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Abstract—In computing clouds, burstiness of a virtual machine (VM) workload widely exists in real applications, where spikes usually

occur aperiodically with low frequency and short duration. This could be effectively handled through dynamically scaling up/down in a

virtualization-based computing cloud; however, to minimize energy consumption, VMs are often highly consolidated with the minimum

number of physical machines (PMs) used. In this case, to meet the dynamic runtime resource demands of VMs in a PM, some VMs

have to be migrated to some other PMs, which may cause potential performance degradation. In this paper, we investigate the

burstiness-aware server consolidation problem from the perspective of resource reservation, i.e., reserving a certain amount of extra

resources on each PM to avoid live migrations, and propose a novel server consolidation algorithm, QUEUE. We first model the

resource requirement pattern of each VM as a two-state Markov chain to capture burstiness, then we design a resource reservation

strategy for each PM based on the stationary distribution of a Markov chain. Finally, we present QUEUE, a complete server

consolidation algorithm with a reasonable time complexity. We also show how to cope with heterogenous spikes and provide remarks

on several extensions. Simulation and testbed results show that, QUEUE improves the consolidation ratio by up to 45 percent with

large spike size and around 30 percent with normal spike size compared with the strategy that provisions for peak workload, and

achieves a better balance between performance and energy consumption in comparison with other commonly-used consolidation

algorithms.

Index Terms—Bursty workload, Markov chain, resource reservation, server consolidation, stationary distribution

Ç

1 INTRODUCTION

CLOUD computing has been gaining more and more trac-
tion in the past few years, and it is changing the way

we access and retrieve information [1]. The recent emer-
gence of virtual desktop [2] has further elevated the impor-
tance of computing clouds. As a crucial technique in
modern computing clouds, virtualization enables one phys-
ical machine (PM) to host many performance-isolated vir-
tual machines (VMs). It greatly benefits a computing cloud
where VMs running various applications are aggregated
together to improve resource utilization. It has been shown
in previous work [3] that, the cost of energy consumption,
e.g., power supply, and cooling, occupies a significant frac-
tion of the total operating costs in a cloud. Therefore, mak-
ing optimal utilization of underlying resources to reduce
the energy consumption is becoming an important issue [4],
[5]. To cut back the energy consumption in clouds, server
consolidation is proposed to tightly pack VMs to reduce the
number of running PMs; however, VMs’ performance may

be seriously affected if VMs are not appropriately placed,
especially in a highly consolidated cloud.

We observed that the variability and burstiness of VM
workload widely exists in modern computing clouds, as
evidenced in prior studies [4], [6], [7], [8], [9]. Take a typical
web server for example, burstiness may be caused by flash
crowed with bursty incoming requests. We all know that
VMs should be provisioned with resources commensurate
with their workload requirements [10], which becomes
more complex when considering workload variation. As
shown in Fig. 1, two kinds of resource provisioning strate-
gies are commonly used to deal with workload burstiness—
provisioning for peak workload and provisioning for nor-
mal workload. Provisioning for peak workload is favour-
able to VM performance guarantee, but it undermines the
advantage of elasticity from virtualization and may lead to
low resource utilization [1], [8], [9].

In contrast, provisioning for normal workload makes use
of elasticity in cloud computing. In this case, to meet the
dynamic resource requirements of VMs, local resizing and
live migration are the two pervasively-used methods. Local
resizing adaptively adjusts VM configuration according to
the real-time resource requirement with negligible time and
computing overheads [11]. On the other hand, live migra-
tion moves some VM(s) to a relatively idle PM, when local
resizing is not able to allocate enough resources. However,
in a highly consolidated computing cloud where resource
contention is generally prominent among VMs, live migra-
tion may cause significant service downtime; furthermore,
it also incurs noticeable CPU usage on the host PM [12],
which probably degrades the co-located VMs’ performance.
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In this paper, we propose to reserve some extra resources
on each PM to accommodate bursty workload [13]. In doing
so, when a resource spike occurs, VMs can be quickly recon-
figured to the new level of resource requirement through
local resizing with minimal overheads, instead of being
migrated to some other PMs. Hence, the number of live
migrations could be reduced considerably and the overall
performance of a computing cloud could be improved.

Specifically, we investigate the problem of minimizing
the amount of extra resources reserved on each PM during
server consolidation while the overall performance is proba-
bilistically guaranteed. By “probabilistically guaranteed”,
we mean that, the fraction of time within which the aggre-
gated workloads of a PM exceed its physical capacity is not
larger than a threshold. Imposing such a threshold rather
than conducting live migration upon PM’s capacity over-
flow is a way to tolerate minor fluctuations of resource
usage (like the case of CPU usage) and to break the tradeoff
between utilization and performance. Then, our problem
can be formulated as an optimization, wherein the goal is to
minimize the amount of resource reserved on each PM, and
the constraint is that the capacity violation ratio of every
PM is not larger than a predetermined threshold.

We use a two-state Markov chain to capture the bursti-
ness of workload [7], and also shows how to learn the chain
parameters. Inspired by the serving windows in queueing
theory [14], we abstract the resources reserved on each PM
for workload spikes as blocks. Denoting by uðtÞ the number
of busy blocks at time t on a PM, we show that a sequence
of uð0Þ, uð1Þ, uð2Þ; . . . has the Markov property, namely that,
the next state only depends on the current state and not on
the past sequence of states. Then we develop a novel
server consolidation algorithm, QUEUE, based on the sta-
tionary distribution of this Markov chain. We also show
how to further improve the effectiveness of QUEUE
with more careful treatment of heterogenous workload
spikes. Simulation and testbed results show that, QUEUE
improves the consolidation ratio by up to 45 percent with
large spike size and around 30 percent with normal spike
size compared with the strategy that provisions for peak
workload, and achieves a better balance between perfor-
mance and energy consumption in comparison with other
commonly-used consolidation algorithms. The contribu-
tions of our paper are three-fold.

1) To the best of our knowledge, we are the first to
quantify the amount of reserved resources with con-
sideration of workload burstiness. We propose to
use the two-state Markov chain model to capture
workload burstiness, and we present a formal prob-
lem description and its NP-completeness.

2) We develop a novel algorithm, QUEUE, for bursti-
ness-aware resource reservation, based on the sta-
tionary distribution of a Markov chain. We also
show how to cope with heterogeneous spikes to
further improve the performance of QUEUE.

3) Extensive simulations and testbed experiments are
conducted to validate the effectiveness and advan-
tages of QUEUE.

We now continue by presenting related work in Section 2
and our model in Section 3. Problem formulation is pro-
vided in Section 4. We show the details of QUEUE in
Section 5. Heterogeneous spikes are handled in Section 6.
Evaluation results are presented in Section 7. Before
concluding the paper in Section 9, we discuss known issues
and extensions of QUEUE in Section 8.

2 RELATED WORK

Most of prior studies [3], [15], [16] on server consolidation
focused on minimizing the number of active PMs from the
perspective of bin packing (BP). A heterogeneity-aware
resource management system for dynamic capacity provi-
sioning in clouds was developed in [17]. Stable resource
allocation in geographically-distributed clouds was consid-
ered in [18]. Network-aware virtual machine placement was
considered in [19]. Scalable virtual network models were
designed in [8], [20] to allow cloud tenants to explicitly
specify computing and networking requirements to achieve
predictable performance.

