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Abstract

Every arti�cial-intelligence research project needs a working de�nition of \intelli-

gence", on which the deepest goals and assumptions of the research are based. In the

project described in the following chapters, \intelligence" is de�ned as the capacity to

adapt under insu�cient knowledge and resources. Concretely, an intelligent system

should be �nite and open, and should work in real time.

If these criteria are used in the design of a reasoning system, the result is NARS,

a non-axiomatic reasoning system.

NARS uses a term-oriented formal language, characterized by the use of subject{

predicate sentences. The language has an experience-grounded semantics, according

to which the truth value of a judgment is determined by previous experience, and the

meaning of a term is determined by its relations with other terms. Several di�erent

types of uncertainty, such as randomness, fuzziness, and ignorance, can be represented

in the language in a single way.

The inference rules of NARS are based on three inheritance relations between

terms. With di�erent combinations of premises, revision, deduction, induction, ab-

duction, exempli�cation, comparison, and analogy can all be carried out in a uniform

format, the major di�erence between these types of inference being that di�erent

functions are used to calculate the truth value of the conclusion from the truth values

of the premises.
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Since it has insu�cient space{time resources, the system needs to distribute them

among its tasks very carefully, and to dynamically adjust the distribution as the

situation changes. This leads to a \controlled concurrency" control mechanism, and

a \bag-based" memory organization.

A recent implementation of the NARS model, with examples, is discussed. The

system has many interesting properties that are shared by human cognition, but are

absent from conventional computational models of reasoning.

This research sheds light on several notions in arti�cial intelligence and cognitive

science, including symbol-grounding, induction, categorization, logic, and computa-

tion. These are discussed to show the implications of the new theory of intelligence.

Finally, the major results of the research are summarized, a preliminary evalua-

tion of the working de�nition of intelligence is given, and the limitations and future

extensions of the research are discussed.
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1

Introduction

The research presented in this dissertation is an attempt to explore the essence of

intelligence, and to reproduce it in arti�cial entities | namely, computer systems.

To achieve such an arti�cial intelligence (AI), research needs to be carried out on

three levels of abstraction.

First, there are many philosophical and methodological questions that need to be

considered. What is the basic di�erence between systems that have intelligence and

those that lack intelligence? What is the basic di�erence between arti�cial intelligence

and natural intelligence? What is the most fruitful way to study arti�cial intelligence?

How to evaluate the paradigms that have played major roles in the history of AI?

What are the relationships between AI and related disciplines? My opinions on these

questions constitute the foundation for my whole research project, by providing a

clear aim and a set of principles. The research results on this �rst level constitute a

theory of intelligence in general.

Second, guided by the theory, a formal model is designed to develop the theory

in a precise manner. By \formal model", I mean that the details of the model are

described symbolically or mathematically. All ambiguities in the theory need to be

1
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clari�ed on this level. When simpli�cations become inevitable, they should follow the

principles developed in the theory. The research results on this second level constitute

a medium-independent model of intelligence.

Finally, the model is implemented on a computer system. All the mechanisms

described in the model should be implanted into programs, and these programs should

be runnable in a currently available software and hardware environment. The results

on this �nal level constitute an intelligent computer system.

The organization of this dissertation is based on these three levels.

In Chapter 2, the philosophical and methodological foundations of the project are

developed. The major conclusions are that intelligence is characterized by the ability

to adapt to the environment under insu�cient knowledge and resources, and that a

reasoning system is a suitable platform for the study of arti�cial intelligence.

Chapter 3, 4, and 5 present a formal model of reasoning that is intelligent in the

above-de�ned sense.

Chapter 3 describes the formal language used in the model, which has a term-

oriented syntax and experience-grounded semantics, and can represent several types

of uncertainty.

Chapter 4 discusses the inference rules of the model, such as revision, choice,

deduction, induction, abduction, exempli�cation, comparison, analogy, and backward

inference. All of them are carried out in similar formats.

Chapter 5 introduces the control mechanism of the model, including the concepts

of \controlled concurrency" and \bag-based memory organization".

A computer implementation of the model is brie
y presented in Chapter 6. The

major design issues are discussed. Several concrete examples are analyzed. Finally,

the performance of the system is evaluated.
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Chapter 7 returns to the theoretical level. In the light of the model and its

implementation, several important problems in arti�cial intelligence and cognitive

science are revisited.

Finally, in Chapter 8 the major results of the research are summarized, a prelim-

inary evaluation of the working de�nition of intelligence is given, and the limitations

and future extensions of the research are discussed.

Some of the material presented in this dissertation is adapted from my previous

publications and technical reports, which are listed in the bibliography and are cited

at relevant places in the following chapters.
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Theoretical Foundations

2.1 AI paradigms

Attempts to clarify the notion of \intelligence" and to explore ways to realize

it in computing machinery can be traced back to (Turing, 1950), in which Turing

suggested passing an imitation test as a su�cient condition for \being intelligent".

The debate on the essence of intelligence has now been going on for decades, and

there is still little sign of consensus (Kirsh, 1991). As a matter of fact, almost everyone

in the �eld has unique personal opinions about how the word \intelligence" should be

used, and these opinions in turn in
uence the choice of research goals and methods,

as well as serve as standards for judging other researchers' projects.

Though it is too early to look for a general de�nition, the choice of a working

de�nition of intelligence is inevitable and crucial for an AI researcher, because it

determines the foundation for the whole research e�ort (Wang, 1994d). In my case,

I seek a working de�nition of intelligence that satis�es the following requirements:1

1These criteria, under the names of similarity, exactness, fruitfulness, and simplicity, were sug-
gested by Carnap in his attempt to clarify the concept of \probability" (Carnap, 1950).

4
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Faithfulness. Though \intelligence" has no precise meaning in everyday language,

it does have some common usages with which the working de�nition should

agree. For instance, normal human beings are intelligent, but most animals and

machines (including ordinary computer systems) are either not intelligent at all

or much less intelligent than human beings.

Sharpness. Given the working de�nition, whether (or how much) a system is intelli-

gent should be clearly decidable. For this reason, intelligence cannot be de�ned

in terms of other ill-de�ned concepts, such as mind, thinking, cognition, inten-

tionality, rationality, wisdom, consciousness, and so on, though these concepts

do have close relationships with intelligence.

Fruitfulness. The working de�nition should provide concrete guidelines for the re-

search based on it | for instance, what assumptions can be accepted, what

phenomena can be ignored, what properties are desired, and so on. Most im-

portantly, the working de�nition of intelligence should contribute to the solving

of fundamental problems in AI.

Simplicity. Although intelligence is surely a complex mechanism, the working def-

inition should be simple. From a theoretical point of view, a simple de�nition

makes it possible to explore a paradigm in detail; from a practical point of view,

a simple de�nition is easy to use.

With these criteria in mind, we can evaluate current AI paradigms by analyzing

their working de�nitions of intelligence. Obviously, no working de�nition of intelli-

gence can be perfect according to the above requirements, but that does not mean

that all of them are equally good. Di�erent working de�nitions lead AI research down

di�erent pathways, and some of those directions, although possibly fruitful for some

other purposes, make little contribution to the study of intelligence (Wang, 1994d).



2. Theoretical Foundations 6

Since it is impossible to study each of the existing working de�nitions of intel-

ligence one by one (there are too many of them), we will group them into several

categories. As usual, a de�nition may belong to more than one category at the same

time.

Generally speaking, work towards realizing arti�cial intelligence has two major

motivations. As researchers in a �eld of science, we want to learn how the human

mind, and \mind" in general, works; and as developers of a branch of technology,

we want to apply computers to domains where only the human mind works well

currently. Intuitively, both goals can be achieved if we can build computer systems

that are \similar to the human mind".

But in what sense are they \similar"? To di�erent people, the desired similarity

may involve structure, performance, capacity, function, or principle. In the following,

we discuss typical opinions in each of the �ve categories, to see where these working

de�nitions of intelligence will lead AI.

� To simulate the human brain

Intelligence is an emergent outcome of the human brain, so maybe AI should

attempt to simulate a brain in a computer system as faithfully as possible. This

philosophy reaches its extreme form in the work of neuroscientists Reeke and Edelman,

who argue that \the ultimate goals of AI and neuroscience are quite similar" (Reeke

and Edelman, 1988).

Though it sounds reasonable to identify AI with a brain model, few AI researchers

take such an approach in a very strict sense. Even the \neural network" movement is

\not focused on neural modeling (i.e., the modeling of neurons), but rather : : : focused

on neurally inspired modeling of cognitive processes" (Rumelhart and McClelland,

1986).
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Why? One obvious reason is the daunting complexity of this approach. Current

technology is still not powerful enough to simulate a huge neural network, not to

mention the fact that there are still many mysteries about the brain.

Moreover, even if we were able to build a brain model at the neuron level to any

desired accuracy, it could not be called a success for AI, though it would be a success

for neuroscience. AI is more closely related to the concept \model of mind" | that

is, a high-level description of brain activity in which biological concepts do not appear

(Searle, 1980).

A high-level description is preferred, not because a low-level description is impos-

sible, but because it is usually simpler and more general. A distinctive characteristic

of AI is the attempt to \get a mind without a brain" | that is, to describe mind

in a medium-independent way. This is true for all models: in building a model, we

concentrate on certain properties of an object or process and ignore irrelevant as-

pects; in so doing, we gain insights that are hard to discern in the object or process

itself. For this reason, an accurate duplication is not a model, and a model including

unnecessary details is not a good model.

If we agree that \brain" and \mind" are di�erent concepts, then a good model of

brain is not a good model of mind, though the former is useful for its own sake, and

may be helpful for the building of the latter.

� To duplicate human behavior

Given that we always judge the intelligence of other people by their behavior, it

is natural to use \reproducing the behavior caused by the human brain as accurately

as possible" as the aim of AI. In this way, we can draw \a fairly sharp line between

the physical and the intellectual capacities of a man" (Turing, 1950).

Such a working de�nition of intelligence asks researchers to use \passing the Turing
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test" as a su�cient and necessary condition for having intelligence, and to take psy-

chological evidence seriously, as Newell and company do in the Soar project (Newell,

1990).

This approach can be criticized from various angles:

Is it su�cient? Searle argues that even if a computer system can pass the Turing

test, it still cannot think, because it lacks the causal capacity of the brain to pro-

duce intentionality, which is a biological phenomenon (Searle, 1980). However,

he does not demonstrate convincingly why thinking, intentionality, and intelli-

gence cannot have a high-level (higher than the biological level) description.

Is it possible? Due to the nature of the Turing test and the resource limitations

of a concrete computer system, it is out of question for the system to have

pre-stored in its memory all possible questions and proper answers in advance,

and then to give a convincing imitation of a human being by searching such

a list. The only realistic way to imitate human performance in a conversation

is to produce the answers in real time. To do this, it not only needs cognitive

faculties, but also much prior \human experience" (French, 1990). Therefore,

it must have a body that feels human, it must have all human motivations

(including biological ones), and it must be treated by people as a human being

| so it must simply be an \arti�cial human", rather than a computer system

with arti�cial intelligence.

Is it necessary? As French points out, by using behavior as evidence, the Turing

test is a criterion solely for human intelligence, not for intelligence in general

(French, 1990). As a working de�nition for intelligence, such an approach can

lead to good psychological models, which are valuable for many reasons, but

it su�ers from \human chauvinism" (Hofstadter, 1979) | we would have to
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say, according to the de�nition, that the science-�ction alien creature E. T. was

not intelligent, because it would de�nitely fail the Turing test. Furthermore,

we would have to say that no other animal but a human had vision, if we

de�ned \vision" as \indistinguishable from a human in terms of reactions to

light stimuli to the eye" or something like that. This strikes me as a very

unnatural and unfruitful way to use concepts.

In summary, though \reproducing human (verbal) behavior" may still be a su�-

cient condition for being intelligent (as suggested by Turing), such a goal is di�cult,

if not impossible, to achieve. More importantly, it is not a necessary condition for

being intelligent, if we want \intelligence" to be a more general concept than \human

intelligence". Actually, Turing does not claim that passing the imitation test is a

necessary condition for being intelligent. He just thinks that if a machine can play

the game satisfactorily, we need not be troubled by the question (Turing, 1950).

� To solve hard problems

In everyday language, \intelligent" is usually applied to people who can solve hard

problems. Many de�nitions of intelligence come from this usage. According to this

type of de�nition, intelligence is the capacity to solve hard problems, and how the

problems are solved is not very important.

What problems are \hard"? In the early days of AI, many researchers worked

on intellectual activities like game-playing and theorem-proving. Nowadays, expert-

system builders aim at \real-world problems" that crop up in various domains. The

presumption behind this approach is: \Obviously, experts are intelligent, so if a

computer system can solve problems that only experts can solve, the computer system

must be intelligent, too." Usually, such systems are developed by analyzing domain

knowledge and experts' strategies, then building them into a computer system.
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This movement has drawn in many researchers, produced many practically useful

systems, attracted signi�cant funding, and thus made important contributions to the

development of the AI enterprise. However, though often pro�table, these systems

do not provide much insight into how the mind works. No wonder people ask, after

learning how such a system works, \Where's the AI?" (Schank, 1991) | these sys-

tems look just like ordinary computer application systems, and still su�er from great

rigidity and brittleness (something AI wants to avoid).

