Journal Pre-proof

Enhanced Meta-IDS: Adaptive multi-stage IDS with sequential model
adjustments

Nadia Niknami, Vahid Mahzoon, Slobadan Vucetic, Jie Wu

PII: S2667-2952(25)00002-9
DOI: https://doi.org/10.1016/j.hcc.2025.100298
Reference: HCC 100298

To appear in: High-Confidence Computing

Received date: 16 October 2024
Revised date: 11 December 2024
Accepted date: 19 December 2024

Please cite this article as: N. Niknami, V. Mahzoon, S. Vucetic et al., Enhanced Meta-IDS:
Adaptive multi-stage IDS with sequential model adjustments, High-Confidence Computing (2025),
doi: https://doi.org/10.1016/j.hcc.2025.100298.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2025 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open
access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.hcc.2025.100298
https://doi.org/10.1016/j.hcc.2025.100298
http://creativecommons.org/licenses/by-nc-nd/4.0/

Manuscript Click here to view linked References z

Enhanced Meta-IDS: Adaptive Multi-Stage IDS with
Sequential Model Adjustments

Nadia Niknami®, Vahid Mahzoon®, Slobadan Vucetic®, Jie Wu®

¢ (Center for Networked Computing, Temple University, Philadelphia, PA, USA
b Center for Hybrid Intelligence, Temple University, Philadelphia, PA, USA

Abstract

Traditional single-machine Network Intrusion Detection Systems (NIDS) are
increasingly challenged by rapid network traffic growth and the complex-
ities of advanced neural network methodologies. To address these issues,
we propose an Enhanced Meta-IDS framework inspired by meta-computing
principles, enabling dynamic resource allocation for optimized NIDS perfor-
mance. Our hierarchical architecture employs a three-stage approach with
iterative feedback mechanisms. In real-world scenarios with intermittent data
batches, we leverage these intervals to enhance our models. Outputs from
the third stage provide labeled samples back to the first and second stages,
allowing retraining and fine-tuning based on the most recent results without
incurring additional latency. By dynamically adjusting model parameters
and decision boundaries, our system optimizes responses to real-time data,
effectively balancing computational efficiency and detection accuracy. By en-
suring that only the most suspicious data points undergo intensive analysis,
our multi-stage framework optimizes computational resource usage. Exper-
iments on benchmark datasets demonstrate that our Enhanced Meta-IDS
improves detection accuracy and reduces computational load or CPU time,
ensuring robust performance in high-traffic environments. This adaptable
approach offers an effective solution to modern network security challenges.

Keywords: Adaptive IDS, CPU time, dynamic adaptation, Intrusion
Detection System(IDS), Meta-computing.

1. Introduction

The crucial function of Network Intrusion Detection Systems (NIDS) in
protecting network perimeters by diligently monitoring and quickly iden-

Preprint submitted to High-Confidence Computing December 12, 2024

tifying security breaches remains essential [1, 2, 3, 4, 5]. The dynamics of
large-scale networks introduce significant complexities for NIDS performance
due to varied traffic patterns with diverse application mixes and temporal
fluctuations. These factors require adaptive strategies, as different applica-
tion protocols require varying depths of analysis. Furthermore, heavy-tailed
data transfers cause sudden traffic volume peaks, posing substantial chal-
lenges for NIDS operations. In addition, in high-performance environments,
the efficacy of NIDS is based not only on the handling of average traffic
loads but also on their capacity to manage frequent traffic bursts. Robust
mechanisms are essential to ensure NIDS effectiveness under dynamic and
demanding conditions. One key measure of effectiveness is how quickly an
IDS can identify security incidents. The time to detect a security incident is
influenced by the effectiveness of monitoring systems, and the configuration
and capabilities of the IDS.

Simpler models may outperform complex models in some data sets be-
cause of superior generalization capabilities. However, for large and com-
plex datasets, simple models may fall short, necessitating complex models to
achieve acceptable efficiency. Although complex models can deliver higher
accuracy, they require significant computational resources for training and
inference, which may not be feasible in resource-constrained environments.
To address these challenges, there is a necessity for a multi-stage and adap-
tive IDS that can balance accuracy and computational efficiency. The advent
of Deep Learning has significantly enhanced the accuracy and resilience of in-
trusion detection models. However, despite their accuracy, these models face
implementation challenges on resource-constrained devices due to high com-
putational overhead and large model size. The dynamic nature of large-scale
networks further complicates effective intrusion detection. Traditional single-
machine NIDS struggles with increasing traffic volumes, and deployment on
resource-constrained devices remains a challenge. An adaptive, multi-stage
IDS can dynamically adjust its processing based on the complexity of the
data and available resources.

Meta-computing is an effective approach for managing large-scale com-
putational tasks by efficiently acquiring and utilizing resources. Leveraging
this concept, we present a multi-stage hierarchical NIDS architecture that
dynamically allocates analysis tasks across multiple levels of complexity. In
our proposed system, the first stage employs a simple model that quickly
processes incoming traffic. When an attack is detected or if there is uncer-
tainty with a low detection probability, the suspicious traffic is forwarded to

2

the second stage for a more in-depth analysis. Similarly, the second stage
forwards traffic with low detection probability to a third stage, which utilizes
even more sophisticated and computationally intensive models for analysis.

In real-world scenarios, data arrive continuously in batches with inter-
vals between them. Since intrusion detection models need to be updated
and adapted to new data, we can leverage these intervals to implement an
iterative feedback mechanism from the last stage to the previous ones in the
multi-stage IDS. This approach enhances the system’s adaptability and re-
sponsiveness without incurring additional latency. We introduce an iterative
feedback mechanism in which the outputs from the third stage are used to
provide labeled samples back to the first and second stages. This feedback
loop allows us to retrain and fine-tune the models in the earlier stages based
on the most recent results, improving their detection accuracy for subsequent
data batches. By leveraging the time gaps between data arrivals, we enhance
the system’s adaptability and responsiveness without incurring additional
latency.

Fig. 1 illustrates the difference between processing the entire dataset at
once and handling data in incremental batches with iterative model updates.
In the traditional scenario, depicted in Fig. 1(a), the IDS operates on a
complete dataset using a static model. This model processes all incoming
data simultaneously without the ability to adapt to new threats over time.
The IDS model does not adapt or update based on new data. It continues
to use the same initial model for all future data batches, without any further
learning or updates from new information. In contrast, Fig. 1(b) showcases
a multi-stage IDS architecture designed for real-world network environments
where data arrives in batches over time. The first data batch passes through
the Static IDS, which employs a simple anomaly detection model for rapid
initial assessment. Static IDS analyzes Data Batch 1 at time t; and produces
detection results for this batch. However, instead of remaining static, the
IDS model is updated to Updated IDS version 1 at to, reflecting the model’s
adaptation or learning from the previously seen data. The updated version
of the IDS now analyzes Data Batch 2 and produces detection results. The
model is further updated to a newer version (possibly incorporating learnings
from both Data Batches 1 and Data Batch 2) when analyzing Data Batch 3
at t3, leading to more refined detection results. Static IDS does not change or
adapt after deployment, while the Incremental IDS evolves by learning from
new data batches over time, potentially improving its detection accuracy and
adaptability as new threats and behaviors emerge.

3

Complete

Data Accuracy
Adaptive IDS Model
al -
Static IDS a -
Model Static IDS Model
Time
Detection Results
(a) Static IDS Model.
Batch 1 Batch 2 Batch 3
S _- ' S __ ' Time

[

i

t

Static ¥ Updated % Updated
IDS DS IDS
version 1 version 1
Detection Results on Detection Results on Detection Results on

Data Batch 1 Data Batch 2 Data Batch 3

(b) IDS with Incremental Data and Model Updates

Figure 1: Static IDS with one-time data vs. adaptive IDS.

The core concept of our proposed extension to the Meta-IDS [6] frame-
work focuses on improving the adaptability and efficiency of the system by
iteratively improving its performance with each incoming batch. This iter-
ative process allows the system to fine-tune its detection capabilities over
time, ensuring that it can handle evolving threats with greater accuracy.
By incorporating dynamic adjustments to model parameters and decision
boundaries, the system can optimize its responses based on real-time data,
effectively balancing computational efficiency and detection accuracy. By
ensuring that only the most suspicious data points undergo the most com-
putationally intensive analyses, our multi-stage framework optimizes the use
of computational resources, balancing accuracy and efficiency. The feedback
mechanism between stages not only improves the models’ performance over
time but also allows the system to quickly adapt to new and evolving threats.
The main contributions of this paper are as follows.

e We propose an adaptive multi-stage NIDS that hierarchically detects
suspicious traffic, optimizing resource use at each stage.

e We integrate meta-computing with intrusion detection, dynamically
adjusting parameters and features to prevent performance declines in
IDS implementations.

e We introduce two approaches, Feedback Loop and Adaptive Threshold
Tuning, that dynamically adjust model parameters to enhance detec-
tion accuracy and efficiency. This enhances the system’s adaptability
and efficiency without incurring additional latency.

e Extensive experiments show our adaptive framework outperforms static
IDS, offering a scalable solution for large-scale network security.

