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Abstract 

Automated manufacturing systems, including Flexible Manufacturing Systems (FMS’s), 
belong to the class of discrete event dynamic systems. In such a system, potentially conflicting 
events may occur due to concurrency. The problem of collision and deadlock avoidance can be 
investigated using Petri nets which are powerful techniques suitable for modeling concurrent 
processes. A Petri net based approach is employed in this paper to model, detect and avoid 
collisions and deadlocks in FMS’s. Unlike the existing Petri net based techniques, the proposed 
approach uses the concept of critical states to avoid the system from entering a state leading toward 
a deadlock state. A multirobot assembly example is used to illustrate the proposed scheme. 
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1 .  Introduction 

Automated manufacturing systems, including Flexible Manufacturing Systems (FMS’s) 
belong to the class of discrete event dynamic systems [Visw90]. In a typical FMS raw materials 
enter the system at the discrete points of time and are processed concurrently, sharing a limited 
number of resources. In such a system, potentially conflicting events may occur due to 
concurrency. For example, a number of robots installed in an assembly line access common space 
at times [Schn87, Banago], and the operation sequences of the robots must be coordinated to avoid 
collisions. An equally important issue is how to control these robots to avoid deadlocks. 

There has been a growing interest in methods for modeling, scheduling and performance 
analysis of Flexible Manufacturing Systems in general, and for handling the collision and deadlock 
avoidance problem in FMS’s in particular. For instance, Shaffer and Herb [Shaf92] presented a 
data structure and an update algorithm for a prototype real-time collision avoidance safety system 
simulating a multirobot workspace. The data structure is basically a variation of the octree. 
Manivannan [Mani93] proposed a knowledge based approach to handle dynamic changes in 
workcell configuration to identify potential obstacles and to determine a collision-free path. 

Petri nets are a graphical and mathematical modeling tool applicable to many systems. As a 
graphical tool, Petri nets are easier to understand due to the graphical and precise nature of the 
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representation scheme. As a mathematical tool, it is possible to set up state equations and analyze 
the behavior of the system. Their success can be attributed to their simplicity, formality, their 
graphical nature, and their analytical capabilities which allow one to reason about important 
properties such as reachability, liveness, and boundedness. Petri nets can be used to model both 
the static and dynamic properties. Static properties of systems are represented by the graphical part 
of a Petri net. Dynamic properties of a system can be determined by the Petri net graph, the initial 
marking, and the simulation rules. 

Techniques based on the Petri net theory have been found to be suitable for modeling 
manufacturing systems (for instance, refer to [Nara85] and [Brun86]). They are gaining 
increasing recognition in industry as a practical tool for the design and analysis of flexible 
manufacturing systems. The problem of collision and deadlock avoidance can be investigated using 
Petri nets which are powerful techniques suitable for modeling concurrent processes. 
Viswanadham et. al. [Visw90] showed that prevention and avoidance of FMS deadlocks can be 
implemented using Petri net models. Babaszak and Kroch Dana901 developed a Petri net model 
of concurrent job flow and dynamic resource allocation in an FMS. They also presented a 
deadlock avoidance algorithm that can effectively avoid the so-called restrictive deadlocks. A 
comprehensive survey was given by D’Souza and Khator [D’So94] regarding application of Petri 
nets in modeling controls of automated manufacturing systems to avoid system deadlock. 

However, a majority of available collision-avoidance algorithms based on Petri nets are 
basically static EBana90, Visw901. In such an approach, all possible sequences of operations for a 
FMS are listed, and if there is a potential collision, some of the robots (or other machines) are 
removed from the work cell [Banago]. Similar procedures have been proposed for deadlock 
prevention in an FMS. A deadlock free sequence is usually chosen off-line among ail possible 
operation sequences [Visw90]. 

A Petri net based approach is employed in this paper to model, detect and avoid collisions 
and deadlocks in FMS’s. This approach is based on a novel idea of critical state to prevent the 
system from entering a state leading towards a deadlock state. We combine the task of collision 
avoidance with that of deadlock avoidance, resulting in an efficient algorithm that systematically 
generates critical states from a given system. First, we review some preliminaries of deadlock and 
Petri nets. We then present a collision and deadlock avoidance algorithm. A case study is also 
given to illustrate the applicability of the proposed algorithm. 

This paper is organized as follows: Section 2 overviews several basic concepts, including 
FMS and Petri nets. A collision and deadlock avoidance algorithm is proposed in Section 3. In 
Section 4, an example of multi-robot flexible assembly cell is used to illustrate the proposed 
algorithm. Concluding remarks are given in Section 5. 