If intelligence is de�ned as \the capacity to solve hard problems", then the next

question is: \Hard for whom?" If we say \hard for human beings", then most existing

computer software is already intelligent | no human can manage a database as well

as a database management system can, or substitute a word in a �le as fast as an

editing program can. If we say \hard for computers", then AI becomes \whatever

hasn't been done yet", which has been dubbed \Tesler's Theorem" (Hofstadter, 1979)

and the \gee whiz view" (Schank, 1991).

The view that AI is a \perpetually expanding frontier" makes it attractive and

exciting, which it deserves, but tells us little about how it di�ers from other research

areas in computer science | is it fair to say that the problems there are easy? If AI

researchers cannot identify other commonalities of the problems they attack besides

mere hardness, they will be unlikely to make any progress in understanding and

replicating intelligence.

� To carry out cognitive functions

According to this view, intelligence is characterized by a set of cognitive func-

tions, such as reasoning, perception, memory, problem solving, language use, and so

on. Researchers who subscribe to this view usually concentrate on just one of these

functions, relying on the idea that research on all the functions will eventually be

able to be combined, in the future, to yield a complete picture of intelligence. A
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\cognitive function" is often de�ned in a general and abstract manner, independently

of the brain mechanisms that carry it out and the practical domains that it can be

applied to. The direct aim of this kind of study is to build a computer system with

the desired function(s).

This approach has produced, and will continue to produce, information-processing

tools in the form of software packages and even specialized hardware, each of which

can carry out a function that is similar to certain mental skills of human beings, and

therefore can be used in various domains for practical purposes. However, this kind

of success does not justify claiming that it is the proper way to study AI. To de�ne

intelligence as a \toolbox of functions" has the following weaknesses:

1. When speci�ed in isolation, an implemented function is often quite di�erent

from its \natural form" in the human mind. For example, to study analogy

without perception leads to distorted cognitive models (Chalmers et al., 1992;

Hofstadter and FARG, 1995).

2. Having any particular cognitive function is not enough to make a system intel-

ligent. For example, problem-solving by exhaustive search is usually not con-

sidered intelligence, and many unintelligent animals have excellent perceptual

capacities.

3. Even if we can produce the desired tools, this does not mean that we can

easily combine them, because di�erent tools may be developed under di�erent

assumptions, which prevents the tools from being combined.

The basic problem with the \toolbox" approach is: without a \big picture" in

mind, the study of a cognitive function in an isolated, abstracted, and often distorted

form simply does not contribute to our understanding of intelligence.
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A common counterargument runs something like this: \Intelligence is very com-

plex, so we have to start from a single function to make the study tractable." For

many systems with weak internal connections, this is often a good choice, but for

a system like the mind, whose complexity comes directly from its tangled internal

interactions, the situation may be just the opposite. When the so-called \functions"

are actually phenomena produced by a complex-but-uni�ed mechanism, reproducing

all of them together (by duplicating the mechanism) is simpler than reproducing only

one of them. For example, we can grow a tree, but we cannot generate a leaf alone,

although a leaf is much simpler than a tree. There is considerable evidence to suggest

that intelligence is such a phenomenon. As Piaget said: \Intelligence in action is, in

e�ect, irreducible to everything that is not itself and, moreover, it appears as a total

system of which one cannot conceive one part without bringing in all of it." (Piaget,

1963)

� To develop new principles

In summary, the structure approach contributes to neuroscience by building brain

models, the performance approach contributes to psychology by providing explana-

tions of human behavior, the capacity approach contributes to application domains

by solving practical problems, and the function approach contributes to computer sci-

ence by producing new software and hardware for various computing tasks. Though

all of these are valuable for various reasons, and helpful in the quest after AI, these

approaches do not, in my opinion, concentrate on the essence of intelligence.

The research presented in this dissertation is based on the premise that what dis-

tinguishes intelligent from unintelligent systems is their basic principles of information

processing. I will develop this premise in the following pages.
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2.2 Intelligence: a working de�nition

Here is my working de�nition of intelligence:

Intelligence is the capacity of an information-processing system to adapt to

its environment while operating with insu�cient knowledge and resources.

An information-processing system is a system whose internal activities and inter-

actions with its environment can be studied abstractly | that is, without specifying

the physical hardware that carries out the activities and interactions. Usually, such

a system has certain tasks (given by the environment, or generated by the system

itself) to carry out. To do this, the system takes various actions, guided by its knowl-

edge about how the actions and the tasks are related. Any internal activity costs the

system some resources. According to this de�nition, all human beings and computer

systems, as well as many animals and automatic control systems, can be described as

information-processing systems.

The environment of such a system may be the physical world (if the system has

sensory{motor capacities), or other information-processing systems (human or com-

puter). In either case, the interactions can be described by the experiences (or stimuli)

and responses of the system, which are streams of input and output information, re-

spectively. For the system, recognizable patterns of input and producible patterns of

output constitute its interface language.

To adapt means that the system learns from its experiences. It carries out tasks

and adjusts its internal structure to improve its resource e�ciency, under the as-

sumption that future situations will be similar to past situations. Not all information-

processing systems adapt to their environment. For instance, a traditional computing

system gets all of its knowledge during its design phase (or before its \birth"). After
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that, its experience contains tasks only, and the results do not further contribute to the

experience of the system. Indeed, to acquire new knowledge, such a system would have

to be redesigned, which certainly cannot be done by communicating with a human

user in its interface language. On the other hand, not all experience-related changes

can be called \adaptation". Adaptation takes place only if the change involved helps

to make the system work better, provided that the environment is relatively stable.

Insu�cient knowledge and resources means that the system works under the fol-

lowing restrictions:

Finite: The system has a constant information-processing capacity.

Real-time: All tasks have time constraints attached to them.

Open: No constraints are put on the contents of the knowledge and tasks that the

system can accept, as long as they are representable in the interface language.

The two main components in the working de�nition, adaptation and insu�cient

knowledge and resources, are related to each other. An adaptive system must have

some insu�ciency in its knowledge and resources, for otherwise it would never need to

change at all. On the other hand, without adaptation, a system may have insu�cient

knowledge and resources, but make no attempt to improve its capacities. Such a

system acts, for all intents and purposes, as if its knowledge and resources were

indeed su�cient.

Not all information-processing systems take their own insu�ciency of knowledge

and resources into full consideration. Non-adaptive systems, for instance, simply

ignore new knowledge in their interactions with their environment. As for arti�cial

adaptive systems, most of them are not �nite, real-time, and open, in the following

senses:
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1. Though all actual systems are �nite, many theoretical models (for example, Tur-

ing machines) neglect the fact that the requirements for processor time and/or

memory space may go beyond the supply capacity of the system.

2. Most current AI systems do not consider time constraints at run time. Most

real-time systems can handle time constraints only if they are essentially dead-

lines (Strosnider and Paul, 1994).

3. Various constraints are imposed on what a system can experience. For ex-

ample, only questions that can be answered by retrieval and deduction from

current knowledge are acceptable, new knowledge cannot con
ict with previous

knowledge, and so on.

Many computer systems are designed under the assumption that their knowledge

and resources, though limited or bounded, are still su�cient to ful�ll the tasks that

they will be called upon to handle. When facing a situation where this assumption

fails, such a system simply panics, and asks for external intervention by a human

user.

For a system to work under the assumption of insu�cient knowledge and resources,

it should have mechanisms to handle the following types of situation:

� A new processor is required when all existent processors are occupied;

� Extra memory is required when all available memory is already full;

� A task comes up when the system is busy with something else;

� A task comes up with a time constraint, so exhaustive search is not an option;

� New knowledge con
icts with previous knowledge;



2. Theoretical Foundations 16

� A question is presented for which no sure answer can be deduced from available

knowledge;

etc., etc.

For traditional computing systems, these types of situations usually require human

intervention or else simply cause the system to refuse to accept the task or knowledge

involved. However, for a system designed under the assumption of insu�cient knowl-

edge and resources, these are normal situations, and should be managed smoothly by

the system itself.

According to the above de�nition, intelligence is a \highly developed form of

mental adaptation" (Piaget, 1960). This assertion is consistent with the usages of

the two words in natural language: we are willing to call many animals, computer

systems, and automatic control systems \adaptive", but not \intelligent".

To be sure, what has been proposed in my de�nition is not entirely new to the

AI community. Few would dispute the proposition that adaptation, or learning, is

essential for intelligence. Moreover, \insu�cient knowledge and resources" is the

focus of many sub�elds of AI, such as heuristic search, reasoning under uncertainty,

real-time planning, and machine learning.

We can also �nd similar attempts to base intelligence on certain basic principles

(such as some form of rationality) in the following ideas:

Type II rationality (Good, 1983): \Type II rationality is de�ned as the

recommendation to maximize expected utility allowing for the cost of

theorizing. It involves the recognition that judgments can be revised,

leading at best to consistency of mature judgments."

Bounded rationality (Simon, 1983): \Within the behavioral model of

bounded rationality, one doesn't have to make choices that are in�nitely
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deep in time, that encompass the whole range of human values, and in

which each problem is interconnected with all the other problems in the

world."

Minimal rationality (Cherniak, 1986): \We are in the �nitary predicament

of having �xed limits on our cognitive resources, in particular, on memory

capacity and computing time."

Limited rationality (Russell and Wefald, 1991): \Intelligence was inti-

mately linked to the ability to succeed as far as possible given one's limited

computational and informational resources."

Medin and Ross also put it quite clearly: \Much of intelligent behavior can be

understood in terms of strategies for coping with too little information and too many

possibilities." (Medin and Ross, 1992)

Given all this, what is new in my approach? I claim that it is the following set of

principles:

1. An explicit and unambiguous de�nition of intelligence as \adaptation under

insu�cient knowledge and resources".

2. A further clari�cation of the phrase \with insu�cient knowledge and resources"

as meaning �nite, real-time, and open.

3. The design of all formal and computational aspects of the project keeping the

two previous de�nitions foremost in mind.

How is my working de�nition of intelligence di�erent from the others discussed in

the previous section? In the following chapters, we can see that a system developed

on such a foundation has many cognitive functions, but they are better thought of



2. Theoretical Foundations 18

as emergent phenomena than as well-de�ned tools used by the system. By learning

from its experience, the system potentially can acquire the capacity to solve hard

problems2, but it has no such built-in capacity, and thus, without proper training, no

capacity is guaranteed, and acquired capacities can even be lost. Because the human

mind also follows the above principles, we would hope that such a system would

behave similarly to human beings, but the similarity would exist at a more abstract

level than that of concrete performance. Due to the fundamental di�erence between

human experience/hardware and computer experience/hardware, the system is not

expected to accurately reproduce masses of psychological data or to pass a Turing

test. Finally, although the internal structure of the system has some properties in

common with a description of the human mind at the subsymbolic level, it is not an

attempt to simulate a biological neural network.

2.3 Reasoning systems

The preceding ideas about intelligence can be applied to various types of infor-

mation systems, such as perception systems, planning systems, and so on. However,

I have chosen to develop a reasoning system as the concrete platform of my research.

A reasoning system, in a broad sense, is an information-processing system that has

the following components:

1. a formal declarative language, de�ned by a grammar, for communication be-

tween the system and its environment (a human user or another computer, not

the physical world), and for the internal representation of the system;

2Actually, hard problems are those for which a solver (human or computer) has insu�cient knowl-
edge and resources. This implies that the common property shared by AI problems is the set of
conditions under which the problems need to be solved.
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2. a semantics of the formal language that determines the meanings of the words

and the truth values of the sentences in the language;

3. a set of inference rules that is de�ned formally, and that can be used to match

questions with knowledge, to infer conclusions from premises, to derive sub-

questions from questions, and so on;

4. a memory that systematically stores both questions and knowledge, and pro-

vides a work place for inferences;

5. a control mechanism that is responsible for resource management, for choosing

premises and inference rules in each step of inference, and for processing space

requirements.

The �rst three components are usually referred to as a logic, or the logical part of the

reasoning system, and the last two as the control part of the system.

Being a reasoning system is neither necessary nor su�cient for being intelligent,

but an intelligent reasoning system provides a suitable object for the study of intelli-

gence for the following reasons:

1. It is a general-purpose system. Working in such a framework keeps us from being

bothered by domain-speci�c properties, and also prevents us from cheating by

using domain-speci�c tricks.

2. Compared with cognitive activities like low-level perception and motor control,

reasoning is at a more abstract level, and is one of the cognitive skills that

collectively make human beings so qualitatively di�erent from other animals.