In a computing cloud, burstiness of workload widely
exists in real applications, which becomes an inevitable
characteristic in server consolidation [1], [4], [6], [7], [21].
Some recent works [22], [23] used stochastic bin-packing
(SBP) techniques to deal with variable workloads, where
workload is modeled as random variable. Some other
research [10], [24], [25] studied the SBP problem assum-
ing VM workload follows normal distribution. Several
other studies [26], [27] focused on workload prediction
while the application runs. Different from them, in our
model a lower limit of provisioning is set at the normal
workload level which effectively prevents VM interfer-
ence caused by unpredictable behaviors from co-located
VMs.

Markov chain was used to inject burstiness into a tradi-
tional benchmark in [7]. Several works [5], [28], [29] studied
modeling and dynamic provisioning of bursty workload in
cloud computing. A previous study [30] proposed to
reserve a constant level of hardware resource on each PM to
tolerate workload fluctuation; but how much resource
should be reserved was not given. To the best of our knowl-
edge, we are the first to quantify the amount of reserved
resources with consideration on various, but distinct, work-
load burstiness.

3 MODELING VIRTUAL MACHINE WORKLOAD

3.1 Two-State Markov Chain

It has been well recognized in previous studies [4], [6], [7]
that VM workload is time-varying with bursty spikes, as
shown in Fig. 1. Several works [9], [10], [22], [23], [24], [25]
modeled the workload of a VM as a random variable,

Fig. 1. An example of workload with bursty spikes.
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which follows the Bernoulli distribution in [9] or normal
distribution in [10], [24], [25]. Different from these works,
we model the workload of a VM as a two-state Markov
chain, which takes the additional dimension of time into
consideration, and thus describes the characteristics of
spikes more precisely.

Fig. 2 shows an example. We denote the resource require-
ments of peak workload, normal workload, and workload
spike by Rp, Rb, and Re, respectively, where Re ¼ Rp �Rb

as demonstrated in Fig. 1. The “ON” state represents peak
workload while the “OFF” state represents normal work-
load. We use pon and poff to denote the state switch proba-
bilities. More specifically, if a VM is in the ON state, then
the probability of it switching to OFF at the next time is poff ,
and remaining ON is 1� poff . Similarly if a VM is in the
OFF state, then the probability of it switching to ON at next
time is pon and remaining ON is 1� pon. We emphasize that
this model is able to describe the characteristics of spikes
precisely—intuitively, Re denotes the size of a spike, and
pon denotes the frequency of spike occurrence. Thus, each
VM can be described by a four-tuple

Vi ¼ pion; p
i
off ; R

i
b; R

i
e

� �
; 81 � i � n; (1)

where n is the number of VMs.

3.2 Learning Model Parameters

This section provides a simple strategy for cloud tenants to
generate model parameters for their VM workload. It con-
sists of two phases.

First, a cloud tenant must have the workload traces and
guarantees that they will be consistent with the realistic
deployment in computing clouds. This could be achieved
by tentatively deploying VMs in a cloud for a relatively
short period; the cloud system collects the resource usage
traces and feeds them back to tenants.

Second, given a VM workload trace, a cloud tenant gen-
erates a four-tuple. We use Fig. 3 as an illustration, where
the solid black curve represents the workload over time.
Given the predetermined Rb and Re, we conservatively
round the solid black curve up to the dashed red curve.
Denote by WðtÞ the workload at time t in the dashed red
curve, e.g.,W ð4Þ ¼ Rp, andWð7Þ ¼ Rb.

Denote by SFF the number of switches from state “OFF”
to state “OFF” in two consecutive time slots during the time
period of interest; denote by SFN the number of switches
from state “OFF” to state “ON” in two consecutive time
slots during the time period of interest, e.g., SFF ¼ 5 and
SFN ¼ 2 in Fig. 3. Similarly, we can define SNN and SNF ,

which are equal to 5 and 2, respectively, in the figure. It is
then easy to see that

pon ¼ SFN

SFN þ SFF
; and poff ¼ SNF

SNF þ SNN
:

3.3 Potential Benefits

The two-state Markov chain model allows cloud tenants to
flexibly control the tradeoff between VM performance and
deployment cost through adjusting Rb and Re.

When a tenant wants to maximize VM performance, the ten-
ant should choose a large Rb and a small Re. As we will show
later in this paper, there may be multiple workload spikes
that share some common physical resources. Thus, when
the aggregated amount of workload spikes that simulta-
neously occur is larger than the amount of the shared
common resources, capacity overflow happens and VM per-
formance is probably affected.

When a tenant wants to minimize deployment cost, the tenant
should choose a small Rb and a large Re. By ”deployment cost”,
we mean the fee which is paid by a cloud tenant to a cloud
provider. Since physical resources are opportunistically
shared among multiple workload spikes, the charge for
workload spike should be smaller than that for normal
workload [9]. Therefore, decreasing Rb helps tenants to
reduce the deployment cost.

Our model is also a tradeoff betweenmodeling complexity
and precision. We could model time-varying workload by
three-state or evenmore states ofMarkov chain,which should
capture the workload bustiness more precisely; however, the
complexity in learning model parameters and allocating
physical resources increases as well, which may complicate
the interactions between cloud providers and tenants.

4 PROBLEM FORMULATION

We consider a computing cloud with one-dimensional
resource; for scenarios with multi-dimensional resources,
we provide a few remarks in Section 8. There arem physical
machines in the computing cloud, and each PM is described
by its physical capacity

Hj ¼ ðCjÞ; 81 � j � m: (2)

We use a binary matrix X ¼ ½xij�n�m to represent the
results of placing n VMs on m PMs: xij ¼ 1, if Vi is placed
on Hj, and 0 otherwise. We assume that the workloads of
VMs are mutually independent. Let WiðtÞ be the resource

Fig. 2. Two-state Markov chain. The “ON” state represents peak work-
load (Rp) while the “OFF” state represents normal workload (Rb). pon
and poff are the state switch probabilities. Fig. 3. Given the predetermined Rb and Re, we conservatively round

the solid black curve up to the dashed red curve, based on which we can
calculate pon and poff .
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requirements of Vi at time t. According the Markov chain
model, we have

WiðtÞ ¼ Ri
b if Vi is in the “OFF” state at time t;

Ri
p if Vi is in the “ON” state at time t:

�

Then, the aggregated resource requirement of VMs on PM
Hj is

Pn
i¼1 xijWiðtÞ.