2. Background

2.1. Network Intrusion Detection (NIDS)

A Network Intrusion Detection System identifies potential security breaches
and communicates alerts through various means such as textual alerts, log
files, or graphical user interfaces. These alerts are subsequently analyzed by
human analysts or automatic postprocessing systems. Accurate identifica-
tion of intrusions is classified as true positives, while false alarms are false
positives. Failure to detect an intrusion results in a false negative, whereas
correctly identifying no breach is a true negative. Deep Learning approaches
[7, 8] have shown significant promise in enhancing IDS performance, partic-
ularly in terms of accuracy and load balancing [2, 4, 5]. However, deploying
complex DL models on resource-constrained devices poses challenges due to
their high computational demands.

Niknami et al. [9] proposed a Reinforcement Learning (RL)-based IDS
with an adaptive distributed sampling (ADS) to enhance anomaly detection
accuracy while minimizing the increase in controller overhead. They pro-
vided a controller leveraging information gathered from each sampled traffic
flow to determine whether the flow’s state is malicious, suspicious, or benign
based on underlying anomaly detection algorithms. Once the flow state is
determined, the controller takes the appropriate action with the help of the
RL agent. Yazdinejadna et al. [10] introduced a zone-based architecture for
intrusion detection that enhances scalability and anomaly detection capa-
bilities in NIDS. Zhao et al. [11] developed a lightweight IDS model with

5

reduced detection rates. Wang et al. [12] proposed a knowledge distillation
model to reduce model complexity, though designing effective teacher and
student models remains challenging.

Yang et al. [13] presented a lightweight intrusion detection method that
balances accuracy and efficiency through self-knowledge distillation. Ge et
al. [14] introduced MetaCluster, a flexible classification framework for cy-
bersecurity that filters and combines classification semantics through feature
prototypes and dynamic graph learning layers, providing a comprehensive
solution for interpretable classification tasks. Niknami et al. in [15] pro-
posed a Prototypical Network-based IDS within a meta-learning framework.
Their method adopts a Few-Shot Learning approach, aiming to distinguish
and compare network traffic samples to classify them as either normal or
malicious. The model not only identifies benign or malicious traffic but also
accurately identifies the specific types of attacks. Their analysis showed that
PTN-IDS, particularly with 5-shot learning, significantly outperformed the
baseline method across different scenarios.

2.2. Multi-Stage Intrusion Detection System

Multi-stage intrusion detection systems are designed to detect complex,
evolving attacks by breaking down the detection process into multiple lay-
ers or stages. Each stage analyzes network traffic or system behavior with
increasing levels of granularity, allowing for a more thorough examination of
potential threats. By using multiple detection techniques at different stages,
these systems can identify various attack vectors that might be missed by
single-stage IDS. Multi-stage IDS are particularly effective at handling ad-
vanced persistent threats (APTs) and multi-step attacks, as they track the
progression of suspicious activities over time, ensuring early detection and
response. Additionally, the layered approach enhances resource efficiency by
filtering out benign traffic in earlier stages, focusing computational power on
more likely threats in the later stages.

Hocine et al. [16] described a collaborative NIDS based on a multi-agent
framework, using dynamic load balancing of traffic analysis to enhance de-
tection, particularly against DDoS attacks, while minimizing excessive com-
munication. Niknami et al. [17] proposed deploying a chain of IDSs within
the data plane, interconnected with switches, to efficiently group data flows
and balance the load on the controller. Verkerken et al. [18] introduced a
multistage, scalable IDS capable of detecting unknown and zero-day attacks.

Niknami et al. in [19] proposed a multi-stage network attack detection algo-
rithm that enhances Multi-Stage-Attack (MSA) detection through the anal-
ysis of high-dimensional alerts and the integration of various alert aspects.
They incorporated semantic similarity, anomaly scores, and feature extrac-
tion to identify relevant entities, detect intricate relationships, and uncover
hidden patterns, enhancing the detection of multi-stage network attacks.

To tackle the challenge of balancing detection accuracy with model com-
plexity, which often leads to increased CPU usage, this paper proposes a
lightweight, multistage NIDS. By leveraging meta-computing, we introduce
dynamic resource allocation for each level of the NIDS. In addition, we
present a novel feature selection method aimed at reducing the complexity
of the model.

2.3. Meta-computing

Meta-computing entails the dynamic and adaptive management of com-
puting resources to optimize performance, efficiency, and resource utiliza-
tion [20]. A critical aspect of meta-computing is the dynamic allocation of
resources based on workload demands and system conditions, which ensures
efficient use of available resources and adaptation to changing computational
needs. By leveraging meta-computing, computing resources are utilized in a
flexible and efficient manner to effectively address computational challenges.
When combined with few-shot learning, meta-computing techniques can fur-
ther enhance resource allocation, improve parallel processing capabilities,
and boost overall computational efficiency.

Y. Liu et al. in [21] addresses the deployment of machine learning-based
intrusion detection systems in environments with limited resources. It pro-
poses a framework for optimal task assignment and capacity allocation, with
the aim of improving detection accuracy while efficiently utilizing available
resources. This work aligns with meta-computing principles by focusing on
the dynamic allocation of tasks and resources to optimize system perfor-
mance. A. Gupta et al. in [22] explores resource allocation strategies for
intrusion detection systems within edge computing environments. It intro-
duces a fair resource allocation mechanism that balances detection perfor-
mance with the computational limitations of edge nodes, ensuring efficient
and equitable resource distribution. This study reflects the meta-computing
approach of integrating and managing diverse computing resources to achieve
optimal performance.

3. Methodology

The proposed framework incorporates an adaptive approach to intrusion
detection, iteratively improving its performance with each incoming batch
of data. This dynamic adaptation is facilitated through the use of meta-
computing principles, which allocate resources based on the current load
and complexity of the incoming network traffic. The hierarchical structure
of Meta-IDS ensures that each level of the detection process is tailored to
handle varying scales of traffic efficiently, thereby optimizing the use of com-
putational resources. This design allows for a robust and scalable intrusion
detection system capable of maintaining high accuracy and efficiency in de-
tecting threats within high-performance environments.

In the proposed approach, the detection process is divided into three
distinct stages. The first stage employs a simple binary model to quickly
filter out benign traffic, thus reducing the load on subsequent stages. If a
data point is deemed suspicious, it progresses to the second stage, where
a multi-class model performs a more detailed analysis to classify the traffic
into known attack categories or benign. The final stage involves a complex
neural network model that conducts on in-depth analysis of data points that
remain ambiguous after the first two stages. This multi-tiered approach en-
sures that only the most computationally intensive analyses are reserved for
the most suspicious data points, thereby optimizing overall system perfor-
mance. The multi-stage detection framework is designed to progressively
refine the analysis of network traffic. In the initial stage, a simple binary
classification model quickly filters out benign traffic, reducing the load on
subsequent stages. The second stage involves a more detailed multi-class
classification, identifying specific types of attacks. Finally, the third stage
utilizes a complex neural network to analyze the remaining ambiguous data
points. This hierarchical approach ensures that only the most computation-
ally intensive analyses are performed on the most suspicious data, optimizing
overall system performance.

To enhance the system’s robustness, we employ techniques such as com-
bining multiple feature selection methods and utilizing deep learning-based
feature selection. This combination allows us to leverage the strengths of
each method, ensuring comprehensive and accurate feature selection.

ATK, N,
ot \ / Complex
i1 Multiclass

Labeling as N /7 simple Benign AnackE
ATK, [N Model

{ sSimple Binary Benign i Multi-class

H
Model t False i E Model I I i E i

H 1 2 i 1 1 ratse i 1 _
o p PSH L. Labeling | Anomaly P Tue Labeling ! Bl :
Traffic # Anomaly - or - as » nomaly | p <1, o ” Anomaly |
Dat: 17 Detector Predicted L 1 Detector ici i1 Detector ATK, |
ata 1 i Suspicious | ! H
Suspicious | i) !
' t as Attack i t t i t Attack .
H i i ATK, |}
T, i 1
| @Constainnn ! {1 Enriched E o R |
_ Features 1 1th Stage ./ Rowy, (T3 2™ Stage / \._ Features 374 Stage

Figure 2: The architecture of the multi-stage hierarchical IDS.