3. Most research on reasoning systems is carried out within a paradigm based on

premises directly opposed to mine presented above. By \�ghting in the backyard

of the rival", we can see more clearly what kinds of e�ects the new ideas have.
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Before showing how an intelligent reasoning system is designed, let us �rst see its

opposite | that is, a reasoning system designed under the assumption that its knowl-

edge and resources are su�cient to answer the questions asked by its environment (so

no adaptation is needed). By de�nition, such a system has the following properties:

1. No new knowledge is necessary. All the system needs to know to answer the

questions is already there at the very beginning, expressed by a set of axioms.

2. The axioms are true, and will remain true, in the sense that they correspond to

the actual situation of the environment.

3. The system answers questions by applying a set of formal rules to the axioms.

The rules are sound and complete (with respect to the valid questions), therefore

they guarantee correct answers for all questions.

4. The memory of the system is so big that all axioms and intermediate results

can always be contained within it.

5. There is an algorithm that can carry out any required inference in �nite time,

and it runs so fast that it can satisfy all time constraints that may be attached

to the questions.

This is the type of system dreamed of by Leibniz, Boole, Hilbert, and many others.

It is usually referred to as a \decidable axiomatic system" or a \formal system". The

attempt to build such systems has dominated the study of logic for a century, and

has strongly in
uenced research directions in arti�cial intelligence. Many researchers

believe that such a system can serve as a model of human thinking.

However, if intelligence is de�ned as \to adapt under insu�cient knowledge and

resources", what we want is the contrary, in some sense, to an axiomatic system,
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though it is still formalized or symbolized in a technical sense. That is why Non-

Axiomatic Reasoning System, NARS for short, has been chosen as the name for the

intelligent reasoning system to be introduced in the following chapters.



3

Language

In this chapter, the formal language used in the NARS model, along with its

grammar and semantics, is described and related to the theory presented in the

previous chapter. This language is used by NARS for both internal representation

and external communication.

3.1 Experience-grounded semantics

Semantics is the study of how the items in a language are related to the environ-

ment in which the language is used. Concretely, semantics is the theory of meaning

and truth. By asking questions like \What is the meaning of a term?" and \What

is the truth value of a sentence?", we are looking for the principles that determine

meaning and truth in general, rather than the meaning of a speci�c word or the truth

of a speci�c sentence.

A computerized reasoning system often uses an arti�cial language. The syntax of

the language is usually precisely de�ned by a formal grammar. The system carries out

inferences in the language according to some formal inference rules. For such a system,

22
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we need a semantics for two major reasons. When designing the system, we need to

choose inference rules that will lead to desired conclusions; when communicating with

the system, we need to understand the system's language.

Model-theoretic semantics, together with some variants, is the dominant paradigm

in the semantics of formal languages.

Formal languages were developed in the study of the foundation of mathematics by

Leibniz, Frege, Russell, Hilbert, and so on. A basic motivation for formal languages

is to get rid of the ambiguities in natural language so that an objective and accurate

arti�cial language can be created. Model-theoretic semantics was founded by Tarski.

Although his primary target was formal language, he also hoped that the ideas could

be applied to reform everyday language (Tarski, 1944). This approach characterizes

the \logic-based" branch of AI (McCarthy, 1988; Nilsson, 1991).

For a language L, de�ned by a �nite formal grammar, a model M consists of

the relevant part of some domain, which can be described in another language ML,

and an interpretation I, which maps the items in L onto the objects in the domain,

labeled by words inML.ML is referred to as a \meta-language", which can be either

a natural language, like English, or another formal language.

Given the above components, the meaning of a term in L is de�ned as its image

in M under I, and whether a sentence in L is true is determined by whether it is

mapped by I onto a \state of a�airs" that holds in M. For a reasoning system, valid

inference rules are those that always derive true conclusions from true premises.

According to this view, as Tarski put it, \semantics is a discipline which deals

with certain relations between expressions of a language and the objects `referred to'

by those expressions." (Tarski, 1944)

Let us see what is implied by the above de�nitions. According to model-theoretic
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semantics, for any formal language, the necessary and su�cient condition for its

terms to have meanings and for its sentences to have truth values is the existence

of a model. In di�erent models, the meanings and truth values in the language may

change; however, these changes are not caused by using the language. A reasoning

system R that works on representations expressed in L does not depend in any way

on the semantics of L. That means, on the one hand, that R has no access to the

meanings of terms and the truth values of sentences | it can distinguish terms only by

their forms, and can derive new sentences from old ones only according to its inference

rules, but does not put any constraints on how the language can be interpreted. On

the other hand, what R does to the terms and sentences in L has no in
uence on

their meanings and truth values. When working within such a system, as Russell said,

\we never know what we are talking about, nor whether what we are saying is true"

(Russell, 1901).

Such properties are useful for meta-mathematics, where abstract patterns of ideal

inference are studied, and the patterns can be applied to di�erent domains by con-

structing di�erent models. And thus, the study of semantics has contributed signif-

icantly to the development of meta-mathematics. As Tarski said, \As regards the

applicability of semantics to mathematical science and their methodology, i.e., to

meta-mathematics, we are in a much more favorable position than in the case of

empirical sciences." (Tarski, 1944)

However, the attempt to apply this idea to the semantics of natural language runs

up against many problems (Ellis, 1993; Lako�, 1994; Palmer, 1981). It seems that

natural language is too subtle and 
uid to be put into the frame of model-theoretic

semantics. Also, this approach works poorly for non-deductive inferences (Birnbaum,

1991; McDermott, 1987), despite various attempts to render the theory more 
exible

by introducing ideas like possible worlds and multi-valued propositions (Carnap, 1950;
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Halpern, 1990; Kyburg, 1992; Zadeh, 1986).

The problems with model-theoretic semantics are often used as arguments against

so-called \strong AI". For example, Searle's assertion in his \Chinese room" argument

that \computers are syntactic, but the human mind is semantic" (Searle, 1980) is

directly based on the assumption that all computerized symbol manipulations are

intrinsically wedded to model-theoretic semantics, so that uninterpreted symbols are

by de�nition meaningless.

Model-theoretic semantics has been criticized by many authors for its rigidity

(Birnbaum, 1991; McDermott, 1987). However, without a powerful competitor, the

solution is far from clear. As McDermott said: \The notation we use must be under-

standable to those using it and reading it; so it must have a semantics; so it must have

a Tarskian semantics, because there is no other candidate." (McDermott, 1987) Some

people believe that it is the very idea of formalizing the language and the inference

rules that should be abandoned. They try other approaches, such as neural networks

and robots, in the hope that these will ground meaning and truth in perception and

action (Birnbaum, 1991; Harnad, 1990).

What is the fundamental di�erence between natural and arti�cial (formal) lan-

guages? Why must the latter be rigid, �xed, determined, and unambiguous? This

question is especially important for arti�cial intelligence, because here we want a com-

puter system either to use a natural language directly or to use an arti�cial language

in a more 
uid and 
exible way.

Some researchers suggest that the reasoning system itself (human or computer),

rather than the world it deals with, should be used as the domain of the language

the system uses. Thus, one could posit that the meaning of a particular term is a

particular \concept" that the system has, and the truth value of a sentence is the

system's \degree of belief" in that sentence. This idea sounds reasonable, but it
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does not answer the original question: how are \concepts" and \degrees of belief"

dependent upon the outside world? Without an answer to that question, such a

solution \simply pushes the problem of external signi�cance from expressions to ideas"

(Barwise and Perry, 1983).

In NARS, I explore another possibility: the abandonment of model-theoretic se-

mantics in favor of another type of semantics for an intelligent reasoning system, yet

one that still uses a formal language and formal inference rules.

The model-theoretic approach, in asserting the existence of a modelM, presumes

that there is, at least in principle, a consistent, complete, and static description of (the

relevant part of) the environment in a language ML, and that such a description, a

\state of a�airs", is at least partially known, so that the truth value of some sentences

in L can be determined accordingly. These sentences then can be used as premises

for all inferences. It is also required that all valid inference rules be truth-preserving,

which implies that only true conclusions (no matter how expensive they are) are

attainable.

Such conditions hold only when a system has su�cient knowledge and resources

with respect to the problems to be solved. \Su�cient knowledge" means that the

desired results can be obtained by inference from available knowledge alone, so no

additional knowledge will be necessary; \su�cient resources" means that the system

can a�ord the time{space expense of the inference, so no approximation is neces-

sary. These are exactly the assumptions we accept when working within an axiomatic

system. Therefore it is no surprise that model-theoretic semantics works �ne there.

Now let us consider the opposite situation: a system that works with insu�cient

knowledge and resources. Model-theoretic semantics cannot be applied in such a

situation for the following reason. If we still de�ne truth as \agreement with reality",

so that truth values cannot be threatened by the acquisition of new knowledge, then
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no sentence can ever be assigned a truth value under the above assumptions, because

in an open system, all knowledge can (by de�nition) be challenged by future evidence.

Model-theoretic semantics also prohibits the system from using 
uid or fuzzy concepts

or generating new concepts, since in general there is no way to con�rm that these

concepts really correspond to objects that \exist in the domain".

However, it does not follow that in such a situation semantic notions like \truth"

and \meaning" are meaningless | after all, if that were the case, then we could not

de�ne truth and meaning in any realm beyond mathematics. For our current purpose,

we need a di�erent type of semantics.

As was stated earlier, semantics studies how the items in a language are related

to the environment in which the language is used. With insu�cient knowledge and

resources, what relates the language L, used by a system R, to the environment is

not a model, but the system's experience, which consists of the knowledge and tasks

provided by the environment to the system during their interaction. For a reasoning

system like NARS, the experience of the system is a stream of sentences in L, provided

by a human user or another computer.

In such a situation, the basic semantic notions of \meaning" and \truth" still

make sense. The system may treat terms and sentences in L, not solely according

to their syntax (shape), but in addition taking into account their relations to the

environment.

To a human designer or user, a semantics is necessary because we want to make

the system adaptive | that is, we want it to behave according to its experience. To

this end, the system needs to be able to judge the truth values of sentences according

to whether, or how much, they are supported by its experience, and to distinguish the

meaning of terms according to their relations in its experience.
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In summary, for an adaptive system working with insu�cient knowledge and re-

sources, model-theoretic semantics is no longer applicable. What we need is what I

shall henceforth refer to as experience-grounded semantics.

As descriptions of an environment, what is the di�erence between \model" and

\experience"? The following are the main di�erences:

1. A model is a complete description of an environment, whereas experience is

only a partial description of it.

2. A model must be consistent, whereas pieces of knowledge in experience may

con
ict with one another.

3. A model is static, whereas experience stretches out over time.

4. A model of L is represented in another language ML, and is not necessarily

accessible to a system that uses L, whereas experience is represented in L itself,

and is accessible to the system.

Obviously, NARS should not (and cannot) use \true" and \false" as the only

truth values of sentences. To handle con
icts in experience properly, we need to

determine what counts as positive evidence in support of a sentence, and what counts

as negative evidence against it, and in addition we need some way to measure the

amount of evidence in terms of some �xed unit. In this way, a truth value will simply

be a numerical summary of relevant evidence.

However, as was mentioned above, \evidence" in NARS is represented in L, too.

Therefore, the truth value of a sentence in L is de�ned by a set of sentences, also in

L, with their own truth values | which seems to have led us into a circular de�nition

or an in�nite regress.
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The way out of this seeming circularity in NARS is \bootstrapping" | taking a

small subset of L to de�ne the truth values of sentences and meanings of terms in L

in general.

3.2 A binary inheritance relation

In the research presented in this dissertation, I take a path that is opposite to

the usually accepted one. Instead of �rst de�ning a formal language, then attaching

a semantics to it, I introduce the desired semantics �rst (guided by my working

de�nition of intelligence), then look for a formal language that can support such a

semantics. The advantage of such an approach is argued in (Ellis, 1993).

From the previous discussion, we can see that what NARS needs is a formal

language in which the meaning of a term is represented by its relationship with other

terms, and the truth value of a sentence is determined by available evidence. For

these purposes, the concept of (positive or negative) evidence should be naturally

introduced into the language.

Unfortunately, the most popular formal language used in �rst-order predicate

logic does not satisfy the requirement. As revealed by (Hempel, 1943), the concept

of \con�rmation", or positive evidence, cannot be easily de�ned in the �rst-order

(predicate-oriented) language. Let us suppose that \Ravens are black" is formulated

as (8x)(Raven(x) ! Black(x)), and that a piece of con�rming (positive) evidence

is de�ned as a constant that when substituted for the variable x makes both the

condition and the conclusion true. Such a treatment looks natural, since accordingly

a black raven is referred to as a piece of positive evidence for the sentence, while a

white raven is a piece of negative evidence against it.1 However, a green shirt will

1There is a subtle di�erence between \Ravens are black" and \All ravens are black". The former
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also be counted as a piece of positive evidence for the sentence, because it con�rms

the \logically equivalent" sentence (8x)(:Black(x) ! :Raven(x)). Such a result is

highly counterintuitive, and may cause many problems (for example, a green shirt is

also a piece of positive evidence for \Ravens are white", for exactly the same reason).