2 .  Preliminaries 

2 . 1  Flexible manufacturing system 

An flexible manufacturing system is built to manufacture different types of products. For 
this purpose, raw parts of various types enter the FMS at a discrete points of time and are 
processed concurrently, sharing a limited number of resources such as numerically controlled 
machines, robots, material handling system fixtures, and buffers. By a resource we mean an 
element of the system that is able to hold a product (for transport, operation, storage, quality 
control) [EZPE95]. Every product follows a route through the set of system resources, according 
to a preestablished working plan. The sequence of operations performed in order to manufacture a 
product is termed a working process. Working processes in a FMS are executed concurrently, and 
therefore, they have to complete for common resources, which may cause deadlocks. 

2 . 2  Deadlock 

A deadlock occurs when a set of processes in a system is blocked waiting on resources that 
can never be satisfied. A process is a program in running and a resource can be memory, CPU and 
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YO in a computer system or a part, a track and a robot in an FMS. These processes, while holding 
some resources, request access to resources held by the other processes in the same set. That is, 
the processes are involved in a circular wait. Deadlocks have been observed in FMS’s when parts 
were processed concurrently at workstations. In general, deadlocks are difficult to predict in 
advance and they result in suboptimal performance. 

Formally, a deadlock can arise if and only if the following four conditiions hold 
simultaneously [Colf7 1, Islo80, Pete851: 

1. 
2,  
to acquire additional resources that are currently being held by other processes. 
3. 
4. 

Mutual exclusion: no resource can be shared by more than one process at a time. 
Hold and want: there must exist a process that is holding at least one resource and is waiting 

No preemption: a resource cannot be preempted. 
Circular wait: there is a cycle in the wait-for graphs. 

There are three strategies for handling deadlocks: 

1. Deadlock prevention: prevents deadlocks by restraining how requests are made to ensure that 
at least one of the four deadlock conditions cannot occur. 
2. Deadlock avoidance: dynamically grants a resource to a process if the resulting state is safe. 
A state is safe if there is at least one execution sequence that allows all processes to run to 
completion. 
3 .  Deadlock detection and recovery: allows deadlocks to form and then finds and breaks them. 

A deadlock situation may occur if, and only if, the four necessary conditions hold 
simultaneously in the system. To prevent deadlocks, one only needs to ensure that at least one of 
the necessary conditions never occurs. The problem of deadlock avoidance normally requires less 
stringent conditions than that of deadlock prevention, and it uses a priori information on how each 
process will utilize the resources. In general, deadlock detection and recovery is an overly 
optimistic approach for FMS’s . 

2 . 3  Petri nets 

Petri nets [Ager79], [Pete8 11 are powerful tools to study the behavior of distributed computer 
systems. As a modeling tool Petri nets can be used to model both the static and dynamic 
properties of systems. On the other hand, as a graphically-oriented specification tool they appear to 
be one of the best approaches for enhancing interaction among users and specifiers arid for easy 
human comprehension. 

A Petri net is a five-tuple, C = (P ,  T ,  I ,  0, p), where P = { p l ,  p2,  ..., p n }  ( n  > 0 )  is a finite 
set of places, T = { t l ,  t2, ..., tm} (m > 0), is a finite set of transitions and T and P are disjoint ( P  

n T * @). I : T + P is the input function, a mapping from transitions to bags (or multi-sets) of 
places. 0 : T + P is the output function of a similar type of mapping. Vector U = ( u l ,  u2, ..., un) 
gives, for each place, the number of tokens in that place and is called a marking. An example of a 
Petri net is given below. 

Example 1: University Semester System WuJi901: 

c = ( P ,  T,  1, 0, PI 
p = { P , ,  P 2 ,  P39 P41 
where p1 = fall semester, p 2  = spring semester, 

p3  = summer semester, p4 = not s u m e r  semester. 
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where tl = start of spring semester, 
t2 = start of summer semester, 
t3 = start of fall semester. 

U =  { 1 , 0 , 0 ,  1 )  
a t ,  1 = I P, 1 
O(t,> = IP3 1 
O(t31 = {PI, P4) 

&l> = IP, I 
W 2 )  = {P*, P4I 
Kt31 ={P3 1 

Petri nets can be represented by graphs where a circle represents a place and a bar represents 
a transition. The input and output function are represented by directed arcs from the places to the 
transitions and from the transitions to the places. The Petri net graph for Example 1 is shown in 
Figure 1. In this example a university semester system consists of three semesters: fall, spring, 
and summer, each of which is represented by a place. The transitions between two semesters are 
represented by transitions in the Petri net. 

Petri net execution is represented by the movement of token. Tokens move through a 
transition firing. When a transition is validated, i.e., each of its input places has at least one token, 
a transition can fire, whch removes one token from each of its input places and deposits one token 
into each of its output places. The patterns of different token distributions represent systems 
states. The example of the university semester system is a repetition of three states shown in 
Figure 2 with the fall semester as the initial state. 