3.1. Feature Selection for Enhanced Detection

The effectiveness of the IDS framework is further enhanced by employ-
ing advanced feature selection techniques. Niknami et al. in [6] integrated
various feature selection methods such as mutual information [23], Minimum
Redundancy Maximum Relevance [24], and Sparse Sensor Placement Opti-
mization for Reconstruction [25] to identify the most relevant features for a
multi-stage IDS. PCA as a feature extraction algorithm exhibited the high-
est accuracy compared to different feature selection methods, particularly for
both binary and multi-class classification tasks. Their results showed that
feature selection has a significant impact on the model’s ability to classify
both binary and multi-class data, with some methods outperforming others
depending on the complexity of the task. Unlike other methods where the
chosen features can be readily applied through straightforward slicing opera-
tions, PCA necessitates transforming the original data into a new coordinate
system via matrix multiplication. This process, inherently more computa-
tionally demanding, leads to increased processing time when applied to new
data. Consequently, while PCA can effectively reduce complexity and retain
important information, its slower computational speed compared to feature
selection methods led us to exclude it from our experiment.

In addition, the quality of features is equally crucial in influencing de-
tection accuracy. For instance, approximately 35 features are adequate to
achieving satisfactory accuracy in binary classification, while a minimum of
50 features is necessary for acceptable accuracy in multi-class classification.
This discrepancy highlights the greater complexity and the challenge associ-
ated with multi-class classification compared to binary classification. There-
fore, we adopt the feature selection method that yields the highest accuracy
for a given number of features.

Fig. 2 illustrates the multi-stage hierarchical architecture IDS, Meta-
IDS[6]. The architecture is structured into three stages, each contributing

9

Sending some examples to fine-tune the model

i \\\ P ATK, N

! Labeupg as \ Benign Attack : W ot

! simple Binary Benign i Multi-class AR, i1 Multi-class
Model t i Model t I i I Model i
False i I H
: 1 =y] l 1 rase i l , :
Data | p P L. Labelng | » Tue Labeling || Benign :
Ektielh # Anomaly o or ¥ as M Anomaly ﬁ- as " Anomaly |
D, : Detector Predicted SiEpEE T Detector Suspicious |} Detector ATK, |
i i as Attack i 1 i Attack I
! 1 1 i ATK, |
: L 1 . T2 i 1 ;
i Constrained = 14 Eneichad A Full H
_ Features 1 1th Stage / \,_Features 2% Stage / N\ _Features 37 Stage/

Sending some examples to fine-tune the model

Figure 3: The architecture of the multi-stage hierarchical IDS with feedback loop.

to the detection and classification of network intrusions with increasing com-
plexity and accuracy. In the first stage, traffic data is fed into an anomaly de-
tector, which operates on constrained features. The system evaluates whether
the probability p of an event being an attack is less than a predefined thresh-
old 7. If p < 7y or if the event is directly predicted as an attack, the event
is labeled as suspicious. Otherwise, it is labeled as benign and does not pro-
ceed further in the detection pipeline. Suspicious events are passed to the
second stage for more refined analysis. The second stage re-evaluates suspi-
cious events using a more complex anomaly detector operating on enriched
features. Here, the probability p is compared against a second threshold 7.
If p < 7, the event continues to be labeled as suspicious. A higher p triggers
classification into either a benign category or one of several attack categories
(denoted as ATK; to ATK,). In the third Stage, the system performs the
most detailed analysis using a complex multi-class model, leveraging full fea-
ture sets and an advanced anomaly detector. This stage thoroughly classifies
the event as either benign or as one of several potential attack types (again
denoted as ATK; to ATK,). The output represents the most accurate and
detailed assessment within the system.

To further improve the performance of Meta-IDS, we propose two dy-
namic approaches: Feedback Loop and Adaptive Threshold Tuning. These
methods adjust the model parameters in real-time to optimize detection ac-
curacy and efficiency. Below, we provide detailed explanations of each ap-
proach.

3.2. Enhanced Meta-IDS: Feedback Loop

In the proposed Feedback Loop approach, Meta-IDS is equipped with a
feedback loop, which allows information from the last (third) stage to be

10

fed back into earlier stages. This feedback improves detection accuracy by
refining thresholds 7; and 75, or fine-tuning the earlier stage models. Fig. 3
illustrates the Enhanced Meta-IDS. Feedback loop mechanism is designed to
prioritize low-confidence samples, which naturally includes the most severe
misclassification cases. The feedback loop addresses edge cases by: 1) Re-
training on low-confidence samples to improve generalization and 2) Dynam-
ically adjusting thresholds to handle uncertain scenarios. By selecting these
cases for retraining and fine-tuning earlier-stage models, the system system-
atically improves its ability to handle challenging scenarios. As demonstrated
in our results, the accuracy progressively improves with each task, indicating
that not only are previously misclassified samples addressed, but new sam-
ples with similar distributions to these challenging cases are now correctly
classified.

The hierarchical approach divides the detection process into four Phases:

e Phase 1 (Simple IDS in Stage 1): Simple binary classification to
quickly filter out benign traffic.

e Phase 2 (Moderate IDS in Stage 2): Detailed multi-class classifi-
cation to identify specific types of attacks.

e Phase 3 (Complex IDS in Stage 3): Complex neural network anal-
ysis for ambiguous data points, ensuring comprehensive intrusion de-
tection.

e Phase 4 (Feedback Loop): Following the evaluation of our multi-
stage model on each data batch, we will implement a feedback loop with
fine-tuning the earlier stage models to enhance the model’s efficiency
and accuracy.

Overall, this hierarchical approach ensures a scalable and accurate in-
trusion detection system. By progressing from simple to complex analyses
across multiple stages, and incorporating a feedback loop that refines the
performance of each stage, the system effectively balances computational
efficiency with detection accuracy. This feedback mechanism enhances the
decision-making process at each stage, reducing false positives and improving
the system’s ability to identify even the most subtle attack patterns, thereby
optimizing overall performance.

Fig. 4 illustrates the process of data by the traditional Meta-IDS model
and an enhanced version of it. In the first approach, the Meta-IDS model

11

1 1
1 1
1
Meta-IDS | TfficData me! Meta-IDS Model with Three Stages E
Model | b | .
H H Time
ty Sendinlg whole Resullts for
data to model whole data

Figure 4: The timeline of Meta-IDS approach.

processes the entire dataset in one go. At an initial time, ¢y, the complete
traffic data is sent to the model. This data passes through a pipeline con-
sisting of three stages, which are not detailed in the figure, and the system
generates results only after the entire dataset has been processed. While this
method can handle large-scale data, it processes everything at once, poten-
tially leading to resource inefficiency and a long wait time before results are
available.

Fig. 5 represents the Enhanced Meta-IDS model, where data arrives
sequentially, requiring the method to dynamically adapt and process the
data in smaller, incremental batches. At time ¢y, the model processes the
first data batch D;, producing results for that specific batch. After this, an
updating process occurs, allowing the model to adapt based on the newly
processed data. Once updated, the system moves to the next batch D1,
repeating this process for subsequent tasks. This approach enables the model
to continually evolve with the incoming data, making it more adaptive and
flexible compared to the traditional method. By processing data in small
batches and updating the model frequently, the Enhanced Meta-1DS ensures
that the model remains robust and capable of detecting new threats in real-
time. Each task is treated as a separate learning process, contributing to the
overall system performance by ensuring that previous knowledge is retained
while adapting to new information.

The continuous learning strategy depicted in Fig. 5 allows the Enhanced
Meta-IDS to excel in dynamic environments where threats and data pat-
terns are constantly changing. Unlike static models that require retraining
with large datasets, this incremental approach ensures efficiency in resource-
constrained environments while maintaining high detection accuracy. Through
this cyclical process of receiving new data batches, updating the model, and
applying the enhanced model to future tasks, the system stays resilient and
agile in a fast-evolving cybersecurity landscape. The key difference between
these two methods is that while the Meta-IDS model processes the entire
dataset in one go, the Enhanced Meta-IDS model processes data incremen-

12

Taski

' 1
| Enhanced]

Data

' !
y 1 1
s ! Updating
! Batch mmp Meta-DS gy 0 S Task i+1
Enhanced | D: 1 Model i | T
1 1 1
Meta-IDS | i ! ! Data | Enhanced Updating
! 1 1 | | pdatin;
Model ! ! ! :Batch -: e =) process
1 1 1 i Din 1 Model
i 1 1

T T T Time
1
to Sending one batch Results for the Updating ~ Sending new
data to model given batch data Model batch data to
updated model

Figure 5: The timeline of Enhanced Meta-IDS approach.

tally. This allows the system to be more responsive and scalable, particularly
in environments where data is continuously arriving and real-time adaptation
is necessary.