Here I will not discuss the various solutions proposed for this paradox. Almost all

these attempts are still within the framework of �rst-order predicate logic, whereas

in my own approach, I �nd that it makes more sense simply to give up that implicit

constraint, and to switch to another type of language.

A traditional rival to predicate/propositional logic is known as term logic. Such

logics, exempli�ed by Aristotle's logic, have the following features (Boche�nski, 1970;

Englebretsen, 1981):

1. Each sentence consists of a subject term and a predicate term, which are related

by a copula.

2. The copula is intuitively interpreted as \to be".

3. An inference rule takes two sentences that share a common term as premises,

and from them derives a conclusion in which the other two (unshared) terms

are related by a copula.

Term logic appeared earlier than predicate logic, and it was the major paradigm

until the rise of mathematical logic (Boche�nski, 1970). From then on, it was generally

treated as a limited and obsolete idea. But this was too negative a judgment. Though

predicate logics work well in axiomatic systems, we will see, in the following chapters,

that term logics are in fact more suitable for non-axiomatic systems.

is a general statement, but not a universal claim like the latter. Whereas a counterexample will
totally refute the latter, it simply makes the former less probable.
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In the simplest type of term logic, there is only one type of copula, and all the

terms are \atomic" | that is, have no internal structure. In this way, we get an

Inheritance Logic (IL) (Wang, 1994c).

De�nition 1 A term is a string of letters in an alphabet.

De�nition 2 The binary inheritance relation, \<", is a re
exive and transitive re-

lation between two terms.

(The reason for this terminology will be explained toward the end of this section.)

De�nition 3 A statement consists of two terms related by the inheritance relation.

In the statement \S < P", S is the subject term and P is the predicate term.

De�nition 4 L0 is a formal language whose sentences are statements de�ned above.

The intuitive meaning of the binary inheritance relation is closely related to many

well-known relations | for instance, \IS-A" (in semantic networks), \belongs to"

(in Aristotle's syllogisms), \subset" (in set theory), \inheritance assertion" (in inher-

itance systems (Touretzky, 1986)), as well as many relations studied in AI, psychology,

and philosophy, such as \type{token", \category{instance", \general{speci�c", and

\superordinate{subordinate" (Brachman, 1983). What makes it di�erent from the

others is: it is a relation between two terms, and the relation is completely de�ned

by the two properties: re
exivity and transitivity.

We will de�ne exactly two inference rules in IL, corresponding to re
exivity and

transitivity, respectively. With these two rules, from any non-empty and �nite set

of statements K (as premises), the following algorithm can generate the set of all

conclusions K�:
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1. Initially let K� = K;

2. For each term T appearing in K�, put \T < T" into K� (if it is not already

there);

3. For each pair of statements \S <M" and \M < P" in K�, put \S < P" in K�

(if it is not already there).

The last two steps need to be iterated over and over again until all possibilities have

been exhausted.

To clarify how a particular term T is related to other terms, the extension and

intension of T , relative to a set of statements K, will be de�ned in the following

manner:

De�nition 5 The extension of a term T , ET , is the set of terms x such that \x < T"

is in K�. The intension of a term T , IT , is the set of terms x such that \T < x" is

in K�.2

This de�nition and a modi�ed version of it, De�nition 12 (which is presented at

the very end of the next section), are of great importance to NARS. Traditionally,

extension and intension refer to two quite di�erent aspects of the meaning of a term:

roughly speaking, its instances and its properties. A term's extension is usually de�ned

as that set of objects in a \physical world" that are denoted by the given term; the

term's intension is usually de�ned as a concept in a \Platonic world" which denotes

or describes the given term (Boche�nski, 1970; Inhelder and Piaget, 1969). In spite of

minor di�erences among the exact ways the two words are used by di�erent authors,

they always indicate relations between a term in a language and something outside

2The extension and intension of a term are sets, but a term itself is not a set.
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the language. By contrast, in the current theory they are de�ned using (the two sides

of) a binary relation between two terms, which is within the language, yet even so,

the de�nition retains the intuitive feature that \extension" refers to instances, in a

sense, and \intension" refers to properties.

The de�nitions have the following implications:

1. \Extension" and \intension" are de�ned in a symmetric way, so that for any

result about one of them, there is a dual result about the other.

2. Each statement in the system's experience reveals part of the intension for the

subject term and part of the extension for the predicate term.

3. Since the inheritance relation is re
exive, any given term has a non-empty

extension and a non-empty intension | both of them contain at least the term

itself.

From the de�nition, it is not di�cult to get the following two results.

First, \S < P" holds if and only if S's extension is fully contained in P 's extension,

and also if and only if P 's intension is fully contained in S's intension. In other words,

the statement \There is an inheritance relation from S to P" is equivalent to either

\P inherits S's extension" or \S inherits P 's intension". This is the reason that \< "

is called an inheritance relation. Intuitively, such a relation indicates that one term

can be used as, or inherits the relations of, the other in a certain way (see (Hofstadter,

1995) for a discussion of \as"). If a system knows \S < P", then S can serve in place

of P in sentences of the form \P < x", and P can serve in place of S in sentences

of the form \x < S", where x is an arbitrary term. Conversely, if all x's that satisfy

\x < S" also satisfy \x < P", or all x's that satisfy \P < x" also satisfy \S < x",

we have \S < P" (Wang, 1994c).
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Second, the extensions of S and P precisely coincide if and only if their intensions

precisely coincide. This means that the extension and intension of a term are mutually

determined. Therefore, given one of them, the other can be uniquely obtained.

De�nition 6 Given a set of statements K as the experience of the system, a state-

ment is true if it belongs to K�, otherwise it is false. The meaning of a term consists

of its extension and intension.

In this way, truth and meaning are de�ned in terms of the experience of a system.

Later, we will also see that K� corresponds to the set of all available evidence to

the system, which is contained in, or derived from, the system's experience.

Now we have �nished our description of a simple term logic IL, which has a term-

oriented grammar, experience-grounded semantics, and inheritance-based inference

rules. However, in designing this system, we did not take the insu�ciency of knowl-

edge and resources into consideration. As a result, we still have binary truth values

for the statements in IL, and constant meanings for the terms.

3.3 Uncertainty

Since we are assuming that NARS has insu�cient knowledge, we know that the

above results are not practical, because we did not balance positive and negative

evidence, nor did we take into account the in
uence of future evidence. To do these,

a binary truth value is not enough | we need more information about evidence.

The sentences that actually appear in the experience and knowledge base of NARS

all have the form \S � P", where \�" is the \basic inheritance relation", which is

a generalization of the \<" relation. \S � P" is not simply true or false | it is
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con�rmed and/or refuted to various degrees by available evidence (from the system's

experience).

As was stated at the end of Section 3.1, NARS cannot ground the truth values of

all of its sentences simply by taking other sentences in the same language as pieces

of evidence | that would lead to circularity and empty, runaway feedback loops.

Instead, we will use the language introduced in the previous section, with its binary

truth values, to construct a hypothetical body of \ideal experience", and will interpret

any \S � P" sentence, including its (non-binary) truth value, as if there were hidden

binary \x < y" sentences behind the scenes, playing the role of pieces of evidence.

Indeed, the sole purpose of de�ning \<" (keep in mind that it never appears in NARS'

actual experience) is to help us in de�ning the notion of evidence for sentences using

\�".

Concretely, we de�ne evidence for a given non-binary \�" sentence in terms of

two binary \<" sentences (with respect to a given K).

De�nition 7 A piece of positive evidence (with a unit weight) for \S � P" is a

term M such that both \M < S" and \M < P" are in K�, or both \P < M" and

\S < M" are in K�. A piece of negative evidence (with a unit weight) for \S � P"

is a term M such that \M < S" is in K� but \M < P" is not, or \P < M" is in

K� but \S <M" is not.

The intuition behind the above de�nition is as follows: like \S < P" in the

previous section, \S � P" also states \S inherits the intension of P , and P inherits

the extension of S". Therefore, if M is in the extension (or intension) of both S and

P , it is a piece of positive evidence for the statement; if M is in the extension of S

(the intension of P ), but not in the extension of P (the intension of S), it is a piece of

negative evidence for the statement. K�, de�ned in the previous section, corresponds

to a hypothetical body of purely binary experience of the system.
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Hempel's paradox does not arise here, because a green shirt counts as neither

positive nor negative evidence for \Ravens are black", according to the previous

de�nition. Furthermore, the negation of a term is not a term in NARS 3.0, so there

simply is no such sentence as \Non-black-things are non-ravens" | that is, there is

no contrapositive sentence that is \logically equivalent" to \Ravens are black".3

In the following, let us call a sentence with an attached truth value a judgment.

The truth value is determined by the system's experience. Given a system with

experience K, the truth value of a judgment \S � P" can be represented by the

weight of positive evidence w+ and the weight of negative evidence w�, which at the

current stage can be thought of as simply the number of terms that count as positive

and negative evidence in the hypothetical body of binary \ideal experience" de�ned

above. Let us further de�ne the weight of all evidence w as the sum of w+ and w�,

and calculate the weights from the cardinalities of the sets involved (as mentioned

previously, the extension and intension of a term are sets of terms).

De�nition 8

w+ = jES \ EP j+ jIP \ ISj;

w� = jES � EP j+ jIP � ISj;

w = w+ + w� = jESj+ jIP j:

Obviously, any two of these three weights su�ce to determine the truth value of

a statement, and what is measured here is not the extent to which the statement

3One should not infer that I am simply sweeping Hempel's paradox under the rug by sacri�cing
the system's representational and inferential capacities. In NARS 4, the next step of my research,
compound terms like (bird � raven), which corresponds to \a bird other than a raven", will be
introduced into the system. I will argue, in my future writings about NARS 4, that \absolute
negative terms", such as \non-raven", are unsuitable for intelligent reasoning systems like NARS.
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matches an objective \state of a�airs", but the extent to which the statement is

supported/refuted by available evidence. Such a truth value is subjective in the sense

that it is \from the system's point of view", but objective in the sense that it is

precisely determined by given evidence (Keynes, 1921).

An important feature of the above de�nition of truth value is that the \extensional

factor" and the \intensional factor" are merged.

It is possible to develop extensional or intensional logics separately (Wang, 1994c),

and it is easy to see that a pure extensional logic and a pure intensional logic must

have di�erent inference rules. As was stated previously, \S � P" means, when it is

understood extensionally, that P inherits S's instances; but when it is understood

intensionally, the same relation means that S inherits P 's properties. Therefore, if

\S � M" is completely false and \M � P" is completely true, what can be derived

from them is di�erent in the two logics. In the extensional logic, the premises are

understood as \S and M have no common instances, and all instances of M are also

instances of P". From these two relations, we cannot decide whether S and P have

common instances. On the other hand, in the intensional logic, the premises are

understood as \S and M have no common properties, and all properties of P are

also properties of M", which implies that \S and P have no common properties".

Symmetrically, if \S � M" is completely true and \M � P" is completely false,

the extensional implication is \S and P have no common instances", and there is no

intensional implication.

Though the extensional logic and the intensional logic, de�ned in this way, are

di�erent, formally they are isomorphic to each other, much as union and intersection

are duals of each other in set theory. This isomorphism is described in (Wang, 1994c),

and it comes directly from the \dual" de�nitions of extension and intension in NARS

(De�nition 5).
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The dual de�nitions of extension and intension make it possible for NARS to treat

them uniformly, as, for instance, in the above de�nition of \weight of evidence". We

need systems to deal with them together, because the coordination of the extensions

and intensions of concepts is an important principle in the development of human

cognition (Inhelder and Piaget, 1969), and when evidence is used to judge a concep-

tual relation, whether the evidence is extensional or intensional is often irrelevant

or unimportant. We often determine the extension (set of instances) of a concept

according to its intension (set of properties), or the other way around, and seldom

judge a relation between concepts by considering the extensional or intensional factor

only, especially when the system has insu�cient knowledge and resources. In the next

chapter, we will discuss how such a uniform treatment is carried out by the inference

rules of NARS.

Though in principle all the information that we want to put into a truth value

is representable in the fw+; wg pair, it is not always natural or convenient for the

purposes of NARS. Instead of using absolute measurements, we often prefer relative

measurements, such as real numbers in the interval [0; 1]. Fortunately, it is easy to

de�ne relative measurements in terms of these weights of evidence.

De�nition 9 The frequency of a judgment, f , is w+=w.

Because w can be thought of as the number of times that the proposed inheritance

relation is checked, with w+ being the number of times that the relation is con�rmed,

f indicates the \success rate" of the inheritances (of extension and intension) linking

the two terms, according to the experience of the system. Obviously, this measure-

ment is closely related to probability and statistics, and often arises in everyday life.

However, it is still di�erent from probability under traditional interpretations (logical,

frequentist, and subjective, as de�ned in (Kyburg, 1974)) because it is determined by

�nite empirical evidence.
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Another fundamental di�erence between probability and frequency is: probability

is traditionally interpreted as being solely about extensions of sets. For example, if

we say \the probability of `S � P ' is p", p is usually understood as, or closely related

to, jS \ P j=jSj, where S and P denote sets of objects. However, as was described

earlier, frequency (in NARS) involves both extensional and intensional aspects of

the two terms. Therefore, it can be used to represent intensional quantities, such

as fuzziness, typicality, and so on. (Wang, 1996b) is a detailed discussion of how to

interpret fuzziness and represent it in NARS, and of how this approach is di�erent

from fuzzy logic (Zadeh, 1965).

