methodology involves a trade-off where the model
sacrifices some accuracy on the benign class to significantly
improve detection of underrepresented classes. This is a com-
mon scenario where enhancing sensitivity to rare events can
reduce performance on more frequent ones. In the baseline
method, the model misclassifies most of the attacks as benign
case, resulting in significantly low accuracy. In particular
with the detection of DDoS attacks, the baseline achieves an

(a) 1-shot (b) 5-shot

Fig. 8: Evaluation for domain shift problem.

accuracy of only 3.99%. However, with the proposed 5-shot
learning approach, significant improvements were observed
across all types of attacks. For instance, the proposed 5-shot
method achieved a remarkable accuracy of 87% in detecting
DDoS attacks. Additionally, incorporating fine-tuning further
enhanced the model’s performance, leading to an accuracy
of 100% for DDoS detection. This highlights the effectiveness
of leveraging FSL and fine-tuning techniques in enhancing the
accuracy of attack detection systems.

V. CONCLUSION

In this paper, we designed a new IDS based on a PTN.
Embeddings of the support set and test data were generated
with a neural network, and a similarity measurement was used
to evaluate the distance between the test data embeddings
and each embedding in the support embeddings. Our analysis
showed that PTN-IDS, particularly with 5-shot learning, sig-
nificantly outperformed the baseline method across different
scenarios. The use of Euclidean distance in PTNs demon-
strated superior performance compared to Manhattan distance
and Cosine Distance, establishing it as the preferred distance
function. Furthermore, our approach exhibited robustness in
classifying Zero-day attacks and demonstrated adaptability to
domain shift between datasets. We further fine-tuned the PTN
to increase accuracy in the target task. Additionally, our study
highlighted the effectiveness of FSL in scenarios with limited
labeled data. Our method was able to reach a high accuracy,
using 5 samples from each label without any fine-tuning.
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