Let COt
j indicate whether the capacity overflow happens

on PMHj at time t, i.e.,

COt
j ¼ 1 if

Pn
i¼1 xijWiðtÞ > Cj;

0 otherwise:

�

Intuitively, the results of VM placement should guarantee
that the capacity constraint is satisfied on each PM at the
beginning of the time period of interest, i.e.,

CO0
j ¼ 0; 81 � j � m:

We now can define our metric for probabilistic perfor-
mance guarantee—capacity overflow ratio (COR), which is
the fraction of time that the aggregated workloads of a PM
exceed its physical capacity. Denoting the capacity overflow
ratio of PMHj as Fj, we have

Fj ¼
P

1�t�T COt
j

T
;

where T is the length of the time period of interest. It is easy
to see that, a smaller Fj implies a better performance of Hj.
The performance of each PM should be probabilistically
guaranteed, so we have

Fj � r; 81 � j � m: (3)

Here, r is a predetermined value serving as the threshold of
COR. Main notations are summarized in Fig. 4 for quick ref-
erence. Our problem can be stated as follows.

Problem 1 (Burtiness-Aware Server Consolidation, BASC).
Given a set of n VMs and a set of m PMs, find a VM-to-PM
mapping X to minimize the number of PMs used while
making sure that (1) the initial placement satisfies capacity
constraint, and (2) the capacity overflow ratio of each PM is
not larger than the threshold r. It can be formally formu-
lated as follows:

min j
��Xn
i¼1

xij > 0; 1 � j � m

( )�����
�����

s:t: CO0
j ¼ 0; 81 � j � m

Fj � r; 81 � j � m:

(4)

Here, jSj denotes the cardinality of set S. In the following
theorem, we can prove that, the BASC problem is NP-
complete.

Theorem 1. The BASC problem is NP-complete.

Proof. We prove this theorem by reduction from the Bin
Packing problem [31], which is NP-complete. The deci-
sion version of the BP problem is as follows. Given n
items with sizes s1, s2; . . . ; sn 2 ð0; 1�, can we pack them
in no more than k unit-sized bins?

Given an instance of the decision version of the BP
problem, we can construct an instance of the decision
version of our problem as follows: let Ri

b ¼ Ri
p ¼ si,

81 � i � n; let m ¼ k; let Cj ¼ 1, 81 � j � m; and let
r ¼ 0, i.e., capacity overflow is not allowed.

It is not hard to see that the construction can be fin-
ished in polynomial time; thus, we reduce solving the
NP-complete BP problem to solving a special case of our
problem, implying that our problem is NP-hard. It is
easy to verify that the BASC problem is also in NP; the
theorem follows immediately. tu

5 BURSTINESS-AWARE RESOURCE RESERVATION

In this section, we first present the main idea of our solution
to the BASC problem, then we design a resource reservation
strategy for a single PM, based on which we develop
QUEUE, a complete server consolidation algorithm. In the
end, we provide a concrete example to help readers better
understand our algorithm.

5.1 Overview of QUEUE

We propose reserving a certain amount of physical resour-
ces on each PM to accommodate workload spikes. The main
idea is to abstract the reserved spaces as blocks (i.e., serving
windows in queueing theory). We give an informal illustra-
tion of the evolution process of our queueing system in
Fig. 5.

Initially, all VMs are provisioned by Rb þRe, and each
VM has its own block (denoted as Re in Fig. 5). A VM uses
only its Rb part during periods of normal workload, how-
ever, when a workload spike occurs, the extra Re part is put

Fig. 4. Main notations for quick reference.

Fig. 5. An illustration of the evolution process. (a) The original provision-
ing strategy for peak workload. (b) Gathering all Re

0s together to form a
queueing system. (c) Reducing the number of blocks while still satisfying
Eq. (3).
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into use. We note that, the collected Re
0s altogether form a

queueing system—when a workload spike occurs in a VM,
the VM enters the queueing system and occupies one of the
idle blocks; when the spike disappears, the corresponding
VM leaves the queueing system and releases the block. It is
worth noting that, there is no waiting space in the queueing
system; thus, the PM capacity constraint would be violated
if a workload spike occurs while all the blocks are occupied,
which never happens when the number of blocks equals the
number of co-located VMs (as shown in Fig. 5b). However,
we may find that a certain number of blocks are idle for the
majority of the time in Fig. 5b, so we can reduce the number
of blocks while only incurring very few capacity violations
(as shown in Fig. 5c). Therefore, our goal becomes reserving
minimal number of blocks on each PM while the perfor-
mance constraint in Eq. (3) is still satisfied.

5.2 Resource Reservation Strategy for a Single PM

In this section, We focus on resource reservation for a single
PM. For the sake of convenience, we set the size of each block
as the size of the maximum spike of all co-located VMs on a
PM. In Section 6, we will present how to cope with heteroge-
nous workload spikes in an effort to further improve the per-
formance of QUEUE. We also assume that all VMs have the

same state switch probabilities, i.e., pion ¼ pon and pioff ¼ poff ,

for all 1 � i � n. In Section 8, we will show how to cluster
VMswhen they have different state switch probabilities.

Suppose there are k VMs on the PM of interest and ini-

tially each VM Vi occupies Ri
b resources. We initialize the

number of blocks reserved on this PM as k, and our objec-
tive is to reduce the number of blocks to K (K < k), while
the capacity overflow ratio F does not exceed the threshold
r. Let uðtÞ be the number of busy blocks at time t, implying
that, there are uðtÞ VMs in the ON state and ðk� uðtÞÞ VMs
in the OFF state. Let OðtÞ and IðtÞ denote the number of
VMs that switch state from ON to OFF (i.e., VMs that leave
the queueing system) and from OFF to ON (i.e., VMs that
enter the queueing system) at time t, respectively. We use
x
y

� �
to denote x!

y!ðx�yÞ!, i.e., x choose y. Since the workloads of

VMs are mutually independent, we have

PrfOðtÞ ¼ xg ¼ uðtÞ
x

� �
pxoffð1� poffÞuðtÞ�x;

and

PrfIðtÞ ¼ xg ¼ k� uðtÞ
x

� �
pxonð1� ponÞk�uðtÞ�x;

which suggest that both OðtÞ and IðtÞ follow the binomial
distribution:

OðtÞ � BðuðtÞ; poffÞ;
IðtÞ � Bðk� uðtÞ; ponÞ:

�
(5)

Without loss of generality, we assume that the switch
between two consecutive states of all VMs happens at the
end of each time interval. Then we have the recursive rela-
tion of uðtÞ,

uðtþ 1Þ ¼ uðtÞ �OðtÞ þ IðtÞ: (6)

Combining Eqs. (5) and (6) together, we see that, the next
state uðtþ 1Þ only depends on the current state uðtÞ and not
on the past sequence of states uðt� 1Þ, uðt� 2Þ; . . . ; uð0Þ.
Therefore, the stochastic process uð0Þ, uð1Þ; . . . of discrete
time (f0; 1; 2; . . .g) and discrete space (f0; 1; 2; . . . ; kg) is a
Markov chain. The stochastic process is said to be in state i
(1 � i � k) if the number of busy blocks is i. Fig. 6 shows
the transition graph of the chain.