The Enhanced Meta-IDS algorithm, outlined in Algorithm 1. Given a se-
quence of tasks {74, T5, ..., T}}, where each task 7; = {(z1,v1), ... (xn, Un)}
consists of input features x and the corresponding label y, the Meta-IDS
algorithm employs a multi-stage process using feature sets F; for Stage 1
and Fy for Stage 2, with thresholds 77 and 7. In Stage 1, each data point
x; is processed by a binary classifier (BinaryModel) using F;. If the prob-
ability of malicious behavior is below 7 or explicitly classified as malicious,
the algorithm advances to Stage 2. In Stage 2, a simple multi-class model
(SimpleMultiClassModel) with F, is applied. If the classification prob-
ability py is below 7y, the algorithm moves to Stage 3, where a complex
multi-class model (ComplexMultiClassModel) is used for the final predic-
tion. Otherwise, the prediction from the simple multi-class model is used.
This sequential approach ensures efficient and accurate intrusion detection.

After processing through all the stages (binary, simple multi-class, and
complex multi-class models) for a task 7}, a feedback loop is introduced
by calling the Feedback Loop for Fine-tuning Models function. This
function is responsible for updating the models based on the results from
Stage 3. Feedback Loop for Fine-tuning Models function outlined in Al-
gorithm 2. The procedure takes as input the predicted labels from three
stages of the IDS: }A/l, }72, and f/};, along with their corresponding prediction
probabilities P, and P,. The output of the process is fine-tuned models at
Stage 1 and Stage 2. In Step 1, the algorithm begins by ranking the pre-
dicted labels from Stage I and Stage 2 based on their probabilities. From
f/l, it selects the lowest IV samples according to the ranked probabilities in

13

Algorithm 1 Enhanced Meta-IDS Algorithm

1: Input: Tasks T' = {11, 1>, ..., Ti:}, T; = {(z1, %), -, (xn, yn)}, Feature
sets FY, Fy, F3, Thresholds 71, 7

2. Output: Predicted Labels Y = {91, - N}

3: Step 1: Evaluate model on each task

4: for each task 7 in T' do

5: for each data point z; in task 7} do

6: p1,¢1 < BINARYMODEL(x;, F)

7: if p; < 1 or ¢ is malicious then

8: Pa, C2 < SIMPLEMULTICLASSMODEL(z;, F)

9: if p, < 7 then

10: p3, ¢ < COMPLEXMULTICLASSMODEL(x;, F3)
11: :l)i — C3

12: else

13: Ui < Co

14: end if

15: else

16: ’l)l — C1

17 end if

18: end for

19: Step 2: Fine-tune models using the feedback loop
20: Call Algorithm 2 to fine-tune models using obtained results from 7}
21: end for

Py, forming the set S;. Similarly, from Yg, it selects the lowest N samples
based on the ranked probabilities in P, forming the set S. These samples
represent predictions where the models showed low confidence, indicating a
higher likelihood of misclassification.

In Step 2, the algorithm proceeds to improve the models by leveraging
the final predictions from Stage 3. For each sample s; in 57, the algorithm
finds the associated label y; in Y3, the output of Stage 3. The sample s;
along with its corresponding label y; is then sent back to the BinaryModel
at Stage 1 for retraining. Similarly, for each sample s; in S5, the algorithm
finds the corresponding label in Y3 and sends the sample-label pair back to
the SimpleMultiClassModel at Stage 2 for retraining. In Step 3, the algo-
rithm performs the fine-tuning of the models. Both the BinaryModel and
the SimpleMultiClassModel are retrained using the selected N samples and

14

Algorithm 2 Feedback Loop for Fine-tuning Models

Input: Predicted labels Yl, }A/g, Y; and Probabilities P, P
Output: Fine-tuned models at Stages 1 and 2
Step 1: Rank and select low-confidence samples
S1 < N samples from Yl with lowest P;
S5 < N samples from)A@ with lowest P»
Step 2: Find associated Labels in Stage 3
for each sample s; € S; do
y; < Associated label for s; in ?},
Send (s;,y;) to BINARYMODEL for training Stage 1
10: end for
11: for each sample s; € Sy do
12: y; <— Associated label for s; in ?},
13: Send (s;,y;) to SIMPLEMULTICLASSMODEL in Stage 2
14: end for
15: Step 3: Updating Models with N Trained Samples
16: Fine-tune the Binary and Simple Multi-Class models with corresponding
selected N samples

R I SRR

their associated labels from Stage 8. This targeted retraining is intended to
improve the performance of the models by focusing on the low-confidence
samples where the models had previously struggled, thereby enhancing the
models’ ability to correctly classify similar samples in future predictions.

8.8. Enhanced Meta-IDS: Adaptive Threshold Tuning

In this section, we explore an alternative approach for implementing the
feedback loop. As demonstrated in our previous work [6], the thresholds in
the first and second stages significantly influence the efficiency and accuracy
of Meta-IDS. Therefore, after evaluating the model on each task, we aim
to update the thresholds to enhance the model’s utility. Since there are no
known analytical relationships between the utility and the thresholds, we
propose using a greedy algorithm as the most practical approach for this
optimization. The approach involves two thresholds: one is kept fixed, while
the other is incrementally adjusted to optimize the utility. We define two
thresholds, 7 and 75, and the two scenarios are as follows:

1. The value of 1 is fixed, and 7, is incrementally adjusted by a step size
A, =0.2.

15

e Initialization: Set the initial values of 7 and 7.

e Increase Step: Increment 75 by the step size A,, = 0.2 , and
evaluate the Utility.

e Utility Evaluation:

— If Utility improves, increase 7 by A,, for the next task and
repeat the evaluation.

— If Utility decreases, decrease 7o by either a half of the step
size A, = 0.1 or a quarter of the step size, A,, = 0.05, and
re-evaluate the utility.

— Termination: The process is terminated if any of the follow-
ing criteria are met:

+ Upper Bound Condition: If the 75 reaches an upper
bound and still improving, stop further increases and re-
tain the current threshold, as no further improvement is
expected beyond this point.

* Convergence Condition: If utility improves after the
decrease, stop adjusting the taus and retain the current
value.

* Cycle Condition: If the 7 adjustments lead back to
a previously evaluated value without yielding further im-
provement, terminate the adjustment process and retain
the 7, value at which the utility was highest.

2. The value of 7, is fixed, and 77 is incrementally adjusted by a step size
A, =02,
e Initialization: Set the initial values of 7 and 5.
e Increase Step: Increment 7 by the step size A, = 0.2 , and
evaluate the Utility.
e Utility Evaluation:

— If Utility improves, increase 7, by A, for the next task and
repeat the evaluation.

— If Utility decreases, decrease 1 by either a half of full step
size A, = 0.1 or a quarter of the step size, A, = 0.05, and
re-evaluate the utility.

— Termination: The process is terminated if any of the follow-
ing criteria are met:

16

A$2= 0.2 A;: 0.2 A;'2= 02 A;=01
Continue with
Data Data Data Data Data fixed 7,
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

T, = 0.1 Ty = 0.3 Ty = 0.5 Ty = 0.7 Ty = 0.6

Improving Improving Diminishing Improving
Utility Utility Utility Utility

Figure 6: Adjusting 7o when the value of 7 is fixed to 0.5.

A;‘.’z= 0.2 A:-'2= 0.2 A,T2= 02 A;=01 A7,=0.1
r\ Continue with
fixed 7,

Data Data Data Data Data Data —
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6
7,=01 17,=03 17,=05 1,=07 1,=06 1,=05

Improving Improving Diminishing ~ Diminishing ~ Improving
Utility Utility Utility Utility Utility

Figure 7: Adjusting 7o when the value of 71 is fixed to 0.7.

x Upper Bound Condition: If the 77 reaches an upper
bound and still improving, stop further increases and re-
tain the current threshold, as no further improvement is
expected beyond this point.

x Convergence Condition: If utility improves after the
decrease, stop adjusting the tau; and retain the current
value.

* Cycle Condition: If the 7 adjustments lead back to
a previously evaluated value without yielding further im-
provement, terminate the adjustment process and retain
the 7, value at which the utility was highest.