Figure 1 : Petri net graph for a university semester system. 

Figure 2 is also called a reachabilitygraph. It consists of a tree whose nodes represent 
markings of the Petri net and whose arcs represent the possible changes in state resulting from the 
firing of transitions. A transition is dead in a marking if there is no sequence of transition firings 
that can enable it. A system is said to be in a deadlock state if all the transitions are dead. 

In general, deadlock detection and avoidance algorithms developed for computer operating 
systems need to be modified for application in an FMS due to the method of specifying resource 
requirements. In the next section, we propose a deadlock avoidance algorithm for an FMS. 

The reachability analysis can be extended to generalized Petri nets. Extensions to Petri nets 
can be classified into two groups: extensions that add time modeling capabilities, and extensions 
that add functional model capabilities. The inclusion of inhibitor arc is one of the fundamental 
extensions that add functional modeling capabilities. An inhibitor arc, represented by a dot 
attached at the end of the link that connects a place to a transition, enables the transition if its 
associated input place has a marking of zero tokens. A number of timed Petri net models has been 
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proposed where timing aspects are incorporated. In Temporal Petri Nets [Mer176], each transition 
is associated with a time interval ( tmin, tmax), where f m i n  is the minimum duration of sensitization 
of the transition and tmax is the time before which the transition must be fired. Another type of 
timed Petri net can be generated by associating each transition with a duration of time [Ramago]. 
When a transition is enabled, it is immediately fired and removes the enabling tokens from its input 
places. the token disappear and new tokens are created in the output places when the duration 
associated with the transition is elapsed. By associating each place with a duration of time, another 
type of timed Petri net is generated [Coo183]. In this model, a token created by a transition firing 
in a place becomes ready only after the delay associated with the place is elapsed. A transition fired 
immediately when it becomes enabled. It can be shown that the above three models can be 
simulated from one another; therefore they are equivalent. The problem of integrating the 
representation of time and functional aspects in high level Petri nest has also beem studied 
[Ghez9 11. 

I fall semester (not summer semester) 

spring semester (not summer semester) 

Figure 2: A state diagram of the university semester system. 

The original Petri net model has limited modeling power but extensive decision power. The 
extended Petri net models, such as the timed Petri nets, have increased modeling power but limited 
decision power, i.e., the formal analysis in extended Petri net models is more complex than the 
original model. In our study here, we use the basic Petri net model to illustrate the concepts. 

3.  Collision and Deadlock Avoidance Algorithm 

We combine collision avoidance with deadlock avoidance. In general, the collision and 
deadlock avoidance in a FMS using Petri nets requires the following steps: 

1. Provide a specification of the FMS. 
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2 .  

3 .  
4. 
5 .  

Obtain the Petri net model of the FMS (for Petri net modeling techniques, refer to [Pete8 1, 
WuJi901). 
Derive the corresponding reachability graph of the Petri nets. 
Determine the collision and deadlock states from the reachability graph. 
Find all the critical states together with their inhibited transitions based on the collision and 
deadlock states. 

In general, a specification of the FMS can be either model-oriented or property-oriented. A 
model-oriented specification is an explicit system model constructed out out of abstract or concrete 
primitives. A property-oriented specification is given in terms of axioms which define the 
relationships between operations: no value or explicit constructions are defined in this type of 
specification. We use here the model-oriented specification which is similar to a Petri net 
specification in terms of their semantics. 

Wu and Fernandez [WuJi90] proposed three models of Petri nets that describe a given 
system: event-condition model, token-object association model, and place-object association 
model. We will use the event-condition model to represent a FMS system. In this model, the 
notation of “condition” and “event” is used where a condition is considered as a passive component 
in the system while an event is considered as an active component. For each event there is a pre- 
condition and a post-condition. Normally, events are presented as transitions and conditions as 
places in a Petri net. 

There are standard techniques for deriving the reachability tree of a given Petri net and there 
are several reduction methods which transform an infinite reachability graph to a finite one without 
losing important information. Fortunately, most FMS’s have finite number of states, therefore 
there is no need for reduction. Note that most FMS’s repeat a predefined sequence of actions over 
and over again, states are also repeated. As mentioned in the previous section, a deadlock state is 
identified by pinpointing dead transitions. A state (place) is critical if it is the closest state to a 
deadlock state that can still reach other states that do not lead to a deadlock state. Critical states can 
be identified by traversing the reversed reachability graph from all the deadlock states. Once all the 
critical states are determined, the corresponding transitions that lead toward deadlocks are also 
identified. These transitions are called inhibited transitions. 