Let pij be the transition probability from state i to state j.
That is to say, if uðtÞ ¼ i, then the probability that uðtþ 1Þ ¼ j
is pij. For the sake of convenience, when y > x or y � x < 0,

we let x
y

� �
be 0. Then, pij can be derived as follows:

pij ¼Prfuðtþ 1Þ ¼ jjuðtÞ ¼ ig

¼
Xi

r¼0
PrfOðtÞ ¼ r; IðtÞ ¼ j� iþ rjuðtÞ ¼ ig

¼
Xi

r¼0
PrfOðtÞ ¼ rjuðtÞ ¼ ig

� PrfIðtÞ ¼ j� iþ rjuðtÞ ¼ ig

¼
Xi

r¼0

i

r

� �
proffð1� poffÞi�r

� k� i

j� iþ r

� �
pj�iþron ð1� ponÞk�j�r:

(7)

In the above formula, the first and second equations are
due to the definition of pij and the recursive relation of uðtÞ,
respectively. Observing that OðtÞ and IðtÞ are independent
of each other, we get the third equation. The last equation
can be obtained by replacing OðtÞ and IðtÞ with their
distributions.

The stochastic matrixP ¼ ½pij�ðkþ1Þ�ðkþ1Þ is called the tran-
sition matrix of the Markov chain. We see that, it does not

depend on the time. Let pðtÞ ¼ ðpðtÞ0 ;p
ðtÞ
1 ; . . . ;p

ðtÞ
k Þ be the dis-

tribution of the chain at time t, i.e., p
ðtÞ
h ¼ PrfuðtÞ ¼ hg,

80 � h � k. For our chain, which is finite, pðtÞ is a vector of

kþ 1 nonnegative entries such that
Pk

h¼0 p
ðtÞ
h ¼ 1. In linear

algebra, vectors of this type are called stochastic vectors.
Then, it holds that

pðtþ1Þ ¼ pðtÞP:

Suppose p is a distribution over the state space
f0; 1; 2; . . . ; kg such that, if the chain starts with an initial

Fig. 6. The transition graph of the stochastic process fuð0Þ;
uð1Þ; . . . ; uðtÞ; . . .g. The stochastic process is said to be in state i
(1 � i � k) if the number of busy blocks is i. pij is the transition probabil-
ity from state i to state j.
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distribution pð0Þ that is equal to p, then after a transition, the

distribution of the chain is still pð1Þ ¼ p. Then the chain will
stay in the distribution p forever:

p �!P p �!P p �!P � � � � � �

Such p is called a stationary distribution. For our chain,
we have the following theorem.

Theorem 2. For the Markov chain defined in Fig. 6 and Eq. (7),
given an arbitrary initial distribution pð0Þ, pðtÞ will converge
to the same distribution p, which satisify

p ¼ pP; and lim
t!1 ðp

ð0ÞPtÞh ¼ ph; 80 � h � k:

Proof. According to the Markov chain convergence theo-
rem [14], it is sufficient to prove that, our chain is finite,
aperiodic, and irreducible. Since the number of VMs that
a single PM can host is finite (in our case, it is k), the state
space of our chain is finite. As shown in Eq. (7), pii > 0
for any state i, so all states are aperiodic. Finally, from
any state i, we can reach any other state j, so the transi-
tion graph is strongly connected, implying that our chain
is irreducible. The theorem follows immediately. tu
When the chain stays in the stationary distribution, we

see that ph is equivalent to the proportion of times that the
stochastic process is in state h. In our case, it means that ph

denotes the proportion of time wherein the number of busy
resource blocks is h.

We then can derive the minimum number of blocks that
keeps the capacity overflow ratio not larger than r. Denote
byK the minimum number of blocks; we argue thatK satis-
fies the following constraint:

XK�1
h¼0

ph < 1� r �
XK
h¼0

ph; (8)

which suggests thatK is the minimum number that guaran-

tees
PK

h¼0 ph 	 1� r:

This is because, when he number of reserved blocks on
PM Hj is reduced from k to K, if the queueing system is in
state h, which is larger than K, then capacity overflow
occurs, i.e., COt

j ¼ 1, and vice versa. Thus we have

Fj ¼
P

1�t�T COt
j

T
¼

Xk
h¼Kþ1

ph ¼ 1�
XK
h¼0

ph � r:

We now show how to calculate the stationary distribu-
tion p. According to its definition, we have p ¼ pP, which
is equivalent to the following homogeneous system of linear
equations that can be solved by Gaussian elimination

Pk
h¼0 phph0 � p0 ¼ 0Pk
h¼1 phph1 � p1 ¼ 0

:::::::Pk
h¼k phphk � pk ¼ 0:

8>><
>>: (9)

Algorithm 1 summarizes the entire process of how to cal-
culate the minimum number of reserved blocks, given

parameters k, pon, poff , and r. Calculating the transition

matrix P requires Oðk3Þ time; solving the linear equations

using Gaussian elimination costs roughly Oðk3Þ time; find-
ing K that satisfies Eq. (8) needs OðkÞ time. Therefore, the

time complexity of Algorithm 1 is Oðk3Þ.

Algorithm 1. Calculating Minimum Blocks (CalMinBlk)

Input: k, the number of co-located VMs on a PM;
pon, the switch probability from “OFF” to “ON”;
poff , the switch probability from “ON” to “OFF”;
r, capacity overflow ratio threshold

Output: K, the minimum number of blocks that should be
reserved on a PM

1: Calculate the transition matrix P using Eq. (7)
2: Prepare the coefficient matrix of the homogeneous system of

linear equations described in Eq. (9)
3: Solve the the homogeneous system via Gaussian elimination

and get the stationary distribution p

4: CalculateK from p using Eq. (8)
5: returnK;

5.3 QUEUE

In this section, we present the complete server consolidation
algorithm, QUEUE, which is to place a set of n VMs onto a
set ofm PMs.

As we mentioned before, we conservatively set the size
of a single block as the size of the maximum spike of all the
VMs on each PM, which may result in low utilization if
the workload spikes of the co-located VMs differ too much.
Therefore, in QUEUE, we tend to place VMs with similar
Re
0s on the same PM in an effort to reduce the average size

of a single block. Algorithm 2 shows the details of QUEUE,
which consists of three phases.

Algorithm 2. QUEUE

Input: V1, V2; . . . ; Vn, specifications of n VMs;
H1,H2; . . . ; Hm, specifications ofm PMs;
pon, the switch probability from “OFF” to “ON”;
poff , the switch probability from “ON” to “OFF”;
r, capacity overflow ratio threshold;
d, the maximum number of VMs allowed on a PM;

Output:X, a VM-to-PM placement matrix
1: // Preprocessing phase
2: MinN  an array of size dþ 1
3: MinN ½0�  0
4: for each k 2 ½1; d� do
5: MinN ½k�  CalMinBlk(k, pon, poff , r)
6: end for
7: // Sorting phase
8: Cluster VMs based on their Re

0s
9: Sort clusters in descending order of Re

10: In each cluster, sort VMs in descending order of Rb

11: Sort PMs in descending order of C
12: // FFD-based placement phase
13: X ½0�n�m
14: for each Vi in the sorted order do
15: place Vi on the first Hj (in the sorted order) that satisfies

Eq. (10), and set xij  1;

16: end for
17: returnX;
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In the preprocessing phase (lines 1-6), we introduce an
array named MinN , which stores the information about the
minimum number of blocks that need to be reserved on a
PM, given k, pon, poff , and r. That is, if there are kVMs placed
on a PM, then we need to reserve MinN½k� blocks to bound
the capacity overflow ratio. Without loss of generality, we
assume that a single PM can host up to d VMs, thus we can
calculate the array MinN½k� for all possible k 2 ½1; d� before
VM placement. We also let MinN½0� ¼ 0 for compatibility.
Fig. 7 shows the array MinN given different settings of pon,
poff , and r. We notice that, for the same k, when the capacity
overflow ratio threshold r increases (from green circles to
red triangles), MinN½k� decreases; when pon increases (from
green circles to blue squares), MinN½k� increases. These
observations are consistent with our intuitions.