This adaptive threshold tuning process aims to iteratively adjust the
threshold 7 or 75 to maximize the utility function. The approach provides
flexibility in fine-tuning the threshold while minimizing the risk of overshoot-
ing the optimal value. Note that 7 is associated with a binary classification
problem and is therefore bounded below by 0.5, while 75 corresponds to a
multi-class classification problem and is bounded below by 0.1. Additionally,
since values greater than 0.9 are inefficient—leading to nearly all samples
being flagged as suspicious and requiring further processing—we impose an

17

upper bound of 0.9 on both 7 and 7.

Figs. 6 and 7 illustrate the iterative process of adjusting 7, across data
batches to optimize utility. In both figures, the adjustment begins with
an initial value of 7, = 0.1, followed by increments using a positive step
size Al = 0.2 over the first three data batches. This adjustment leads to
continuous improvements in utility, as indicated by the “Improving Utility”
annotations. However, in Data Batch 4, further increasing 7 to 0.7 results
in diminishing utility. To address this, a smaller step size A_ = 0.1 is used
to reduce 73 to 0.6 in Data Batch 5, which leads to an improvement in utility
once again. In Fig. 6, after reaching this point, the value of 7 is fixed at 0.6
for subsequent tasks, as the optimal range for utility has been achieved. In
Fig. 7, however, in Data Batch 5, setting 7 to 0.6 still results in diminishing
utility. To address this, 75 is further reduced to 0.5 in Data Batch 6, which
leads to an improvement in utility once again. These figures demonstrate
the adaptive tuning of 7, where increasing and decreasing adjustments are
made based on the observed utility trend to reach an optimal utility value.

3.4. Complexity Analysis

The implementation of the Enhanced Meta-IDS Algorithm and its associ-
ated feedback loop for fine-tuning models is inherently complex, as it heavily
depends on data-specific factors such as the feature space, the distribution
of low-confidence samples, and the underlying model architecture. These de-
pendencies make a generalized complexity analysis challenging. However, a
structured complexity analysis for the algorithm’s feedback loop is feasible
due to its hierarchical design. The complexity at each stage is described as
follows:

e Stage 1 (Binary Model): The computational complexity for this
stage is O(n - f1), where n is the number of input samples, and f; is
the number of features utilized at this stage.

e Stage 2 (Simple Multi-Class Model): The complexity is O(m -
f2), where m is the subset of samples forwarded from Stage 1, and f,
represents the feature set at this stage, where fy > fi.

e Stage 3 (Complex Multi-Class Model): The complexity is O(p -
f3), where p denotes the subset of samples passed from Stage 2, and f3
is the feature set at this stage, where f5 > fs.

18

The feedback loop for fine-tuning models introduces an additional com-
putational cost of O(k - (fi + f2)), where k represents the number of samples
selected for fine-tuning. However, for adaptive threshold strategy, there is
no extra computational cost. This mechanism refines the model iteratively,
leveraging the feedback from previous predictions. The hierarchical structure
of the Enhanced Meta-IDS Algorithm ensures that computational efficiency
is maintained by early-stage filtering, which reduces the number of samples
passed to the computationally intensive stages. Experimental results demon-
strate that this design achieves a favorable trade-off between computational
cost and accuracy, validating the practical feasibility of the approach.

4. Evaluation

Through extensive experiments and empirical evaluations, we have demon-
strated that our Enhanced Meta-IDS framework achieves significant improve-
ments in both accuracy and efficiency compared to traditional single-stage
IDS models. By leveraging dynamic resource allocation, hierarchical process-
ing, and advanced feature selection techniques, our system can effectively
handle large-scale network traffic while maintaining high levels of detection
accuracy and minimizing false positives. This makes our proposed Meta-
IDS framework a robust and scalable solution for modern network security
challenges. We conducted our experiments on a system equipped with an In-
tel(R) Xeon(R) W-2225 CPU @ 4.10GHz, featuring an 28664 architecture
with 8 CPUs, each with 2 threads per core and 4 cores per socket, reaching
a maximum frequency of 4.6 GHz. We conduct each experiment multiple
times and then calculate the average to present the results. To evaluate our
method, we conducted experiments using the CICIDS2017 dataset generated
from real network traffic recordings. This dataset includes benign samples
alongside the most up-to-date common attacks. The dataset was generated
over a period of five days using 14 machines. The benign traffic was simulated
based on the behavior of 25 individuals, utilizing statistical techniques and
machine learning. In contrast, malicious traffic was generated by executing
known attack tools within specific time windows. The preprocessing steps
are exactly the same as what is done in [6].

After preprocessing, we simplified the dataset by grouping related attacks
attack types from the CICIDS2017 dataset, and a label was assigned to
each group. For instance, various Denial of Service (DoS) attacks, such as
DoS Hulk and DoS Slowloris, were grouped under the label DoS. Similarly,

19

Web attacks like Brute Force - XSS were grouped under Web Attack. This
approach simplifies the dataset by consolidating different types of attacks
into broader categories, making it more manageable for analysis and machine
learning applications. For the binary model, we trained on 10% of the data,
while the multi-class models were trained on just 2%. This reduced dataset
size significantly minimized training times and CPU usage. For testing, we
selected 1 million records not used during training, consisting of 500,000
benign instances and 500,000 attacks. To simulate larger traffic volumes,
we processed a total of 8 million samples by repeatedly using this 1 million
test dataset. To evaluate the proposed method, we considered two scenarios
with different numbers of features in the first stage and second stage of our
proposed method. The scenarios are as follows:

e Scenario 1: the number of features in Stage 1 is F; = 5 and the
number of features in Stage 2 is F, = 10.

e Scenario 2: the number of features in Stage 1 is F; = 10 and the
number of features in Stage 2 is F, = 30.

For the sake of simplicity, in this section, we will refer to a “Task” instead
of a “Data Batch”. We measured both Accuracy and Inference time. Infer-
ence time, in the context of deep learning, refers to the duration a trained
model takes to generate predictions on new, unseen data. During this phase,
the model processes the input data and produces an output, such as a clas-
sification or regression result. Inference time is a critical factor for deploying
deep learning models in real-world applications, as it directly affects the sys-
tem’s speed and responsiveness. In addition, we define another measurement
to display the effectiveness of the method based on both accuracy and CPU
time. It is Utility function which is defined as follows:

Utility(m1,) — {Score(ﬁ,Tz), if Accuracy(m,) > 0.8

0 otherwise
where
Score(ry, 1) =(Wace X Accuracy(ty, 3)))
—(WT X T’im@(’ﬁ, ’7'2)).
Here, Wacc represents the weight of accuracy, and Wy denotes the weight

of CPU time. These two parameters assign importance to the accuracy and
CPU time in the utility calculation, respectively.

20

—— N=0
—— N=50
—e— N=200

CPU Time

Accuracy

Tazsk Ta35k
(a) Scenario 1 - Accuracy (b) Scenario 1 - CPU Time

—— N=0
—— N=50
—— N=200

—— N=0
—— N=50

—e— N=200
0

Accuracy
CPU Time

3 3
Task Task

(c) Scenario 2 - Accuracy (d) Scenario 2 - CPU Time

Figure 8: Accuracy and CPU Time across tasks for Scenario 1 and Scenario 2.

The number of training data points sent to Stage I and Stage 2 for
updating the models are the effective parameters. We define N corresponding
to the number of training data points used to update models, represented as:

e N = 0: No feedback loop for updating the models.
e N = 50: Feedback loop with 50 instances.
e N = 200: Feedback loop with 200 instances

4.1. Impact of Feedback Loop Size on Accuracy and CPU Time

Fig. 8 displays how accuracy and CPU time change across five tasks in
Scenario 1 and Scenario 2 under three different configurations: N = 0 (no
feedback loop), N = 50 (moderate feedback loop), and N = 200 (larger
feedback loop). For both scenarios, we considered thresholds as 7,75 = 0.5.
Fig. 8(a) shows as the progress of the task, accuracy improves for the con-
figurations with feedback loop. The model with the N = 200 feedback loop

21

achieves the highest accuracy, reaching about 0.9. The N = 50 configu-
ration also shows steady improvement, ending with an accuracy of around
0.86. However, the N = 0 model, which has no feedback loop, performs the
worst, maintaining accuracy between 0.80 and 0.82 without much improve-
ment as tasks go on. Fig. 8(b) shows the amount of time needed by the
model decreases as tasks progress. The model with the N = 200 feedback
loop becomes more efficient, with CPU time dropping from 4.5 to 2.5 by Task
5. The N = 50 model also sees a reduction in CPU time, stabilizing at 3.5.
On the other hand, the N = 0 configuration, with no feedback loop, doesn’t
improve much and stays around 4.5 in CPU time.