As examples of the above di�erence, when the system assigns a relatively low

frequency value to \penguin � bird", it does not mean that (extensionally) only a

small percentage of penguins are birds, but that (intensionally) the concept \penguin"

lacks some properties that the concept \bird" has. According to set theory, the

probability of \cat � dog" should be 0, because no \cat" is also a \dog". Things are

otherwise, however, in NARS, because the system may give \cat � dog" a positive

frequency to indicate that, as far as the system knows, \cat" does share properties

with \dog". When it is translated into English, such a judgment becomes \Cat has

some dogness", rather than \Some cats are dogs".

Though we sometimes explicitly distinguish extensional and intensional relations,

as above, we often blur the two together. Indeed, psychological research shows that

people use (intensional) \representativeness" as (extensional) \probability", which is

usually classi�ed as an error caused by the use of heuristics (Tversky and Kahneman,

1974). However, since NARS assumes the insu�ciency of knowledge and resources,

and attempts to coordinate the extension and intension of each term, it uses a truth

value both extensionally and intensionally. As a result, some \fallacies" (according

to extensional theories) become valid modes of reasoning in NARS (Wang, 1996a).
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Examples of this phenomenon will be discussed in Chapter 6.

To represent a truth value by a frequency value is not enough for NARS: in

addition, we (as well as a computer system) need to know the value of w in order to

�gure out how to revise frequency in response to new evidence (Wang, 1993a). Can

we �nd a natural way to represent the necessary information in the form of a relative

measurement, or, more speci�cally, as a ratio? In the next chapter, we will see why

we do not want to use w directly (though it is possible), but prefer a measurement in

the [0; 1] interval.

One attractive idea would be to de�ne a \second-order probability". The fre-

quency de�ned above can be considered to be an estimate of the \�rst-order proba-

bility" (of the given inheritance relation), and the second-order probability is used to

describe how good the �rst-order estimate is. In fact, several projects have been based

on this approach (Fung and Chong, 1986; Gaifman, 1986; Paa�, 1991). However, there

are problems concerning how to interpret the second value, and it is unclear how use-

ful it is (Kyburg, 1988; Pearl, 1988). For our current purposes, under the assumption

of insu�cient knowledge, it makes little sense to talk about the \probability" that

\the frequency is an accurate estimate of an `objective �rst-order probability' of the

inheritance relation" (Wang, 1994a). Because NARS is always open to new evidence,

it is simply impossible to decide whether the frequency of a judgment will converge

to a limiting value in the in�nite future, not to mention what that value will be.

However, it makes perfect sense to talk about the near future. What the system

needs to know, from the value of w, is how sensitive a frequency will be to new

evidence; then the system can use this information to make a choice among competing

judgments. If we limit our attention to a future of �xed horizon, we can represent

the information in w in a ratio form (Wang, 1994a).

Let us introduce a positive constant k, whose value can be metaphorically thought



3. Language 41

of as the distance to the (temporal) horizon, in the sense that k can be thought of as

the number of times we will still test the given inheritance relation. With this new

notion of \horizon", measured by k, we can de�ne a new measurement | con�dence,

in terms of the weight of all evidence w.

De�nition 10 The con�dence of a judgment, c, is w=(w + k).

Intuitively, con�dence is the ratio of the weight of all current evidence to the

weight of all evidence in the near future. It indicates how much the system knows

about the particular inheritance relation, and thus is similar to Shafer's \reliability"

(Shafer, 1990) or Yager's \credibility" (Yager, 1991). Since k is a constant, the more

the system currently knows about the inheritance relation (i.e., the bigger w is), the

more con�dent the system is about the frequency, since any e�ect of evidence arriving

in the near future will be relatively smaller (we will see how c actually works in the

revision operation in the next chapter). For our current purposes, k can be any

positive number.

Though c is in [0; 1], and can be considered to be a ratio, and is at a \higher level"

than f (in the sense that it indicates the stability of f), it cannot be interpreted as

a second-order probability in the sense that it is the probability of the judgment

\the (real or objective) probability of the inheritance relation is f" (Wang, 1994a).

The higher the con�dence is, the harder it will be for the frequency to be changed

by new evidence, but this does not mean that the judgment is \truer", or \more

accurate", as some psychologists mean when they use the term \con�dence" (Einhorn

and Hogarth, 1978), because in an open system like NARS, the concept of a real or

objective probability does not exist.

It is easy to calculate w and w+ from f and c, as well as vice versa, and therefore

the truth value of a judgment can also be represented as a pair of ratios < f; c >
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(Wang, 1993a).

Interestingly, there is a third way to represent a truth value in NARS: as an

interval (Wang, 1994b). Let us �rst de�ne two measurements.

De�nition 11 The lower frequency of a judgment, l, is w+=(w + k); the upper fre-

quency of a judgment, u, is (w+ + k)=(w + k).

Here k is the same constant as was introduced above. Obviously, no matter

what happens in the near future, the \success frequency" will lie in the interval [l; u]

after the constant period. This is because the current frequency is w+=w, so in the

\best" case, when all evidence in the near future is positive, the new frequency will

be (w+ + k)=(w + k); in the \worst" case, when all evidence in the near future is

negative, the new frequency will be w+=(w + k).

This measurement has certain intuitive aspects in common with other interval-

based approaches (Bonissone, 1987; Kyburg, 1988; Weichselberger and P�ohlmann,

1990). For example, the ignorance about where the frequency will be can be repre-

sented by the width of the interval (in NARS it happens to be 1� c, so ignorance, i,

and con�dence, c, are complementary to each other). However, in NARS the interval

is de�ned as the range in which the frequency will lie in the near future, rather than

in the remote future. In this way, some theoretical problems can be avoided. Just

as in the earlier discussion of \second-order probability", it is impossible for an open

system (as de�ned previously) to determine the lower or upper bound of an \objective

probability".

Now we have three functionally equivalent ways to represent a truth value (or,

equivalently, the uncertainty)4 about an inheritance relation:

4According to model-theoretic semantics, or from an observer's point of view, a measurement
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1. as a pair of weights fw+, wg, where w � w+ � 0;5 or

2. as a pair of ratios <f; c>, where both f and c are in [0; 1]; or

3. as an interval [l; u], where 0 � l � u � 1.

Three types of brackets (\fg", \<>", and \[ ]") are used in this dissertation for the

three forms of truth value, respectively.

Because NARS is designed under the assumption of insu�cient knowledge and

resources, all judgments within the system are supported by �nite evidence | that

is, w is positive and �nite. For truth values represented in the other two forms, this

requirement translates into 0 < c < 1 and l < u, u� l < 1.

Beyond the normal truth values, there are two limiting cases useful for the inter-

pretation of truth values and the de�nition of inference rules:

Null evidence: This is represented by w = 0, or c = 0, or u� l = 1, and of course

means that the system knows nothing at all about the inheritance relation.

Full evidence: This is represented by w =1, or c = 1, or l = u. It means that the

system already knows everything about the statement | no future modi�cation

of the truth value is possible.

Formulas for interconversion among the three truth-value forms are displayed in

Table 3.1.

of uncertainty (or a degree of belief) is di�erent from a truth value | you can strongly believe a
false statement. However, according to experience-grounded semantics, or within a system that has
insu�cient knowledge, both truthfulness and certainty are judged according to available evidence,
and the di�erence between the two notions is not important | I cannot strongly believe a false
statement.

5Weights of evidence can be extended from integers to rational numbers by allowing evidence
with fractional weights. The extension to real values is straightforward, using continuity arguments.
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fw+; wg <f; c> [ l; u ]

fw+; wg w+ = k fc

1�c
w+ = k l

u�l

w = k c
1�c

w = k 1�(u�l)
u�l

< f; c > f = w+

w
f = l

1�(u�l)

c = w
w+k

c = 1� (u� l)

[l; u] l = w+

w+k
l = fc

u = w++k
w+k

u = 1� c(1� f)

Table 3.1: Relations among uncertainty measurements.

This table can be easily extended to include w� (the weight of negative evidence)

and i (degree of ignorance). In fact, any valid (not inconsistent or redundant) as-

signments to any two of the eight measurements (for example, setting w+ = 3:5 and

i = 0:1, or setting f = 0:4 and l = 0:3) will uniquely determine the values of all the

others. Therefore, the three forms of truth value can even be used in a mixed manner.

Having several closely related forms and interpretations for truth values (uncer-

tainties) has the following advantages (Wang, 1995c):

1. It gives us a better understanding of what a truth value really means in NARS,

since we can explain it in di�erent ways. The mappings also give us interesting

relations among the various uncertainty measurements.

2. It provides a user-friendly interface. If the environment of the system consists

of human users, the uncertainty of a statement can be expressed in di�erent

ways, such as, \I've tested it w times, and in w+ of them it was true", or \Its

past success frequency was f , and the con�dence was c", or \I'm sure that its

success frequency will remain in the interval [l, u] in the near future". We can
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maintain a single form as the internal representation, and, using the mappings

in the above table, translate it into/from the other two for interface purposes.

3. It makes the designing of inference rules easier. For each rule, there should be a

function that calculates the truth value of the conclusion from the truth values

of the premises, with di�erent rules of course equipped with di�erent functions.

As we will see in the next chapter, for some rules it is easier to choose a function

if we treat the truth values as weights, while for other rules we may prefer to

treat them as ratios or intervals. Clearly, though, no matter which form and

interpretation are used, the information carried is precisely the same.

4. It facilitates the comparison between measurements in NARS and the uncer-

tainty measurements of various other approaches, because di�erent forms cap-

ture di�erent intuitions about uncertainty. See (Wang, 1993a; Wang, 1994a;

Wang, 1994b; Wang, 1995b; Wang, 1996b) for examples.

Because \S � P <1; 1>" is re
exive and transitive, it is identical to \S < P" |

that is, \<" is the limit of \�" as both w and w+ go to in�nity, while w� remains

bounded. In this special case, the e�ects of negative evidence and future evidence

can be ignored. Therefore, \<" plays a double role in explaining the meaning of \�":

on the one hand, a \�" relation can be seen as a summary of a set of \<" relations;

on the other hand, a \<" relation is also the limit of a \�" relation, so \�" is a

\partial, or imperfect, <". Understanding this double role is crucial in the design of

the inference rules (to be introduced in the next chapter).

In this section we have de�ned the truth values of sentences in L by the system's

experience, which is still represented in L0 (the binary language de�ned in the pre-

vious section), now known as a subset of L. Similarly, we can extend the concept of

\meaning". For a system whose knowledge is represented in L, the meaning of a term
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still consists of the term's extensional and intensional relations with other terms, as

in L0. The only di�erence is that the de�nition of extension and intension is modi�ed

as follows:

De�nition 12 A judgment \S � P < f; c >" states that S is in P 's extension and

that P is in S's intension, with the truth value of the judgment specifying their degrees

of membership.

According to this de�nition, extensions and intensions in NARS are no longer

ordinary sets with well-de�ned boundaries. They are similar to fuzzy sets (Zadeh,

1965), because terms belong to them to di�erent degrees. What makes them di�erent

from fuzzy sets is how the \membership" is measured (in NARS, two numbers are

used) and interpreted (in NARS, it is experience-grounded) (Wang, 1996b).

Now we have �nished our basic task in semantics. Given any set of sentences of L0

as the experience of a system, we can determine the truth values of sentences and the

meanings of terms in L. Because the meaning of the \<" relation in L0 is completely

determined by its two properties, re
exivity and transitivity, the relation is used as a

semantic primitive to de�ne the truth values of sentences and the meanings of terms

in L. Since L0 is a small subset of L, we say that this is a \bootstrapping" way to

establish an experience-grounded semantics for L as a whole.

3.4 Experience: ideal vs. real

According to the assumption of insu�cient knowledge, in NARS the con�dence of

a sentence cannot reach 1 (which would mean the system had in�nite evidence about

the sentence), but can approach it as a limit. Therefore, sentences like \S < P"

cannot really appear in the system's experience. However, this does not prevent
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us from using L0 to construct an \ideal experience" for semantic purposes. For

example, if there is a sentence within the system's knowledge base with the form

\S � P < 0:75; 0:80>", then from the relationship between truth value and weight

of evidence (and assuming k = 1), we get w = 4; w+ = 3. Therefore, the system

believes the relation \S � P" as if it had tested the relation four times (by checking

common elements of the extensions or the intensions of the two terms6), in which

the relation had been con�rmed three times, and failed once. This does not imply,

of course, that the system actually got the truth value by carrying out such tests

| such absolute certainty can never be be obtained in real life. Indeed, the system

may have checked the relation more than four times in less-than-ideal situations (i.e.,

with results represented by judgments whose con�dence values are less than 1), or the

conclusion may have been derived from other knowledge, or even directly provided by

the environment. But no matter how the truth value < 0:75; 0:80> is generated in

practice (there are in�nitely many ways it could arise), it can always be understood

in a unique way, as stated above.