During the sorting phase (lines 7-11), we first cluster all
VMs so that VMs with similar Re

0s are in the same cluster,1

and then sort these clusters in the descending order of Re.
In each cluster, we sort VMs in the descending order of Rb.
We also sorted PMs in the descending order of the physical
capacity C. This is a cluster-level heuristic to let co-located
VMs have similar Re

0s, thus to minimize the average size of
blocks on all PMs.

In the third phase (lines 12-16), we adopt the First Fit
Decrease (FFD) [31] heuristic to place VMs on PMs. For
each Vi in the sorted order, we place Vi on the first PM Hj

that satisfies the following constraint:

max Ri
e;max Rs

ejs 2 Tj

� 	� 	�MinN ½jTjj þ 1�
þRi

b þ
X
s2Tj

Rs
b � Cj; (10)

where Tj denotes the set of indices of VMs that have already
been placed on Hj, and Cj is the capacity of Hj. We note
that, the size of the reserved resources is the block size mul-
tiplying the number of blocks, where block size is conserva-
tively set to the maximum Re among all co-located VMs.
Therefore, this constraint indicates that, VM Vi can be
placed on Hj if and only if the sum of the new size of the
queueing system and the new total size of Rb

0s does not
exceed the physical capacity of Hj. If Eq. (10) holds, we set
xij be 1. At the end of QUEUE, we return the VM-to-PM
mapping result, i.e.,X.

Finally, we present the complexity analysis of QUEUE. In
the preprocessing phase, Algorithm 1 is invoked at most

dþ 1 times. Remember that the time complexity of

Algorithm 1 is Oðk3Þ, thus, this phase costs Oðd4Þ time.
The simple clustering phase takes OðnÞ time. More
developed clustering techniques are out of the scope of
this paper. The sorting phase takes Oðn lognÞ time.
The FFD-based placement phase takes OðmnÞ time. Over-
all, the time complexity of the complete consolidation

algorithm is Oðd4 þ n lognþmnÞ.

5.4 A Concrete Example

In this section, we provide a concrete example to better
explain the details of QUEUE. In our example, there are
n ¼ 8 VMs and m ¼ 3 PMs with the following parameters
(see Eqs. (1) and (2)):

V1 ¼ ð0:1; 0:5; 15; 13Þ; V2 ¼ ð0:1; 0:5; 15; 13Þ;
V3 ¼ ð0:1; 0:5; 20; 15Þ; V4 ¼ ð0:1; 0:5; 20; 10Þ;
V5 ¼ ð0:1; 0:5; 25; 15Þ; V6 ¼ ð0:1; 0:5; 10; 9Þ;
V7 ¼ ð0:1; 0:5; 15; 10Þ; V8 ¼ ð0:1; 0:5; 10; 9Þ;

and

H1 ¼ H2 ¼ H3 ¼ ð100Þ:

As we mentioned in Section 5.2, we assume that all VMs
have the same state switch probabilities. The threshold r of
capacity overflow ratio is set to 0:05. The maximum number
d of VMs allowed on a single PM is 4. We now present the
details of running QUEUE.

In the preprocessing phase, we are to generate the array
MinN . Taking k ¼ 4 for example, according to Eq. (7), we
can obtain the transition matrix P:

P ¼

0:6561 0:2916 0:0486 0:0036 0:0001
0:3645 0:4860 0:1350 0:0140 0:0005
0:2025 0:4500 0:2950 0:0500 0:0025
0:1125 0:3500 0:3750 0:1500 0:0125
0:0625 0:2500 0:3750 0:2500 0:0625

2
66664

3
77775:

By solving p ¼ pP, we have the stationary distribution:

p ¼ ð0:4823; 0:3858; 0:1157; 0:0154; 0:0008Þ:
Since p0 þ p1 < 1� r � p0 þ p1 þ p2, we haveK ¼ 2, which
is also the value of MinN½4�. Similarly, we can find that,
MinN½0� ¼ 0, MinN ½1� ¼MinN ½2� ¼ 1, and MinN½3� ¼ 2
(see the green circles in Fig. 7).

In the clustering phase, these eight VMs are first clus-
tered into two groups, i.e., V1, V2, V3, and V5 are the first
group, and the rest is the second group. In each cluster, we
sort VMs to be in the descending order of their Rb

0s. The
final order of VMs is V5, V3, V1, V2, V4, V7, V6, and V8.

In the third phase of QUEUE, we first try to place V5 on

H1. Since R5
b þR5

e < C1, it succeeds and we set x51 ¼ 1. We
then try to place V3 onH1. According to Equ. (10), we have

max R3
e;max R5

e

� 	� 	�MinN ½jf3gj þ 1� þR3
b þR5

b < C1;

so we set x31 ¼ 1. We then try to place V1 on C1, which also
succeeds and we set x11 ¼ 1. Similarly, we then find that, in
the final placement, V5, V3, V1, and V6 are placed on H1, and
the rest is placed onH2.

Fig. 7. The minimum number, MinN½k�, of blocks that should be
reserved on a PM, given different settings of pon, poff and r.

1. We first use linear time to find the maximum, maxR, and mini-
mum, minR, of n Re

0s, then partition all Re
0s into c clusters, where the

ith cluster contains those Re
0s that satisfy minRþ i�1

c ðmaxR�
minRÞ � Re < minRþ i

c ðmaxR�minRÞ, for i ¼ 1; 2; . . . ; c.

970 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016



Fig. 8 shows the final placement of our example using
QUEUE. Note that, we conservatively round the block size
up to the maximum spike size of all co-located VMs on a
PM, e.g., on PM H1, the size of each queueing block is

maxfR5
e; R

3
e; R

1
e; R

6
eg ¼ 15.

In contrast, without opportunistic resource sharing in the
queueing blocks, if resources are provisioned for peak
workload, then three PMs are needed to host these eight
VMs, i.e., V5, V3, and V6 are on H1; V1, V2, and V4 are on H2;
and the remaining two VMs are onH3.

6 COPING WITH HETEROGENOUS SPIKES

In this section, we present how to improve the consolidation
performance of QUEUE through more careful treatment of
heterogenous workload spikes.