Fig. 8(c) shows that the N = 200 feedback loop leads to the highest
accuracy, reaching nearly 0.95 by Task 5. The N = 50 model improves
moderately, hitting around 0.88, while the N = (0 configuration stays at
around 0.80, again showing minimal improvement. The two scenarios, Sce-
nario 1 and Scenario 2, differ significantly in the number of features used
at each stage of the model. In Scenario 1, there are fewer features, with 5
features in Stage 1 (F; = 5) and 10 features in Stage 2 (F» = 10). In
contrast, Scenario 2 has a more complex feature space, with 10 features in
Stage 1 (F1 = 10) and 30 features in Stage 2 (F2 = 30). The more features
the model can leverage, the better it can generalize across tasks, leading to
higher accuracy. The fact that Scenario 2 reaches an accuracy of nearly 0.95
with N = 200 suggests that the additional features help the model learn
more effectively compared to Scenario 1, where accuracy caps at around 0.9.

Fig. 8(d) shows that CPU time decreases significantly for the N = 200
model, dropping from 0.9 to 0.5 by Task 5. The N = 50 model also sees a
reduction in CPU time, ending at around 0.8. However, the N = 0 model re-
mains constant, using about 0.9 CPU time throughout the tasks. In terms of
CPU time, the larger number of features in Scenario 2 (F; = 10 and F, = 30)
means that more computational resources are initially required. This is ev-
ident in the first tasks, where CPU time is generally higher for Scenario 2
than Scenario 1. However, as tasks progress, the feedback loop mechanism
allows the models to reduce CPU time more effectively in Scenario 2, par-
ticularly for the N = 200 configuration, where the CPU time drops from 0.9
to 0.5. This suggests that while Scenario 2 begins with higher computational
demands due to the greater number of features, the feedback loop enables
more significant optimization as the model fine-tunes itself across tasks. In
Scenario 1, CPU time reduction is less pronounced, likely because the smaller
feature set limits the model’s ability to optimize as dramatically.

22

. N=
. N=
. N=

Utility
Utility

3 4 s 1 2 3
Task Task

(a) Scenario 1 (b) Scenario 2

Figure 9: Impact of feedback loop size on model utility.

In summary, models with larger feedback loops (N = 200) perform much
better in terms of accuracy and become more efficient in CPU time as tasks
progress. The models without feedback (N = 0) perform the worst in both
accuracy and CPU time. Feedback loops help the models improve both
their performance and efficiency as they tackle more tasks. In addition,
we see trade-offs between feature complexity and computational efficiency.
Scenario 1, with fewer features, has lower initial CPU times, especially for
the N = 0 and N = 50 configurations, which remain relatively constant
throughout the tasks. While Scenario 1’s simplicity results in lower CPU
demands, it also limits the model’s accuracy potential, as seen in the lower
accuracy scores compared to Scenario 2. On the other hand, Scenario 2’s
higher feature count initially increases computational demand but leads to
better accuracy and more efficient CPU usage over time, especially when the
feedback loop is employed effectively.

4.2. Impact of Feedback Loop Size on Utility

Throughout the paper, we set the utility weights as Wace = 60 and
Wr = 1. As demonstrated in Figure 8, our methodology enhances both
accuracy and computational time. Therefore, regardless of the specific values
chosen for Wxce and W, our algorithm remains superior. The weights
Wace = 60 and Wy = 1 prioritize detection accuracy over computational
efficiency, reflecting the importance of minimizing false negatives. Step sizes
(A, A,,) were chosen for practical convergence.

Fig. 9 displays the impact of Feedback Loop Size on Model Utility Across
Tasks in Scenario 1 and Scenario 2 under different number of training data
points. In Scenario 1, the utility values vary depending on the feedback loop

23

size across the tasks. For Task 1, the utility for all configurations (N = 0,
N = 50, and N = 200) remains similar, with values just below 50. The
reason is that the feedback loop has not yet been executed. From Task 2
onward, there is a clear upward trend as the feedback loop size increases.
N = 200 consistently achieves the highest utility across all tasks, particularly
in Task 4 and Task 5, where it exceeds 50. The N = 0 case, where no feedback
loop is used, consistently performs the worst, suggesting the crucial role of
feedback in improving model utility. N = 50 shows better performance than
N = 0 but does not reach the level of N = 200, indicating that a moderate
feedback loop improves performance, though not as much as a larger one.
In Scenario 2, the pattern is similar to Scenario 1, but with some variations
in utility. For Task 1, the utility values for all configurations remain close,
slightly below 50. In Tasks 2 and 3, the utility across different configurations
stays consistent, with N = 200 performing marginally better. By Task 4 and
Task 5, the differences between N = 0, N = 50, and N = 200 become more
pronounced, with N = 200 achieving the highest utility, around 55, while
N = 50 shows a moderate improvement over N = (.

Overall, larger feedback loops, particularly N = 200, lead to consistently
higher utility in both scenarios, especially in later tasks, indicating that feed-
back significantly enhances model performance as the number of instances
increases. Models without feedback loops, represented by N = 0, result in
lower utility, emphasizing the importance of incorporating feedback for model
improvement. Although N = 50 improves performance compared to N = 0,
it does not reach the performance levels of N = 200, highlighting the benefit
of larger feedback loops in maximizing utility across tasks.

4.8. Fine-tuning Time vs. Average Accuracy

Fig. 10 compares two variables across four scenarios: fine-tuning time and
average accuracy. The overall fine-tuning time remains consistent for each
stage since the number of samples fine-tuned is the same across stages. By
dividing the total fine-tuning time by the number of tasks, one can estimate
the time required per stage. Furthermore, the fine-tuning process is designed
to occur during intervals between tasks, ensuring it does not interfere with
real-time system operation. Therefore, this overhead was not included in the
evaluation of our methodology. For scenarios where such intervals are not
available, the second algorithm (adaptive threshold tuning) can be employed
as an alternative to maintain efficiency without introducing additional fine-
tuning delays.

24

Il Fine-Tuning Time
Bl Average Accuracy

IS “» o <~

Fine-Tuning Time

Average Accuracy

o 0.0
Scenario 1 (N=200) Scenario 1 (N=50) Scenario 2 (N=200) Scenario 2 (N=50)
Scenarios

Figure 10: Comparison of Fine-Tuning Time and Average Accuracy across different sce-
narios and different V.

In Scenario 1 with 200 training data points (N = 200), the fine-tuning
time is approximately 4.2, and the average accuracy reaches around 0.87.
When the number of training data points is reduced to 50 (N = 50), the
fine-tuning time drops to just under 2, while the average accuracy decreases
slightly to about 0.82. In Scenario 2 with N = 200, the fine-tuning time
increases to just over 5, and the accuracy improves, reaching close to 0.90.
Similarly, in Scenario 2 with N = 50, the fine-tuning time drops to just
under 1, but the average accuracy remains strong at around 0.85.

A notable observation is that Scenario 2 consistently requires more fine-
tuning time compared to Scenario 1, suggesting that it demands more com-
putational effort. However, it also results in higher average accuracy. Ad-
ditionally, larger training data points (N = 200) tend to increase both the
fine-tuning time and accuracy, demonstrating the positive impact of more
training data on performance. Overall, Scenario 2 with N = 200 achieves
the highest accuracy but at the cost of increased fine-tuning time, while
smaller datasets require less time but generally offer slightly lower accuracy.

4.4. Impact of N on Accuracy with Varying 7 and 5

Figs. 11 show the average accuracy under varying values of N (N = 0,
N =50, and N = 200) and different threshold combinations of 7; and 7». In
the case where N = 0, shown in Fig. 11(a), the accuracy ranges from 0.68
to 0.94, with the highest accuracy achieved when 71 = 0.9 and 7, = 0.9. The
results indicate that the models perform better when higher thresholds are
used, but lower values of 7, result in reduced accuracy, especially for smaller

25

1.00 1.00

0.9- B 0.95 09- 0.72

”
0.90 0.90
0.85 £07- 071 0.73 0.85
-0.80 -0.80
-0.75 05- 071 072 . -0.75
-0.70) G G G -0.70
03 05 07 0.9
T2
(a) N=0 (b) N =50
1.00
09- 076 077 0.95
0.90
I " H
1 03 05 0.7 0.9
T2

(c) N =200

0.5-

0.85

Figure 11: Average accuracy over 5 tasks for different NV values in scenario 1.

values of 71. This suggests that without the feedback mechanism, the model
struggles to generalize well across the tasks, particularly when the threshold
values are set lower. Fig. 11(b), where N = 50, the accuracy ranges from
0.71 to 0.95. The most substantial improvements are observed in the low
threshold ranges, such as 74 = 0.5 and 7, = 0.15, where accuracy increases
to 0.71 compared to 0.68 when N = 0. This demonstrates that selecting
200 low-confidence samples for retraining in the feedback loop enhances the
model’s ability to generalize, especially for tasks that were more difficult to
classify without the benefit of retraining.