In NARS, the concept of ideal experience is used to de�ne truth values and to

derive inference rules, while actual experience is used to numerically calculate truth

values. The distinction between these two types of experience is useful, because \nu-

merical statements are meaningful insofar as they can be translated, using the map-

ping conventions, into statements about the original qualitative structure" (Krantz,

1991). In other words, \ideal experience" is being used here as an \ideal meter-stick"

to measure degrees of truth. Like all measurements, though its unit is de�ned in an

idealized situation, it is not used only in idealized situations.

Another factor that makes actual experience di�er from ideal experience is the

insu�ciency of resources. Due to the lack of memory, some of the system's experience

6According to my experience-grounded semantics, such checks are not probings in the physical
world, but inspections of available knowledge.
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will be forgotten; due to the lack of time, some of the system's experience will be

ignored. Consequently, the truth value of a sentence or the explicit meaning of a term

(i.e., its revealed relations with other terms) is usually based on partial experience, or

a section of the system's experience (which is a stream of input sentences in L).

As was explained above, this fact makes the real situation much more complex

than the ideal situation, but it does not prevent us from saying that the truth value of

a sentence summarizes its evidential support, and that the meaning of a term derives

from its experienced relations with other terms. As was stated before, the function of

semantics is to help us to design the system and to understand its language. Now we

can see that both of these goals can be achieved by de�ning truth value and meaning

in terms of the system's ideal experience. It needs to be stressed, however, that

semantics is not about how concrete truth values and meanings are calculated by the

system | that function is carried out by the inference rules, designed according to

the semantics. We will introduce these rules in the next chapter.

One important character of experience-grounded semantics is its dynamic and

subjective nature (Wang, 1995a). Obviously, the truth value of a sentence changes

dynamically in NARS, due to the arrival of new experiences. The system's infer-

ence activity also changes the truth values of sentences by combining evidence from

di�erent sections of the experience. Since truth values are based on the system's ex-

perience, they are intrinsically subjective. To be more precise, the system's knowledge

is not an objective description of the world, but a summary of its own experience, so

it is from the system's point of view. It is to be expected that two systems in precisely

the same environment would have di�erent knowledge, obtained from their di�erent

individual experiences.

To say that truth values are dynamic and subjective does not mean that they are

arbitrary. As Quine said, \Observations are the boundary conditions of a system of
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beliefs." (Quine and Ullian, 1970) Di�erent systems in the same environment can

achieve a certain degree of \objectivity" by communicating with one another and

thus sharing experience. However, here \objective" means \common" or \unbiased",

rather than \observer-independent" | the common knowledge is still limited by the

experiences of the systems involved.

3.5 Grammar

The basic inheritance relation \�" is not the only meaningful inheritance relation.

In NARS, a symmetric inheritance relation, \=", and a singular inheritance relation,

\2", are derived from \�". Intuitively, they correspond to the similarity relation

and the membership relation between two concepts, respectively. Like \�", these

two relations are also interpreted both extensionally and intensionally. For example,

\creature = animal" means that the terms \creature" and \animal" have the same

instances and the same properties; \Tweety 2 bird" means both that \Tweety" is an

individual instance of \bird" and that \Tweety" has \birdness" | that is, it has the

properties of a typical bird. \S = P" is a summary of \S � P" and \P � S". By

this de�nition, evidence (positive and negative) for either \S � P" or \P � S" is

also evidence for \S = P". Obviously, this relation is symmetric | that is, \S = P"

is equivalent to \P = S". The singular inheritance relation is used when we prefer

to treat the subject term as an individual or proper noun. For example, \A dove

is a bird" is represented as \dove � bird", but \Tweety is a bird" is represented as

\Tweety 2 bird". By considering the set that contains a unique member Tweety,

written as \fTweetyg", it is easy to see that \Tweety 2 bird" can be rewritten as

\fTweetyg � bird".

A sentence in L, such as \S � P", is used in NARS to represent a question.
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To answer such a question means to derive a judgment about the given inheritance

relation, such as \S � P < f; c >", from available knowledge, under the current

resource constraints. Another type of question is characterized by the presence of a

question mark \?" in the position of a term | for example, \? 2 P". To answer

such a question means to �nd a term that has the required inheritance relation with

the given term, such as \S 2 P <f; c>". Here we have not mentioned what counts

as a good answer to a question. Obviously, \tiger 2 bird < 0; 0:99 >" (\A tiger is

not a bird.") is a pretty bad answer to the question \? 2 bird" (\What is a bird?"),

although it is a valid answer according to the above de�nition. We will discuss this

issue in the next chapter.

In this chapter, a formal language L has been de�ned. In the next chapter, some

inference rules that work with the language will be introduced. Together, the two

chapters de�ne a non-axiomatic logic. I call the logic NAL2, since it is an extension

of NAL1, presented in (Wang, 1994c). Table 3.2 gives the grammar of NAL2.

<judgment> ::= <term><be><term><truth-value>

<question> ::= <term><be><term> j ? <be><term> j <term><be>?

<be> ::= � j = j 2

<term> ::= <word>

<word> ::= <letter> j <letter><word> j <word> -<word>

<letter> ::= AjBj � � � jY jZjajbj � � � jyjz

Table 3.2: Grammar of NAL2.

As was described previously, there are (at least) three ways to represent the truth

value of a judgment: by weight of evidence, by frequency and con�dence, and by

frequency interval.



4

Inference Rules

In this chapter, the inference rules used in NAL2 are introduced. Each rule takes as

input two premises, and from them derives a conclusion. When the two premises are

both judgments, the conclusion is also a judgment, whose truth value is determined

by the truth values of the premises.

4.1 Revision and choice

As was stated above, it is possible (in fact, it is usually the case) for the judgments

in the memory of NARS to con
ict with each other, in the sense that at a given time,

there are two coexistent judgments that attach di�erent truth values to the same

inheritance relation, in the following manner:

S � P fw+
1 ; w1g

S � P fw+
2 ; w2g

51
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where the truth values are represented as weights of evidence.1

Such con
icts arise from the fact that the judgments involved are based on di�erent

sections of the experience of the system, say K1 and K2, both of which correspond to

sets of input judgments. The concept \section of experience" is de�ned recursively,

as follows:

De�nition 13 If j is an input judgment that appears in the system's experience, with

a unique serial number N , it is based on the section of experience fNg.

De�nition 14 If j is not an input judgment but is derived according to an inference

rule of NAL2 from premises j1 and j2, which are based on the sections of experience

K1 and K2 respectively, then j is based on section K1 [K2.

According to the semantics of NARS, as long as K1 and K2 have no common

elements, the two bodies of evidence supporting the two con
icting judgments do not

overlap with each other (that is, no piece of evidence is a contributor to both of the

two premises). In this situation, a revision rule is applied to the two premises, and

the conclusion derived should be

S � P fw+
1 + w+

2 ; w1 + w2g;

where the evidence from di�erent sections of experience is summarized, or pooled

(Wang, 1994b). The use of addition here is justi�ed by the semantics introduced

in the previous chapter. Since K1 and K2 have no common elements, the ideal

experiences measured by fw+
1 ; w1g and fw

+
2 ; w2g can be combined by adding the

1In contrast to �rst-order predicate logic, where any conclusion whatsoever can be derived from a
pair of propositions that di�er only in their truth values, in term logics a con
ict is a local problem,
in the sense that not all results are a�ected. See the following discussion of the various types of
inference rules in NAL2.
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weights of (positive, negative, and all) evidence, respectively. In general, the revision

rule is used to accumulate evidence, even if the two pieces of evidence support identical

judgments.

Given the relations among di�erent forms of truth value in Table 3.1, it is easy

to convert the above-given truth-value function for the revision rule into a formula in

terms of frequency and con�dence:

Frev : f = [c1(1� c2)f1 + c2(1� c1)f2] = [c1(1� c2) + c2(1� c1)]

c = [c1(1� c2) + c2(1� c1)] = [c1(1� c2) + c2(1� c1) + (1� c1)(1� c2)]

So far, so good. However, things are more complex than this, because with insuf-

�cient resources, NARS cannot maintain a complete record of the supporting experi-

ence for each judgment; after all, the evidence in support of a given judgment could

involve arbitrarily large regions of memory and arbitrarily long chains of operations.

Therefore the \overlapping-evidence recognition problem" cannot be completely

solved by a system with insu�cient resources. Obviously, this limitation holds also

for human beings: we could not possibly remember all evidence that supports each

judgment we make. Nevertheless, NARS needs to be able to handle this problem

somehow; otherwise, as Pearl points out, \a cycle would be created where any slight

evidence in favor of A would be ampli�ed via B and fed back to A, quickly turning

into a stronger conformation (of A and B), with no apparent factual justi�cation."

(Pearl, 1988)

The NARS strategy for dealing with this fundamental problem is to record only a

constant-sized fragment of the experience supporting each judgment, and to use such

fragments to determine heuristically whether two judgments are based on overlapping

evidence. As was mentioned above, each input judgment is automatically assigned
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a unique serial number when accepted by the system. In each inference step, the

conclusion is assigned a list of serial numbers constructed by interleaving its parents'

(the premises') serial-number lists, and then truncating that list at a certain length.

For example, suppose the maximum length for serial-number lists is 4. In this case,

two judgments whose serial-number lists overlap will have a parent or grandparent

judgment in common. Now the revision rule is applied only if the two premises'

serial-number lists have no common elements, meaning that they are related, if at all,

more than two generations ago. This mechanism is only an approximation, of course.

Though not perfect, it is a reasonable solution when resources are insu�cient, and

\reasonable solutions" are exactly what we expect from a non-axiomatic system.2 It

is also similar to the strategy of the human mind, since we usually have impressions

about where our more recent judgments come from, but such impressions fade quickly

and are far from complete and accurate.

What should NARS do when two con
icting judgments are based on overlapping

evidence? Ideally, we would like to record the precise contribution of each input

judgment, and then to subtract the weight of the overlapping section from the truth

value of the conclusion, so that nothing is double-counted. Unfortunately, this is

impossible, because the experience recorded for each judgment is incomplete, as has

just been explained. Nevertheless, NARS needs to be able to handle this situation.

For example, the two con
icting judgments may be candidate answers to a question

(recall the discussion at the end of the previous chapter). If it is impossible to combine

them, then NARS needs to make a choice between the two. In the current situation,

the choice rule is very simple: the judgment having a higher con�dence (no matter

what its frequency is) should be taken as the better answer, the idea being that if an

2This is an example of what it means to develop a model under the assumption of insu�cient
knowledge and resources. Without such an assumption, we could solve the problem perfectly by
completely recording all supporting experience, using a recursive technique, then checking for inter-
section of the records.
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adaptive system must make a choice between con
icting judgments, the one based on

more experience has higher priority.

To make a choice between two or more competing answers for a question is not

always this simple. Let us say that the system is asked the question \S � ?", meaning

that it should come up with a term T that is a \typical element" in the intension of

S (not S itself, of course). Ideally, the best answer would be provided by a judgment

\S � T <1; 1>" (i.e., frequency 1 and con�dence 1). But of course this is impossible,

because con�dence can never reach 1 in NARS. Therefore, we have to settle for the

best answer the system can �nd under the constraints of available knowledge and

resources.

Suppose the competing answers are

S � T1 <f1; c1>

S � T2 <f2; c2> :

Which one would be better? Let us consider some special cases �rst:

1. c1 = c2, meaning that the two answers are supported by the same amount of

evidence. For example, both come from statistical data of 100 samples3. Obvi-

ously, the answer with the higher frequency is preferred, since that inheritance

relation has more positive evidence than the other.

2. f1 = f2 = 1, meaning that all available evidence is positive. Now the an-

swer with higher con�dence is preferred, since it is more strongly con�rmed by

experience.

3As was stated in the previous chapter, each sample can be represented by a pair of sentences
in L | \M � T1 < 1; 0:8>" and \M � S < 1; 0:8>" makes M a piece of positive evidence for
\S � T1 <f1; c1>". This issue will be discussed in more detail when the induction and abduction
rules are introduced later.
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3. f1 = f2 = 0, meaning that all available evidence is negative. Now the answer

with the lower con�dence is preferred, since it is less strongly refuted by the

experience. Of course such an answer is still a bad one because of its negative

nature, but it may be the best (the least negative) answer the system can �nd

for the question.

From these special cases, we can see that to set up a general rule to make a choice

among competing judgments, we need somehow to combine the two numbers in a

truth value into a single measurement. The current situation is di�erent from the

previous one. \S � T1 <f1; c1>" and \S � T2 <f2; c2>" do not con
ict with each

other | they are about di�erent relations | but they compete for being the \best

supported intensional relation of S".