Remember that, in the last section, we conservatively
round the block size up to the maximum spike size of all co-
located VMs on each PM, as shown in Fig. 8. It is easy to see
that, this kind of rounding may waste some physical resour-
ces. Let us take PM H1 in Fig. 8 for example, by the current
design of QUEUE, a total of 30 units of physical resources
need to be reserved for workload spikes; however, instead
of considering the four VMs (i.e., V5, V3, V1, and V6) together,
we can partition them into two groups and consider each of
them separately. For instance, we choose to have V5 and V3

in the first group, and have V1 and V6 in the second group.
For the former group, since MinN ½2� ¼ 1, we only have to

reserve one block with a size of maxfR5
e; R

3
eg ¼ 15; for the

latter group, we also have to reserve one block with a size of

maxfR1
e; R

6
eg ¼ 13. In doing so, a total of 28 units of resour-

ces are reserved, which is less than that in the previous case.
We, therefore, have the following intuition: on each PM,

we can try to partition the co-located VMs into several
groups and consider them separately, so as to improve
QUEUE by reducing the amount of resources reserved for
workload spikes.

A key problem in achieving our goal is how to partition a
set of k VMs into non-overlapped groups, i.e., how to parti-
tion an integer k, which is an interesting and important
problem in number theory [32]. A g-partition of an integer k
is a multi-set fx1; x2; . . . ; xi; . . . ; xgg with xi 	 1 for every
element xi and x1 þ x2 þ � � � þ xg ¼ k. For example, f1; 2; 4g
and f1; 3; 3g are two possible three-partitions of integer 7.

Denote by pgðkÞ the number of different g-partitions of an
integer k, and by pðkÞ the number of all possible partitions
of an integer k. For example, p3ð7Þ ¼ 4, pð7Þ ¼ 15. According
to [33], we have the following recursive relations of pgðkÞ:

pgðkÞ ¼ pg�1ðk� 1Þ þ pgðk� gÞ: (11)

Algorithm 3 shows the main steps to find the optimal
ordered partition. Without loss of generality, we assume
that, R1

e , R
2
e; . . . ; R

k
e are sorted in descending order of their

values. The array MinN is computed using Algorithm 1.
Since the number of all possible partitions of an integer k is

very large (log pðkÞ ¼ Oð ffiffiffi
k
p Þ [33]), enumerating them would

be time-consuming. So we use G to restrict the maximum
number of groups.

Algorithm 3. Finding Optimal Partition (FidOptPat)

Input: MinN , an array that stores the minimum numbers of
blocks that need to be reserved on a PM, with respect to k,
pon, poff , and r;
R1

e , R
2
e; . . . ; R

k
e , a set of workload spikes that are sorted in the

descending order of their values;
G, the maximum number of groups

Output: S, an ordered partition
1: S  fkg
2: rmin  MinN ½k� �R1

e

3: Let x0  0 for convenience
4: for g ¼ 2 to G do
5: Generate all g-partitions of k (using Eq. (11))
6: for each g-partition fx1; . . . ; xgg do
7: for each permutation x01; . . . ; x

0
g of x1; . . . ; xg do

8: r Pg
i¼1 MinN ½x0i� �maxfRj

ej
Pi�1

h¼0 x
0
h < j �Pi

h¼0 x
0
hg

9: if r < rmin then
10: rmin  r, S  fx01; . . . ; x0gg
11: end if
12: end for
13: end for
14: end for
15: return S;

We use S to record the best partition so far (line 1), and
use rmin to record the amount of resources needed by that
partition S (line 2). For each integer g (2 � g � G), we first
generate all possible g-partitions of k using Equ. (11); then,
for each permutation x01; :::; x

0
g of a g-partition x1; :::; xg, we

compute the amount of resources needed by this ordered
partition (line 8) and compare it with rmin: if this ordered
partition uses fewer resources than S, we update S and rmin

(lines 9-11). Finally, the optimal ordered partition S is
returned.

It takes OðpðkÞÞ time to generate all possible partitions of

an integer k [34]. Since pgðkÞ � kg�1
g!ðg�1Þ!, generating all possible

g-partitions (1 � g � G) requires OðPG
g¼1

kg�1
g!ðg�1Þ!Þ time. Tak-

ing G ¼ 3 for example, since p1ðkÞ ¼ Oð1Þ, p2ðkÞ ¼ OðkÞ, and
p3ðkÞ ¼ Oðk2Þ, generating all possible g-partitions (1 �
g � 3) requires Oðn2Þ time. For each possible permutation of
a partition, evaluating the amount of resources needed
requires OðkÞ time, thus, the total time complexity of

Fig. 8. The final placement of our example using QUEUE, where only
two PMs are needed. We conservatively round the block size up to the
maximum spike size of all co-located VMs on a PM, e.g., on PM H1, the
size of each queueing block ismaxfR5

e; R
3
e ; R

1
e ; R

6
eg ¼ 15.
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Algorithm 3 is OðkPG
g¼1

kg�1
ðg�1Þ!Þ. In practice, we can choose a

proper G to achieve a balance between complexity and
optimality.

We use PM H2 in Fig. 8 as an example, where the sizes of
the four spikes are 13, 10, 10, and 9. Without loss of general-

ity, we let R1
e ¼ 13, R2

e ¼ 10, R3
e ¼ 10, and R4

e ¼ 9. We con-
sider all ordered one-partition, two-partitions, and three-
partitions of k ¼ 4, i.e., G ¼ 3. Fig. 9 shows the results,
where the optimal ordered partition is f2; 2g.

7 PERFORMANCE EVALUATION

In this section, we conduct extensive simulations and
testbed experiments to evaluate the proposed algorithms
under different settings and reveal insights of the proposed
design performance.

7.1 Simulation Setup

Two commonly-used packing strategies are considered
here, which both use the First Fit Decrease heuristic for VM
placement. The first strategy is to provision VMs for peak
workload (FFD by Rp), while the second is to provision
VMs for normal workload (FFD by Rb). Provisioning for
peak workload is usually applied for the initial VM place-
ment [1], where cloud tenants choose the peak workload as
the fixed capacity of the VM to guarantee application per-
formance. On the other hand, provisioning for normal
workload is usually applied in the consolidation process,
since at runtime the majority of VMs are in the OFF state,
i.e., most of the VMs only have normal workloads.

We consider both the situations without and with live
migration, where different metrics are used to evaluate the
runtime performance. For experiments without live migra-
tion, where only local resizing is allowed to dynamically
provision resources, we use the capacity overflow ratio
defined in Section 4 as the performance metric. Next, in our
testbed experiments, we add live migration to our system to
simulate a more realistic computing cluster, in which the
number of migrations reflects the quality of performance,
and the number of active PMs reflects the level of energy
consumption.

7.2 Simulation Results

We first evaluate the computation cost of our algorithm
briefly, and then quantify the reduction of the number of
running PMs, as well as compare the runtime performance
with two commonly-used packing strategies.

To investigate the performance of our algorithm in vari-
ous settings, three kinds of workload patterns are used for
each experiment: Rb ¼ Re, Rb > Re and Rb < Re, which

denote workloads with normal spike size, small spike
size, and large spike size, respectively. It will be
observed later that, the workload pattern of VMs does
affect the packing result, number of active PMs, and
number of migrations.

According to the results in Section 5.3, the time complex-
ity of QUEUE is Oðd4 þ n log nþmnÞ. In Fig. 10, we present
the experimental computation cost of QUEUE with reason-
able d and n values. We see that, our algorithm incurs very
few overheads with moderate n and d values. The cost vari-
ation with respect to n is not even distinguishable in the mil-
lisecond-level.