Fig. 11(c), where N = 200, the accuracy in this scenario ranges from 0.75
to 0.95, demonstrating further improvements in overall performance. For
lower threshold values, such as 71 = 0.7 and 7, = 0.7, the accuracy reaches
0.90, showing that the feedback loop has significantly helped the model per-
form better across the board. However, the marginal gains between N = 50
and N = 200 are smaller compared to the improvements seen from N = 0
to N = 50. This suggests that while the feedback loop continues to improve

26

10

0.9- 09- 0.50 0.96

0.5-

05
T2

(b) N = 50

10

09- 0.47 0.92 . 7.98 8.01 s

6

-4
2

05- 0.38 0.70 3.16 .H [
' ' T T -0

05
T2

(c) N =200

Figure 12: Average CPU Time over 5 tasks for different N values in scenario 1.

performance as more samples are added, the largest performance gains occur
with the initial introduction of feedback. It can be observed that the high-
est accuracy is consistently achieved at 7 = 0.9 and 7, = 0.9, regardless
of the value of V. This indicates that the models perform optimally when
the thresholds for classification are set to higher values. The general trend
across the experiments is that as the value of N increases, the accuracy im-
proves. This clearly demonstrates the benefit of using the feedback loop for
retraining the models, particularly when the models exhibit low confidence
in their predictions. As more low-confidence samples are used for retraining,
the models are better able to generalize, improving overall accuracy.

4.5. Impact of N on CPU Time with Varying 7 and o

Figs. 12 show the average CPU time under varying values of N (N =0,
N =50, and N = 200) and different threshold combinations of 7 and 75. In
Fig. 12(a), where N = 0, the CPU time ranges from 0.40 to 9.85 seconds,
with the highest CPU time occurring at m = 0.9 and » = 0.9. The CPU

27

time is higher for larger values of 7 and 75, which likely corresponds to more
complex model evaluations as the threshold values increase.

Fig. 12(b) shows the results when N = 50. The CPU time now ranges
from 0.39 to 8.52 seconds. There is a noticeable reduction in CPU time,
particularly for higher threshold values like 71 = 0.9 and 7 = 0.9, compared
to the case when N = 0. This could indicate that the feedback loop has
optimized certain areas of the model, reducing the need for extensive com-
putations during task execution. However, the overall trend still indicates
that higher threshold values correspond to higher CPU times. In Fig. 12(c),
where N = 200, the CPU time ranges from 0.38 to 8.01 seconds. The high-
est CPU time, again, is observed at 7 = 0.9 and 7 = 0.9, although it has
decreased compared to both N = 0 and N = 50. The reduction in CPU
time when N = 200 suggests that the feedback loop, by retraining with a
larger number of low-confidence samples, enhances the model’s efficiency in
processing tasks. As a result, the model requires less computational time to
handle complex tasks, which leads to reduction in CPU time.

It is evident that increasing IV leads to a reduction in CPU time, especially
at higher threshold values. The feedback loop improves the model’s ability to
perform the tasks more efficiently, thereby reducing the CPU time required.
The general trend suggests that the feedback loop helps optimize the model,
with the most significant reductions in CPU time occurring at higher values
of N.

4.6. Impact of Adaptive Threshold Tuning

In Fig. 13(a), the utility function is analyzed as 7 is adjusted while 7,
is kept constant at values: 0.5, 0.7, and 0.9. When 77 is fixed at 0.5 and
the initial value for 75 is 0.1, the utility starts at approximately 38.6 for
the first task. As 7, is adjusted (with a step size of Af = 0.2), the utility
improves steadily over the first five tasks. By task 5, the utility reaches
approximately 45.0 with 75 = 0.9 (terminated by upper bound condition).
There are only minor fluctuations in subsequent tasks.

When 711 is fixed at 0.7, the utility starts at approximately 39.8 for the
first Task. As 75 is adjusted, the utility improves steadily over the first three
Tasks. By Task 3, the utility reaches approximately 45.5 with = = 0.5.
However, further increases in 75 for Task 4 lead to a slight decrease in utility.
This indicates that the adjustment of 7 to 0.7 was too large and requires a
smaller adjustment step to optimize utility. To rectify this, 75 is decreased
by the step size AZ = 0.1, leading to 7 = 0.6 for Task 5. However, this

T2

28

1 2 3 a 7 8 9 10 1 2 3 8 9 10

H 6 H 6
Task Task

(a) Adjusting 7, by Al =0.2 and A7, = (b) Adjusting 72 by Al =0.2and A}, =
0.1 when 7 is fixed. 0.05 when 77 is fixed.

Figure 13: Comparison of utility functions based on 7o adjustments with different A.

adjustment results in a decrease in utility. For Task 6, 7, is again decreased by
the step size A7, = 0.1, resulting in an improvement in utility (terminated by
cycle condition). From Task 6 through Task 10, the utility stabilizes around
45.5, indicating that 7, has reached an optimal range for improving utility
when 7 = 0.7.

When 77 is fixed at 0.9, the utility starts at approximately 40.9 for the
first Task. As 7 is adjusted, the utility improves steadily over the first three
Tasks. By Task 3, the utility reaches approximately 46.0 with 7» = 0.5.
However, further increases in 75 for Task 4 lead to a slight decrease in utility.
This indicates that the adjustment of 7 to 0.7 was too large and requires
a smaller adjustment step to optimize utility. From this point onward, a
similar behavior is observed for 7 = 0.9 as seen with 7 = 0.7, but the
utility reaches a higher value in this case (terminated by cycle condition).
Fig. 13(b) illustrates these scenarios with A = 0.05. We observe a slightly
better stabilization in utility for both 7 = 0.7 and 7 = 0.9 compared to the
previous scenario, where A7 = 0.1 was used. In both cases 71 = 0.7 and
71 = 0.9, the algorithm was able to find 75 = 0.55 as the optimal threshold
due to the smaller step size.

In Fig. 14(a), the utility function is analyzed as 71 is adjusted while 7,
is kept constant at values: 0.5, 0.7, and 0.9. Initially, for Task 1, we set
71 = 0.5. When 7 is fixed at 0.5, the utility starts at a relatively low value
of 44.2 for the first Task. Moving to Task 2, 7; is increased to 0.7 with a
step size of A* = 0.1. For Task 3, 7 is further incremented by Al = 0.2,
resulting in 71 = 0.9. However, for Task 4, further increasing is not possible

29

—— 17,=05 —— 1,=05
—— 1,=07 —— 17,=07
465 —— 1,=09 4651 —o— 1,=0.9

460 / 46.0 / Y

1 2 3 7 8 9 10 T 2 3 8 9 10

H 6 5 6
Task Task

(a) Adjusting 71 by At =0.2 and A7, = (b) Adjusting 71 by Al =0.2and A7, =
0.1 when 7 is fixed. 0.05 when 75 is fixed.

Figure 14: Comparison of utility functions based on 71 adjustments with different A.

because classification with 7 > 0.9 is not efficient for our model (terminated
by upper bound condition). Therefore, from this point onward, we continue
with 71 = 0.9. After reaching the peak of 45.9, the utility remains relatively
stable, with minor fluctuations across subsequent Tasks. When 7 = 0.7
and with initial value 71 = 0.5, the utility function starts at a higher value
of 44.7. Moving to Task 2, 7 is increased to 0.7 with a step size of A} = 0.2.
However, increasing 7; results in a decrease in utility, indicating that the
adjustment was too large. To rectify this, 7, is decreased by the step size,
A7 = 0.1, leading to 71 = 0.6 for Task 3. Again, it results in a decrease
in utility. So for Task 4, we decrease 71 by A7 = 0.1 to 0.5 (terminated by
cycle condition). When 75 = 0.9, the utility function starts at a higher value
of 45. Moving to Task 2, 7 is increased to 0.7 with a step size of AT = 0.1.
However, further increases in 7 for Task 3 lead to a slight decrease in utility.
This indicates that the adjustment of 7 to 0.9 was too large and requires
adjusting 7, with AZ to 0.8 to optimize utility (terminated by convergence
condition). From Task 4 through Task 10, the utility stabilizes around 46.2.
Fig. 14(b) illustrates these scenarios with A = 0.05. We observe a slightly
better stabilization in utility for all values of 71 = 0.7 and 7y = 0.9 compared
to the previous scenario, where A~ = 0.1 was used. In scenarios 71 = 0.7
and 7, = 0.9, the algorithm was able to find 7, = 0.55 and 7 = 0.85 as the
optimal threshold, respectively, due to smaller step size. The fluctuations in
the utility function arise from the following factors:

e Step size (A, ,A,,): The algorithm incrementally adjusts the thresh-
old values by adding or reducing step sizes to optimize utility. Early

30

in the process, these adjustments can overshoot or undershoot the op-
timal values, leading to observed fluctuations. Larger step sizes may
overshoot optimal thresholds, causing temporary drops in utility.

e Non-linear relationships: The thresholds interact non-linearly with
the utility function, influenced by batch variability and the underlying
data distribution.

e Feedback loop noise: Retraining the model on low-confidence sam-
ples may introduce variance, contributing to utility fluctuations.