In NARS, expectation, e, is de�ned for this purpose. Di�erent from a truth value

(which is used to record past experience), an expectation (of a judgment) is used to

predict future experience. \e = 1" means the system is absolutely sure that the in-

heritance relation under consideration will always be con�rmed by future experience;

\e = 0" means it will always be refuted; and \e = 0:5" means the system considers it

equally likely to encounter a positive or a negative instance. Intuitively, e is similar to

subjective probability (Kyburg, 1974); it can be interpreted as the system's estimate

of the future \inheritance frequency", or equivalently, as a bet the system will accept

about a future \inheritance test". Under the assumption of insu�cient knowledge, in

NARS e takes values in the open interval (0; 1), with 0 and 1 as unattainable limits.

In the case of the competing answers described above, the system takes the one whose

expectation is higher.

To calculate e from < f; c >, we can see that under the assumption that the

system makes extrapolations from its (past) experience, it would be natural to use

f as e's \�rst-order approximation". However, such a maximum-likelihood estimate
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is not good enough when c is small (Good, 1965). For example, if a hypothesis has

been tested only once, it would not make sense to set one's expectation to 1 (if the

test was a success) or to 0 (if the test was a failure).

Intuitively, e should be more \conservative" (i.e., closer to 0.5, the \no-preference

point") than f , to re
ect the fact that the future may be di�erent from the past. Here

is where the con�dence c a�ects e | the more evidence the system has accumulated,

the more con�dent the system is (indicated by a larger c) that its predicted frequency

e should be close to its experienced frequency f . Therefore, it is natural to de�ne

e = c(f � 0:5) + 0:5:

In particular, when c = 1 (full evidence), e = f ; when c = 0 (null evidence), e = 0:5.

Alternatively, this equation can be rewritten as c = (e�0:5)=(f�0:5) (when f 6= 0:5),

showing that c indicates the ratio of e's and f 's distances to 0.5.

To express the de�nition of e in the other two forms of truth value leads to

interesting results.

When the truth value is represented as an interval, from the interconversion for-

mulas in Table 3.1, we get

e = 0:5(l + u)

Thus e is precisely the expectation of the future frequency | that is, the midpoint of

the interval in which the frequency will lie, in the near future.

When the truth value is represented as weights of evidence, from the mappings

we get

e = (w+ + k=2)=(w + k)

which is a continuum (i.e., a family) of functions with k as a parameter. This formula
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turns out to be closely related to what has been called the \beta-form based contin-

uum" (with positive and negative evidence weighted equally) (Good, 1965), and the

\�-continuum" (with the \logical factor", or prior probability, being 1/2) (Carnap,

1952). Though interpreted di�erently, the three continua share the same formula and

make identical predictions. All three continua have Laplace's law of succession as

a special case (when k = 2), where the probability of success on the next trial is

estimated by the formula (w+ + 1)=(w + 2).

Now we can see how the choice of the constant k can in
uence the behavior of

a system (Wang, 1995b). Let us compare a system A1 with k = 1 and a system

A2 with k = 10. The problem is to make a choice between two competing answers

\S � P1 fw
+
1 ; w1g" and \S � P2 fw

+
2 ; w2g" (where the truth values are represented

as weights of evidence). It is easy to see that when w1 = w2 or w
+
1 =w1 = w+

2 =w2, the

two systems make the same choice. It is only when a system needs to make a choice

between a higher f and a higher c that the value of k will matter. For example,

let us suppose that w+
1 = w1 = 2; w+

2 = 5, and w2 = 6. In this situation, in A1,

e1 = (2 + 0:5)=(2 + 1) � 0:83, e2 = (5 + 0:5)=(6 + 1) � 0:79, and thus A1 will choose

the �rst answer (since all of its evidence is positive); in A2, e1 = (2+5)=(2+10) � 0:58,

e2 = (5+5)=(6+10) � 0:63, and thus A2 will choose the second answer (since it is more

fully tested, and its frequency is not much lower than that of the other alternative).

Therefore, k is one of the \personality parameters" of a reasoning system, in the

sense that it indicates a certain systematic preference or bias, for which there is no

\optimal value" in general. The larger k is, the more \conservative" the system is, in

the sense that the system always accepts smaller bets, and makes smaller adjustments

when e is reevaluated according to new evidence, than a system having a smaller

value of k. This parameter was called the \
attening constant" by Good ((Good,

1965), where he also tried to estimate its value according to certain factors that are
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beyond our current consideration), and was interpreted by him as a way to choose a

prior probability distribution. The same parameter was interpreted by Carnap as the

\relative weight" of the \logical factor" (Carnap, 1952).

4.2 Syllogisms

In term logics, when two judgments share a common term, they can be used as

premises in an inference rule that derives an inheritance relation between the other

two (unshared) terms. Altogether, there are four possible combinations of premises

and conclusions, corresponding to the four �gures of Aristotle's syllogisms (Aristotle,

1989), three of which are also discussed by Peirce (Peirce, 1931):

1. From \M � P < f1; c1 >" and \S � M <f2; c2 >" to get \S � P < f; c >".

This is Aristotle's �rst �gure, and what Peirce called deduction. Let us refer to

the function that calculates f and c from f1, c1, f2, and c2 as Fded.

2. From \P � M <f1; c1 >" and \S � M <f2; c2 >" to get \S � P < f; c >".

This is Aristotle's second �gure, and what Peirce called abduction (or hypothe-

sis). Let us refer to the function that calculates f and c from f1, c1, f2, and c2

as Fabd.

3. From \M � P < f1; c1 >" and \M � S < f2; c2 >" to get \S � P < f; c >".

This is Aristotle's third �gure, and what Peirce called induction. Let us refer to

the function that calculates f and c from f1, c1, f2, and c2 as Find.

4. From \M � P < f1; c1 >" and \S � M <f2; c2 >" to get \P � S < f; c >".

This rule, not discussed by Aristotle or Peirce, was called the fourth �gure by

Aristotle's successors (Boche�nski, 1970). I will call it exempli�cation. Let us

refer to the function that calculates f and c from f1, c1, f2, and c2 as Fexe.
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Because of the conceptual extension of the notion of \truth value", and because terms

are interpreted both extensionally and intensionally, the syllogisms in NARS are quite

di�erent from Aristotle's and Peirce's, though still related to them.

How to determine mathematical formulas for the four types of inference just de-

scribed? Basically, their general properties are dictated by the semantics of NARS.

In this section, we will see that our de�nition of the notion of \truth value" sets pre-

cise boundary conditions on the functions. Because many of the quantities involved

are real numbers in [0; 1], we can infer the form of the desired functions solely from

the boundary conditions by making use of the so-called Triangular norm (T-norm)

and Triangular conorm (T-conorm) (Bonissone and Decker, 1986; Dubois and Prade,

1982; Schweizer and Sklar, 1983).

T-norm, T (x1; x2), and T-conorm, S(x1; x2), are distinct binary operations de�ned

on real numbers in [0; 1]. Each of them is both commutative and associative, and

monotonic in each variable. T-norm has boundary conditions satisfying the truth

tables of the logical operator AND, and T-conorm those of OR. Because each is

commutative and associative, each of them can be extended to take an arbitrary

number of arguments in the following way, precisely analogous to how addition and

multiplication are extended from two arguments to an arbitrary number of arguments:

T (x1; : : : ; xn) = T (T (x1; : : : ; xn�1); xn);

S(x1; : : : ; xn) = S(S(x1; : : : ; xn�1); xn):

The usage of T-norm and T-conorm in NARS is di�erent from their usual usage

in uncertainty calculus (Bonissone and Decker, 1986; Dubois and Prade, 1982), where

they are used to determine the degree of certainty of the conjunction and disjunction

of two propositions, respectively. In NARS, the T-norm function y = T (x1; : : : ; xn) is
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used when a quantity y is conjunctively determined by two or more other quantities

x1; : : : ; xn | that is, y = 1 if and only if x1 = � � � = xn = 1, and y = 0 if and only

if x1 = 0 or : : : or xn = 0; similarly, the T-conorm function y = S(x1; : : : ; xn) is

used when a quantity y is disjunctively determined by two or more other quantities

x1; : : : ; xn | that is, y = 1 if and only if x1 = 1 or : : : or xn = 1, and y = 0 if and only

if x0 = � � � = xn = 0. These quantities are not about the conjunction or disjunction

of two judgments.4

Intuitively, a variable y is conjunctively determined by variables x1; : : : ; xn when

all the x's are its necessary conditions, or numerically, if y is never bigger than any

of them. Similarly, y is disjunctively determined by x1; : : : ; xn when all the x's are

its su�cient conditions, or numerically, it is never smaller than any of them. T-norm

and T-conorm can be applied in situations where a quantity is determined by several

factors, where we wish the boundary condition to be satis�ed, and where no one

factor is more important than any of the others.

There are an in�nite number of ways of numerically satisfying the prescribed con-

ditions on T-norm and T-conorm. For the current purpose, we want them to be

continuous and strictly increasing, so that any upward (downward) change in any ar-

gument will cause an upward (downward) change in the function value. In (Schweizer

and Sklar, 1983) it is proven that all functions satisfying the above conditions are iso-

morphic to (i.e., can be represented as a monotonic transform of) the \probabilistic"

operators (which de�ne, respectively, the probabilities of the union and intersection

of two mutually independent events with probabilities a and b):

T (a; b) = ab; S(a; b) = a + b� ab:

4In NAL2, the conjunction or disjunction of two judgments is not de�ned as a judgment.
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It is also shown in (Bonissone and Decker, 1986) that only a small �nite subset of

the in�nite set of possible T-norms and T-conorms will produce signi�cantly di�erent

results, if we limit our concern to the \�nest level of distinction among di�erent

quanti�cations of uncertainty". Among those representative operators in the small

subset, the above pair is the only continuous and strict T-norm and T-conorm. The

Schweizer{Sklar and Bonissone{Decker results show that the above T-norm and T-

conorm have not been chosen arbitrarily for NARS; although in principle there are

other pairs satisfying our requirements, they are usually more complex, and are not

signi�cantly di�erent from the above pair.

The above choice is also justi�able in another way. Since in NARS the syllogis-

tic inference rules are applied only to premises based on non-overlapping evidence,

and since the frequency and con�dence of a judgment are determined by di�erent

factors, it follows that f1, c1, f2, and c2 are mutually independent of each other, in

the sense that given the values of any three of them, the fourth cannot be deter-

mined, or even bounded approximately. This type of mutual independence among

arguments is assumed by the probabilistic operators, but not by other representa-

tive operators, such as the pair used in fuzzy logic (Bonissone and Decker, 1986):

T (a; b) = min(a; b); S(a; b) = max(a; b):

We now proceed to determine the truth-value functions for the four syllogistic

inference rules in terms of T-norm and T-conorm, guided by the boundary conditions

of extreme cases, where we know what we want to happen.

As de�ned previously, the deduction rule in NARS takes \M � P < f1; c1 >"

and \S � M < f2; c2 >" as premises, and derives a conclusion \S � P < f; c >"

from them. Therefore, it extends the \rule of transitivity" in the binary term logic

IL, introduced in the previous chapter. Since \S � P < f; c >" becomes \S < P"

if and only if both f and c are 1, and since T-norm is used in NARS to extend the
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\and" relation into [0; 1], we would let T (f; c) = T (T (f1; c1); T (f2; c2)), which means

precisely that \S < P" is deduced from \M < P" and \S < M" | both f and c are

1 if and only if f1, c1, f2, and c2 are all 1.

More generally, if T (f1; c1) = 1, then < f; c >=< f2; c2 >, because here the

�rst premise says that P completely inherits M 's extensional relations, among which

there is the relation to S. Symmetrically, if T (f2; c2) = 1, then <f; c>=<f1; c1>,

meaning that S completely inherits M 's intensional relation to P .

From these special situations, we derive the con�dence value of the conclusion in

general: c = T (c1; c2; S(f1; f2)), which means that the con�dence of the conclusion is

determined conjunctively from the values c1, c2, and S(f1; f2). The �rst two argu-

ments of the T-norm are easy to understand | the conclusion gets full evidence only

when both of the premises have full evidence, and the conclusion gets null evidence

when either of the two premises has null evidence, therefore the boundary condition of

T-norm is satis�ed. S(f1; f2) gets involved here because nothing can be deduced from

two completely negative premises (even if their con�dences are 1) | from \M and P

share no extension or intension" and \S and M share no extension or intension", no

evidence (positive or negative) is provided for \S < P". If f1 or f2 is 1 (or identically,

S(f1; f2) = 1), and both c1 and c2 are 1, we know that one of the premises is in the

\<" form, which leads to a \complete inheritance" by de�nition. For example, let

us suppose that f1 = c1 = 1, so that P completely inherits M 's extension, including

its (extensional) relation with S, from which it follows that the conclusion should be

\S � P <f2; c2>". The case for f2 = c2 = 1 is completely symmetric.