Note that the concept of critical state is similar to that of unsafe state used in the normal 
deadlock avoidance algorithms. Recall that a state is safe if the system can allocate resources to 
each process (up to its maximum) in some order and still avoid a deadlock. Any other states are 
call unsafe states. The difference between an critical state and an unsafe state is that any next state 
of an unsafe state may or may not lead to a deadlock and most often these two situations cannot be 
determined. On the other hand, the next stage of a critical state is either in a non-critical state (or 
safe state) or in a state that leads to a deadlock. Therefore, the critical state provides more 
(accurate) information than an unsafe state. In general, a critical state is an unsafe state while an 
unsafe state may or may not be a critical state. 

It is easy to see that the proposed approach can be extended using a generalized Petri net, 
such as a net with inhibitor arcs. In this case, reachability graph can be derived following the 
normal procedure. Note that an inhibitor arc allows a transition to fire if its associated input place 
has a marking of zero tokens. Once a reachability graph is obtained, subsequent analysis is the 
same as the one employing a regular Petri net. Sometimes, if we are only interested in the status of 
a particular subsystem (for instance, we want to check if a particular subsystem is in a deadlock 
status) a color Petri net can be used, in which case each token associated with a specific color 
representing state information of a subsystem. If there is no token movement of a particular color, 
it then corresponds to a deadlock of the subsystem. 

4. A Multirobot Flexible Assembly Cell Example 

The following example of a multirobot flexible assembly cell shows how our method works. 
The system (Figure 3) consists of two robots performing various pick-and-place operations, 
accessing common space at times to obtain and transfer parts. It is assumed that each robot always 
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holds a resource (one of the discrete regions in space), and the current resource cannot be 
relinquished until the next resource in the production sequence becomes available. 

The two paths defined in the workspace of Figure 3 correspond to the production sequences 
of these two robots. When both robots enter the shadowed regions a collision will occur. A 
deadlock situation involves two types of entities: active entities called processes (the robots in the 
flexible assembly cell example) and passive entities called resources (the discrete regions in the 
same example). 

Robot 1 Is 

Figure 3: The flexible assembly cell with two robots. 

The c llision and deadlock situation can be depicted by the Petri net of Fig1 
and transitions in this figure have the following interpretations: 

re 4. The plac 

Transitions: 
til ( i =  1, 2): 

ti4 ( i =  1, 2): 
tl  29 t23: 

Robot i's production sequence before entering the shadow 
regions srl and sr2. 
Robot i's production sequence after entering the shadow regions. 
Requests for srl . 
Requests for sr2. 
Collision. 

Places : 
pi1 ( i =  1, 2): 
pi2 ( i =  1, 2): 
pi3 ( i =  1, 2): 
pi4 ( i =  1, 2): 
srl ,  sr2: Shadow regions. 
rsi ( i =  1, 2): 
CO: Destruction state. 

Robot i s  initial state. 
Robot is  state before entering the first shadow region. 
Robot is  state before entering the second shadow region. 
Robot is  state after leaving the shadow regions. 

Presence of Robot i in the shadow regions. 

The approach to analyze Petri nets is to use the reachability graph. The nodes (or states) of 
the reachability graph of a Petri net represent the reachable markings of the net. Figure 5 shows 
the reachability graph of the flexible assembly cell example. 

In general, deadlock avoidance is a stronger requirement than collision avoidaince. In the 
flexible assembly cell example, the deadlock avoidance problem includes the collision avoidance 
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problem. A deadlock situation is equivalent to a state in the reachability tree which has no firable 
transition (such as the state p 1  3 ~ 2 3 ~ ~ 5 1  rs2 where the only firable transition is the destruction state). 
To avoid deadlock (including collision) in the flexible assembly cell example, we only need to 
prohibit transition t22 at the state p1 3 ~ ~ ~ r s ~ s r ~  and fl at the state p1 p 2 3 ~ r l  rs2. States p1 3p22rslsr2 
and p1 p2 3sr1 rs2 are termed critical states. The way to implement restrictions on certain transitions 
depends largely on applications. The problem could become complicated when autonomous robots 
are used, in which case each robot is required to keep a global state (the state in the reachability 
graph) in order to avoid the occurrence of deadlocks. 

5 .  Conclusions 
An approach for deadlock and collision avoidance in a flexible manufacturing system has 

been proposed in this paper. The concept of criticahon-critical states in deadlock avoidance has 
been shown as an enhancement of the traditional safehnsafe concept. The proposed scheme has 
been shown to be effective by using the multirobot assembly cell example. 

The strategy proposed in this paper can be applied to more general cases in which more 
robots are used in a FMS can also be extended to a model using a generalized Petri net such as a 
net with inhibitor arcs and color nets. Other possible applications include FMS buffer allocation 
and Automated Guided Vehicle coordination problems. 
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Figure 4: The Petri net representation of the flexible assembly cell example. 

519 



Figure 5: The reachability graph of the flexible assembly cell example. 
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