To evaluate the consolidation performance of QUEUE in
different settings, we then choose Rb and Re uniformly and
randomly from a certain range for each VM. We repeat the
experiments multiple times for convergence. The capacity
overflow ratio is used here as the metric of runtime perfor-
mance. Since FFD by Rp never incurs capacity violations, it
is not included in the performance assessment.

Figs. 11 and 12 show the packing results and COR
results, respectively. The common settings for three sub-fig-
ures are as follows: r ¼ 0:01, d ¼ 16, pon ¼ 0:01, poff ¼ 0:09,
and Cj 2 ½80; 100�. As we discussed in Section 3, pon indi-
cates the frequency of spike occurrence. For a bursty work-
load, the spikes usually occur with low frequency and short
duration, therefore, we choose pon ¼ 0:01 and poff ¼ 0:09.
Workload patterns are distinguished via setting different
ranges for Rb and Re. For Figs. 11a and 12a, Rb ¼ Re, Rb and
Re 2 ½2; 20�; for Figs. 11b and 12b, Rb > Re, Rb 2 ½12; 20�,
Re 2 ½2; 10�, and for Figs. 11c and 12c, Rb < Re, Rb 2 ½2; 10�,
Re 2 ½12; 20�.

We see that QUEUE significantly reduces the number of
PMs used, as compared with FFD by Rp (denoted as RP).
When Rb < Re, the number of PMs used in QUEUE is
reduced by 45 percent compared with RP, where the ratios
for Rb ¼ Re and Rb > Re are 30 and 18 percent, respectively.
FFD by Rb (denoted as RB) uses even fewer PMs, but the
runtime performance is disastrous according to Fig. 12. The
COR of RB is unacceptably high. With larger spike sizes
(Rb < Re), the packing result of QUEUE is better, because
more PMs are saved compared with RP, and fewer addi-
tional PMs (for live migrations) are used compared with RB
(see Fig. 11c). Simultaneously, with larger spike sizes, the
average COR of QUEUE is slightly higher, but is still
bounded by r (see Fig. 12c). The case of smaller spike sizes
shows the opposite results.

Fig. 9. All possible ordered partitions on PM H2 in Fig. 8, where the opti-
mal ordered partition result is f2; 2g.

Fig. 10. The computation cost of QUEUE with varying d and n. The cost
of the actual placement varies with different physical configurations and
thus is not included.
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We mention that, there are very few PMs with CORs
slightly higher than r in each experiment. This is because a
Markov chain needs some time to enter into its stationary
distribution. Though we did not theoretically evaluate
whether the chain constructed in Section 5 is rapid-mixing,
in our experiments, we find that the time period before the
chain enters into its stationary distribution is very short.

7.3 Testbed Experiment

We use Xen Cloud Platform (XCP) 1.3 [35] as our testbed to
enable live migration in our system. XCP is an open-source
cloud platform of its commercial counterpart XenServer.
Our proposed scheme can be easily integrated into any
existing enterprise-level computing cloud since it simply
computes the amount of reserved resources on each PM. A
total of 15 machines (Intel Core i5 Processor with four
2.8 GHz cores and 4 GB memory) are used. Ubuntu
12.04 LTS Server Edition is installed both on the PMs and
VMs. The resource type in QUEUE can be any one-dimen-
sional resource such as CPU, memory, disk I/O, network
bandwidth, or any combination of them that can be mapped
to one dimension. For simplicity, memory is designated as
the resource type concerned in out testbed experiments.
Dynamic scheduling is integrated into our testbed, thus to
automatically scale up/down on-demand, as well as to
conduct live migration when local resizing is not capable of
allocating enough resources.

Fig. 13 shows the architecture of our testbed. We
developed three main modules: consolidation module, per-
formance monitor, and schedule module. QUEUE is imple-
mented in the consolidation module. To construct the
MinN array, QUEUE gets VM specifications from cloud
users and the predetermined system parameters (e.g., r,
and d) from XCP API. The MinN array can be reused as
long as all of k, pon, poff , and r remain unchanged. The
FidOptPat algorithm (Algorithm 3) may be time-consuming.

To improve time-efficiency of QUEUE, we can only invoke
FidOptPat when a PM does not have enough physical
resources to accommodate another VM. The second module
is responsible for periodically retrieving performance statis-
tics from XCP API and forwarding them to the schedule
module, which makes decisions about local resizing and
live migration, and sends these decisions to XCP API.

We also develop programs in VMs to simulate web
servers dealing with computation-intensive user requests.
When the number of users visiting the server is more than
usual, a workload spike occurs. Users send their requests to
the server from time to time, and the time interval between
two consecutive requests from the same user follows nega-
tive exponential distribution with the mean being 1. Since in
reality this interval cannot be infinitely small, we set a lower
limit of 0.1. The workload is quantified by the number of
requests and each VM generates its workload with its
respective Rb and Re. Fig. 14 shows a sample of the syn-
thetic workload.

We are also interested in studying the effect of different
workload patterns, thus, Rb and Re are classified into three
types: small (S), medium (M), and large (L). A certain
amount of users can be accommodated for each size—400
for small, 800 for medium and 1,600 for large. Fig. 15 shows
the details of various workload patterns in our testbed
experiments.

Fig. 11. Packing results. The common settings are: r ¼ 0:01, d ¼ 16, pon ¼ 0:01, poff ¼ 0:09, and Cj 2 ½80; 100�. (a) Rb ¼ Re, Rb and Re 2 ½2; 20�.
(b) Rb > Re, Rb 2 ½12; 20�, Re 2 ½2; 10�. (c) Rb < Re, Rb 2 ½2; 10�, Re 2 ½12; 20�.

Fig. 12. Comparison results of QUEUE and RB with respect to capacity overflow ratio.

Fig. 13. The architecture of our testbed.
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7.4 Testbed Experiment Results

The packing results in the testbed experiments are consis-
tent with those in Fig. 11, so we choose not to repeat them.
Allowing live migration in our testbed makes the number of
PMs used vary over time, so we record the number of PMs
used and the number of migrations in the evaluation period.
Generally speaking, if a web server runs for a very long
time, it probably will not quit in the future, so we assume
that the number of PMs used and the number of migrations
remain unchanged after the evaluation period. Hence more
PMs used at the end of the evaluation period mean more
overall energy consumption. Therefore, we use them—the
total number of migrations and the number of active PMs at
the end of the evaluation period—as the performance met-
rics. We update the measurements of these metrics every
s ¼ 30 seconds, and the length of the evaluation period is
100s seconds. In fact, we observe that, the system becomes
stable within about 10s seconds.

For each workload pattern, we compare the runtime per-
formance of three consolidation strategies—QUEUE, RB,
and a simple burstiness-aware algorithm (denoted as RB-
EX). RB-EX is simply to reserve at least d percent of all
resources on each PM, which is an applicable consolidation
strategy when, in reality, nothing about the workload pat-
tern (except the existence of burstiness) is known. In our
experiments, we choose d ¼ 30%. The result is averaged
over 10 executions for convergence. Fig. 16 shows the com-
parison results. At the end of the evaluation period, on aver-
age, RB uses fewer PMs than QUEUE, but it incurs many
more migrations than QUEUE; the performance of RB-EX is
between RB andQUEUE. These performance gaps attenuate
in Rb > Re and enlarge in Rb < Re.