As the algorithm progresses, these step-size adjustments gradually con-
verge toward stability, resulting in steady utility values in later tasks. This
adaptive threshold tuning process ensures optimized performance over time.
To clarify this in the paper, we will expand the explanation of the adaptive
threshold tuning mechanism and its impact on utility function dynamics.

The experiments demonstrate the impact of adjusting 7 and 75 on the
utility function, highlighting the importance of appropriate step sizes in op-
timizing performance. When adjusting 7 while keeping 7, fixed at various
values (0.5, 0.7, and 0.9), smaller adjustment steps (A},) lead to better stabi-
lization in utility, particularly for larger values of 71. Similarly, when adjust-
ing 7 with 7, fixed, the utility tends to stabilize more effectively with smaller
step adjustments, avoiding large fluctuations. The results indicate that the
choice of step size is crucial for achieving stable and optimal utility values,
with smaller steps providing finer control in reaching a stable maximum.

5. Conclusion

The experimental results confirm that increasing the number of trained
samples in the feedback loop (N) has a positive impact on the accuracy of
the models. The feedback loop is especially effective in improving perfor-
mance in cases where the model had low confidence, as evidenced by the
gains in accuracy for lower threshold values. While increasing N continues
to yield improvements, the gains diminish beyond a certain point, suggesting
that there may be an optimal range for N that balances performance and
computational cost. In addition, the feedback loop significantly affects the
computational efficiency of the model. As the number of trained samples N
increases, the average CPU time across the tasks decreases, particularly for

31

higher threshold values. While the feedback loop introduces additional com-
putational complexity due to retraining with low-confidence samples, this
process ultimately reduces the time required to perform future tasks by im-
proving the model’s overall efficiency. The feedback loop not only enhances
model accuracy but also plays a crucial role in optimizing the model’s per-
formance in terms of computational time. Thus, incorporating the feedback
loop with a sufficient number of samples can lead to a more computation-
ally efficient model, especially when processing complex tasks under higher
thresholds.

References

[1] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey,
ACM computing surveys (CSUR) 41 (2009) 1-58.

[2] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, F. Ah-
mad, Network intrusion detection system: A systematic study of ma-
chine learning and deep learning approaches, Transactions on Emerging
Telecommunications Technologies 32 (2021) e4150.

[3] A. A. Ahmad, S. Boukari, A. M. Bello, M. A. Muhammad, A survey
of intrusion detection techniques on software-defined networking, Intl.
Journal of Innovative Science and Research Technology (2021).

[4] A.Chen, Y. Fu, X. Zheng, G. Lu, An efficient network behavior anomaly
detection using a hybrid dbn-lstm network, Computers & Security 114
(2022) 102600.

[5] W. Wei, H. Gu, W. Deng, Z. Xiao, X. Ren, Abl-tc: A lightweight
design for network traffic classification empowered by deep learning,
Neurocomputing 489 (2022) 333-344.

[6] N.Niknami, V. Mahzoon, J. Wu, Meta-ids: A multi-stage deep intrusion
detection system with optimal cpu usage, in: 1st IEEE International
Conference on Meta Computing (ICMC), 2024.

[7] 1. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
http://wuw.deeplearningbook.org.

32

8]

[10]

[11]

[15]

[16]

M. Nayebi Kerdabadi, A. Hadizadeh Moghaddam, B. Liu, M. Liu,
Z. Yao, Contrastive learning of temporal distinctiveness for survival
analysis in electronic health records, in: Proceedings of the 32nd ACM

International Conference on Information and Knowledge Management,
2023, pp. 1897-1906.

N. Niknami, A. Srinivasan, J. Wu, Cyber-ande: Cybersecurity frame-
work with adaptive distributed sampling for anomaly detection on sdns,
IEEE Transactions on Information Forensics and Security (2024).

A. Yazdinejadna, R. M. Parizi, A. Dehghantanha, M. S. Khan, A
kangaroo-based intrusion detection system on software-defined net-
works, Computer Networks 184 (2021) 107688.

R. Zhao, G. Gui, Z. Xue, J. Yin, T. Ohtsuki, B. Adebisi, H. Gacanin, A
novel intrusion detection method based on lightweight neural network
for internet of things, IEEE Internet of Things Journal 9 (2021) 9960
9972.

Z. Wang, Z. Li, D. He, S. Chan, A lightweight approach for network
intrusion detection in industrial cyber-physical systems based on knowl-
edge distillation and deep metric learning, Expert Systems with Appli-
cations 206 (2022) 117671.

S. Yang, X. Zheng, Z. Xu, X. Wang, A lightweight approach for network
intrusion detection based on self-knowledge distillation, in: Proc. of the
IEEE Intl. Conf. on Communications (ICC), 2023, pp. 3000-3005.

W. Ge, Z. Cui, J. Wang, B. Tang, X. Li, Metacluster: a universal inter-
pretable classification framework for cybersecurity, IEEE Transactions
on Information Forensics and Security (2024) 1-1.

N. Niknami, V. Mahzoon, J. Wu, Ptn-ids: Prototypical network solution
for the few-shot detection in intrusion detection systems, in: IEEE 49th
Conference on Local Computer Networks (LCN), IEEE, 2024, pp. 1-9.

N. Hocine, C. Zitouni, A multi-agent system based on dynamic load
balancing for collaborative intrusion detection, in: Proc. of the IEEE
Intl. Conf. on Networking and Advanced Systems (ICNAS), 2023, pp.
1-6.

33

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

N. Niknami, J. Wu, Enhancing load balancing by intrusion detection
system chain on sdn data plane, in: Proc. of the IEEE Conf. on Com-
munications and Network Security (CNS), 2022, pp. 264-272.

M. Verkerken, L. D’hooge, D. Sudyana, Y.-D. Lin, T. Wauters, B. Vol-
ckaert, F. De Turck, A novel multi-stage approach for hierarchical intru-
sion detection, IEEE Transactions on Network and Service Management
(2023).

N. Niknami, V. Mahzoon, J. Wu, Crossalert: Enhancing multi-stage
attack detection through semantic embedding of alerts across targeted
domain, in: Proc. of the IEEE Conf. on Communications and Network
Security (CNS), 2024.

X. Cheng, M. Xu, R. Pan, D. Yu, C. Wang, X. Xiao, W. Lyu, Meta
computing, IEEE Network (2023).

Y. Liu, M. Zhang, X. Wang, Task assignment and capacity allocation
for ml-based intrusion detection in resource-constrained edge networks,
IEEE Xplore (2022).

A. Gupta, S. Singh, R. Kumar, Fair resource allocation in an intrusion-
detection system for edge computing, IEEE Xplore (2018).

J. R. Vergara, P. A. Estévez, A review of feature selection methods
based on mutual information, Neural Computing and Applications 24
(2014) 175-186.

H. Peng, F. Long, C. Ding, Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy,
IEEE Transactions on Pattern Analysis and Machine Intelligence 27
(2005) 1226-1238.

K. Manohar, B. W. Brunton, J. N. Kutz, S. L. Brunton, Data-driven
sparse sensor placement for reconstruction: Demonstrating the benefits
of exploiting known patterns, IEEE Control Systems Magazine 38 (2018)
63-86.

34

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

The author is an Editorial Board Member/Editor-in-Chief/Associate Editor/Guest Editor for [Journal
name] and was not involved in the editorial review or the decision to publish this article.

The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

The authors declare no competing financial interests or personal relationships.

Nadia Niknami Vahid mahzoon Jie Wu

Wacdis Minaims 4%9 (VUVR

	Enhanced Meta-IDS: Adaptive multi-stage IDS with sequential model adjustments
	CRediT authorship contribution statement