We also investigate the time-order patterns of migration
events. As shown in Fig. 17, in general, QUEUE incurs very
few migrations throughout the evaluation period. At the
beginning of the evaluation period, RB and RB-EX incurs
excessive migrations due to the over-tight initial VM place-
ment, and the number of PMs used increases rapidly during
this period. RB incurs an unacceptably large number of

migrations throughout the evaluation period, while RB-EX
either incurs considerable number of migrations constantly,
and uses only slightly more PMs than RB, or incurs very
few migrations as QUEUE and uses more PMs than QUEUE
(sometimes uses the same number of PMs as QUEUE).

To explain this phenomenon, we introduce a term idle
deception to refer to the situation where a PM is falsely reck-
oned idle. In a highly-consolidated cloud, idle deception is
very likely to happen, i.e., a busy PM is likely to be selected
as a migration target. As a result, the over-provisioned PM
tends to become the source PM of migration later, which
causes a vicious feedback circle where migrations occur
constantly inside the system, while the number of PMs used
keeps at a low level. We call this phenomenon cycle migra-
tion. The results of RB-EX are more subtle. As we have
observed, two kinds of results are possible for RB-EX
depending on different experiment settings: (1) RB-EX uses

Fig. 14. Sample of the synthetic workload used in our testbed experiment.

Fig. 15. Various workload patterns in our experiments.

Fig. 16. Bars show the average values, and the extended whiskers show
the maximum and minimum values. (r ¼ 0:01, pon ¼ 0:01, poff ¼ 0:09,
s ¼ 30s, d ¼ 0:3 for RB-EX, the length of evaluation period is 100s, and
VM configurations are set based on Fig. 15.)

Fig. 17. Comparison of time-order patterns of migration events during
one of the experiments for Rb ¼ Re. Similar results are observed for
Rb > Re and Rb < Re.
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slightly more PMs than RB, while cycle migration still exists
like in RB; and (2) in RB-EX, cycle migration disappears, but
more PMs are used than QUEUE. From this point of view,
RB-EX performs less efficiently than QUEUE.

7.5 Summary

Key observations are summarized as follows.

1) QUEUE reduces the number of active PMs by up to
45 percent with large spike size (Rb < Re) and up to
30 percent with normal spike size (Rb ¼ Re) in com-
parison with provisioning for peak workload.

2) QUEUE incurs very few migrations, while both RB
and RB-EX incur excessive migrations at the begin-
ning of each experiment due to the over-tight initial
packing, and the number of PMs used in RB or RB-
EX increases rapidly during this period.

3) Due to falsely picking migration targets, i.e., idle
deception, RB incurs an unacceptably large number
of migrations constantly throughout the experiment,
and the overall performance is seriously degraded.

4) RB-EX performs less efficiently than QUEUE, while
either cycle migration exists or cycle migration dis-
appears, but more PMs are used than QUEUE.

8 DISCUSSIONS

Overhead of learning parameters. One limitation of the two-
state Markov chain model is that, learning parameters
requires computing clouds to provide tentative deploy-
ments, which may incur additional overhead to clouds.
However, this overhead can be drastically reduced if ten-
ants have to reserve resources for the same type of VMs
repeatedly and lastingly. For example, about 40 percent of
applications are recurring in Bing’s production data cen-
ters [36]. For the same type of VMs, the cloud provider only
needs to offer one tentative deployment, and the same
results could be fed back to tenants who want to deploy
that type of VM. Thus, the tentative deployment overhead
for cloud providers would be greatly reduced.

Capacity overflow due to inaccurate workload model. This hap-
pens when the model training phase is too short to represent
the actual workload pattern of a VM. This kind of capacity
overflow is not the main problem we consider in the paper;
instead, we assume that it is the cloud user’s responsible to
adjust its model parameters to best fit its objective. When the
cloud user finds the requested resource is not enough to sup-
port his/her application, the user may enlarge its model
parameters; otherwise, when the user finds that a part of the
requested resource is idle most of the time, the user may
reduce its model parameters. In this paper, we are interested
in bounding the ratio of the capacity overflow due to insuffi-
cient queueing blocks, and we use queueing theory to derive
the minimal number of queueing blocks that ensure probabi-
listic performance guarantee on each PM.

Different pon0s and poff
0s. In QUEUE, we assume that all

VMs have the same state switch probabilities, because the
problem becomes very challenging when VMs have various
pon
0s and poff

0s. It has been proved in [22] that the bin pack-
ing problem becomes #P-complete even when the sizes of
items follow the Bernoulli distribution—a simplified version
of two-state Markov chain. Therefore, it is extremely hard to

have approximate solutions for situations with different
pon
0s and poff

0s. In practice, we can cluster VMs based on their

pon
0s and poff

0s (i.e., pion and pioff are the 2-D coordinates of Vi

in a plane) [37], and applyQUEUE to each cluster.
Online problem. We emphasize that QUEUE can easily

adapt to the online situation. When a new VM arrives, we
place it on the first PM that satisfies the constraint in Eq. (10),
and recalculate the size of the queueing system; When a VM
leaves, we simply recalculate the size of the queueing system
on the PM; When a batch of new VMs arrives, we use the
same scheme as Algorithm 2 to place them. Additionally, if
pon and poff varies amongVMs,we need to round them touni-
form values. In this situation, VM arrival and VM leave may
affect the accuracy of the rounded pon and poff values, which
requires periodical recalculation of pon and poff .

Multi-dimensional resource. The resource type in the pro-
posed algorithm is one-dimensional; here, we outline how
to transform it into a multi-di mensional version. If each
dimension of resources is correlated, we can map them to
one dimension and apply the proposed algorithm without
any major modifications. Otherwise, Algorithm 1 could be
applied to each dimension and could be used to quantify
the amount of reserved resources for each dimension inde-
pendently. In the latter case, QUEUE in Algorithm 2 is not
applicable, so we need to use another heuristic such as First
Fit to place VMs on PMs. The multi-dimension issue with
bursty workload is left as part of future work.

9 CONCLUSION

In a highly consolidated computing cloud, the VM perfor-
mance is prone to degradation without an appropriate VM
placement strategy, if various and distinct burstiness exists.
To alleviate this problem, we have to activate more PMs,
leading to more energy consumption. To balance the per-
formance and energy consumption with respect to bursty
workload, we propose to reserve a certain amount of
resources on each PM that form a queueing sytem to accom-
modate burstiness. To quantify the amount of reserved
resources is not a trivial problem. In this paper, we propose
a burstiness-aware server consolidation algorithm based on
the two-state Markov chain. We use a probabilistic perfor-
mance constraint and show that the proposed algorithm is
able to guarantee this performance constraint. The simula-
tion and testbed results show that, QUEUE improves the
consolidation ratio by up to 45 percent with large spike size
and around 30 percent with normal spike size, as compared
to those provisioning for peak workload, and a better bal-
ance of performance and energy consumption is achieved
in comparison with other commonly-used schemes.
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