Here it needs to be stressed again that in NAL2 the \�" relation is not identical

to the subset relation in set theory, which is purely extensional. If \M � P <1; 1>"

is interpreted as \Set M is completely included in set P", and \S � M < 0; 1 >"

as \Set S and set M have an empty intersection", it is invalid to derive from them
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\S � P < 0; 1 >", which means \Set S and set P have an empty intersection".

In NARS, the relation is both extensional and intensional. As a result, when an

extensional inheritance exists, it is used as in set theory. On the other hand, if

there is no available extensional relation, NARS may use intensional relations to get

conclusions, which is impossible in set theory.

Putting the above two formulas together, we get the truth-value function of the

deduction rule:

Fded : f = T (f1; f2)=S(f1; f2) = f1f2=(f1 + f2 � f1f2)

c = T (c1; c2; S(f1; f2)) = c1c2(f1 + f2 � f1f2)

For the sake of continuity, we let f = 0 when f1 = f2 = 0.

In NARS, abduction is the inference that from a shared elementM of the intensions

of S and P determines the truth value of \S � P", and induction is the inference

that from a shared element M of the extensions of S and P determines the truth

value of \S � P". From the symmetry between extension and intension, we know

that Fabd = F 0

ind, and Find = F 0

abd, where F 0

�
is the function gotten by exchanging

<f1; c1> and <f2; c2> in the function F�. Therefore, we only need to discuss one

of them, say Find.

Let us suppose that we de�nitely know \Tomato is a kind of plant" and \Tomato

is a kind of vegetable"; can we then infer whether, or to what extent, vegetable is

a kind of plant? If we write all three sentences in �rst-order predicate logic, and

interpret \is a kind of" extensionally as the subset relation, then all we know is that

the sets \vegetable" and \plant" have a common subset, \tomato", which tells us

nothing about the extent to which \vegetable" is included in \plant". But if we

resort to experience-grounded semantics, the situation is di�erent. Here the system



4. Inference Rules 65

is concerned with determining the extent to which the term \vegetable" can be used

as the term \plant". Therefore, \tomato" becomes a piece of positive evidence for

\Vegetable is a kind of plant", and the truth value of the conclusion re
ects the degree

of support provided by the evidence, rather than measuring how many vegetables are

plants in the real world.

In determining the truth value of \vegetable � plant" from the common instance

tomato of its two terms, the truth values of the two premises play di�erent roles. The

frequency of \tomato � plant", f1, estimates the frequency of the conclusion, since

the property \being plant" of the speci�c term tomato is taken as a property of the

general term vegetable. On the other hand, f2, c2, and c1 conjunctively determine

the extent to which tomato can be counted as a piece of relevant evidence for the

conclusion. If f2 or c2 is 0, tomato is not in the extension of vegetable at all (so it

cannot serve as evidence); also, if c1 is 0, the �rst premise provides no information

about the relation between tomato and plant, thus the conclusion gets no support

in this case as well. Only when T (f2; c2; c1) = 1 does tomato become a piece of

evidence with weight 1 (because now \tomato � vegetable < f2; c2 >" becomes

\tomato < vegetable"). Since \w is conjunctively determined by f2, c2, and c1" is

represented by w = T (f2; c1; c2), we have

Find : f = f1

c = f2c2c1=(f2c2c1 + k)

Since Fabd is the same as Find with the roles of <f1; c1> and <f2; c2> reversed, we

also obtain:

Fabd : f = f2

c = f1c1c2=(f1c1c2 + k)
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Under these de�nitions, the well-known di�erence between abduction or induction

and deduction is preserved: deductive conclusions are usually much more con�dent

(with 1 as their upper bound) than abductive or inductive conclusions (which have

1=(1+ k) as their upper bound). Here we can see another function of the personality

parameter k: to indicate the relative con�dence of abductive/inductive conclusions.

Intuitively speaking, all intelligent systems (human and computer) need to maintain

a balance between the strictness of deduction and the tentativeness of induction and

abduction. For certain purposes, it is better to let the \balancing point" remain stable

(though not necessarily constant) to ensure self-consistency of the system's behavior.

However, there is no single \optimal value" for such a parameter, at least for our

current discussions. Comparatively speaking, a system with a small k relies more on

abduction and induction, while a system with a large k relies more on deduction.

Using Fabd or Find, we can de�ne a conversion rule. In term logics, \conversion"

is an inference from a single premise to a conclusion by interchanging the subject

and predicate terms (Boche�nski, 1970). Now we can see conversion as a special case

of abduction by taking \P � S < f0; c0 >" and \S � S < 1; 1>" (a tautology) as

premises, and \S � P <f; c>" as conclusion. Using Fabd, we obtain the truth-value

functions for the conversion rule:

Fcon : f = 1

c = f0c0=(f0c0 + k)

We could also derive this same result by seeing conversion as a special case of

induction with \P � P <1; 1>" and \P � S <f0; c0>" as premises.

How can we understand the conversion rule directly? From our interpretation of

the truth value, we see that any positive evidence for \S � P" (the terms in ES \EP
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and IP \ IS) will also be positive evidence for \P � S", but any negative evidence

concerning the former (the terms in ES � EP and IP � IS) will be irrelevant to the

latter (because those terms are not in EP or IS). This means that the conclusion

can only be con�rmed, but never refuted, by conversion. Consequently, f = 1 in all

situations. As the weight of the conclusion, we know that it is at most 1, and this

will happen only when f0 = c0 = 1. In that case, P is in the extensions of both S

and P . Therefore, we take w = T (f0; c0).

This analysis leads us to the truth-value functions for exempli�cation, the \fourth

�gure" in (Wang, 1994c). This rule takes the same premises as the deduction rule,

but in its conclusion the most general term in the premises, P , becomes the subject,

while the most speci�c term in the premises, S, becomes the predicate. For instance,

from \Tomato is a kind of vegetable" and \Vegetable is a kind of plant", by deduction

we get \Tomato is a kind of plant", but by exempli�cation we get \Plant is a kind

of tomato". That is why the name \exempli�cation" is used for this rule | it states

that, to a certain extent, \plant" inherits the properties of \tomato", and \tomato"

inherits the instances of \plant". As in the case of the conversion rule, no negative

evidence for the conclusion can be collected in this way, and the w of the conclusion

is determined conjunctively by f1; c1; f2, and c2. Only when f1c1f2c2 = 1 can the

conclusion get support with strength w = 1, since then we have \P < S" | that is,

P is in the extensions of both S and P . Therefore, here we have

Fexe : f = 1

c = f1c1f2c2=(f1c1f2c2 + k)

There is another interesting result. We know that from \M � P <f1; c1>" and

\M � S <f2; c2>", NARS can directly get \S � P <f1; f2c2c1=(f2c2c1 + k)>" by
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induction. There is also an indirect way to derive \S � P" from the same premises:

via conversion, the second premise yields \S � M < 1; f2c2=(f2c2 + k) >"; then,

deductively combining this judgment with the �rst premise, NARS arrives at the

conclusion \S � P <f1; f2c2c1=(f2c2 + k)>". Compared with the direct result, this

indirect conclusion has the same frequency value, but a lower con�dence value (unless

c1 = 1). Similarly, abduction and exempli�cation can be replaced by conversion-then-

deduction, but again with a reduction of con�dence (when k � 1). These results

show that each application of a syllogistic rule in NARS will cause some information

loss (while preserving other information, of course), and therefore direct conclusions

will always be more con�dent. On the other hand, the fact that exactly the same

frequency value is arrived at by following di�erent inference pathways shows that the

truth-value functions de�ned above have not been coined individually in ad hoc ways,

but are closely related to each other, since all of them are based on the same semantic

interpretation of the truth value.

4.3 Rules for the other two inheritance relations

After determining the inference rules for the basic inheritance relation \�", it is

not di�cult for us to get inference rules for the two derived inheritance relation, the

symmetric inheritance relation \=" and the singular inheritance relation \2".

By de�nition, evidence (positive and negative) for either \S � P" or \P � S" is

also evidence for \S = P". Therefore, weight of evidence for \S = P" is de�ned as

w+ = jES \ EP j + jIS \ IP j, w = jES [ EP j + jIS [ IP j. The above de�nition also

implies that the two judgments \S � P <f1; c1>" and \P � S <f2; c2>" can be

combined into \S = P < f; c >" by the revision rule de�ned previously (of course,

the premises should be supported by non-overlapping evidence).
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A similarity judgment can also be obtained by comparing the relations of two

terms to a third term | for example, from premises \P � M < f1; c1 >" and

\S �M <f2; c2>" to \S = P <f; c>". The truth-value function of this comparison

rule is, as before, based on the semantics of L and on the functions T-norm/T-conorm.

The frequency of the conclusion is determined by how similar S and P are, judged

from their relations to M only. Naturally, we have f = 1 � jf1 � f2j, which is

the complement of the di�erence between f1 and f2. The weight of evidence of the

conclusion is no bigger than 1 (analogous to the cases of induction and abduction),

and is conjunctively determined by the con�dence values of the premises and S(f1; f2)

(because at least one premise should be positive, analogous to the case of deduction).

In summary, we have

Fcom : f = 1� jf1 � f2j

c = [c1c2(f1 + f2 � f1f2)]=[c1c2(f1 + f2 � f1f2) + k]

Using a similarity judgment as a premise, NARS can do a certain type of analogy|

that is, it can replace a term in a judgment by a similar term to get a new judgment.

For example, if the system is given the premises \apple � fruit < f1; c1 >" and

\pear = apple <f2; c2>", it can come to the conclusion \pear � fruit <f; c>".

It is easy to see that the situation here is quite similar to that of deduction. If

f2 = c2 = 1, pear and apple become identical, therefore <f; c> should be <f1; c1>.

If f2 = 0, pear and apple share no common relations, therefore f = 0 | that is, no

positive evidence for \pear � fruit" can be obtained in this way. When f1 = f2 = 0,

there is no evidence for the conclusion. Exactly the same boundary condition for f

applies as in deduction. Consequently, we take f = T (f1; f2)=S(f1; f2).
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However, as for the con�dence of the conclusion, there is a subtle di�erence be-

tween analogy and deduction. If we change the second premise in the example

into \pear � apple < f2; c2 >", then it becomes deduction. Since all evidence for

\pear � apple" is evidence for \pear = apple" but not vice versa, we expect the con-

�dence for the analogical conclusion to be lower than that of the deductive conclusion

(i.e., to be more sensitive to the decrease of c2), unless c2 = 1. For this reason, we

take c = T (c2; c
0), where c0 is the con�dence function of the deduction rule.

In summary, for analogy we have:

Fana : f = f1f2=(f1 + f2 � f1f2)

c = c1c
2
2(f1 + f2 � f1f2)

We also de�ne f to be 0 when both f1 and f2 are 0.

A variation of analogy arises if the two premises are \apple = orange <f1; c1>"

and \pear = apple <f2; c2>", with the conclusion being \pear = orange <f; c>".

The inference here is based on the transitivity of the \=" relation, and the order of

the two premises does not matter. We can see it as deduction going in both directions;

therefore, the truth-value function of the deduction rule is used here.

In NARS, the singular inheritance relation \2" is de�ned in terms of the basic

inheritance relation \�". Consequently, it is easy to get inference rules for the former

from those for the latter. For example, since from \fSg �M" and \M � P" NARS

can get \fSg � P" by deduction (treating fSg as a term), this mode of inference is

equivalent to deducing \S 2 P" from \S 2M" and \M � P".

In set theory the situation is just the reverse, where \�" (subset) is de�ned in

terms of \2" (membership). NARS is not built in that way because \�", as a

transitive relation, plays a fundamental role in syllogism. We cannot build syllogisms
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on the \2" relation alone. From \S 2M" and \M 2 P", we cannot get an inheritance

relation between S and P . For example, from \Tweety is a robin" and \Robin is a

species", we cannot establish a direct relation between \Tweety" and \species".

4.4 A summary of the rules

In the following, the rules derived in this chapter are formally displayed in several

tables.

� Revision rules

Revision happens when the bodies of evidence of the two premises are not over-

lapping, and can both be used as evidence for the same conclusion. In this situation,

either the premises must share two terms and must have the same inheritance rela-

tion, or else one must have an inheritance relation that is a special case of the other

(e.g., \=" to \�").

The revision rules of NAL2 are listed in Table 4.1, where the truth values of the

conclusions are all calculated by the function Frev de�ned previously.

J2 n J1 S � P P � S S = P S 2 P P 2 S

S � P S � P (Frev) S = P (Frev) S = P (Frev)

P � S S = P (Frev) P � S (Frev) S = P (Frev)

S = P S = P (Frev) S = P (Frev) S = P (Frev)

S 2 P S 2 P (Frev)

P 2 S P 2 S (Frev)

Table 4.1: Revision rules.
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� Syllogisms

The syllogistic rules take two premises that share a common term and are based

on non-overlapping evidence, and from them generate an inheritance relation between

the unshared terms.

Pulling together the conclusions that can be gotten by exchanging the order of

the premises, we get Table 4.2 for the syllogistic rules of NAL2, where the names of

truth-value functions indicate which function should be used for each case.

J2 n J1 P �M M � P M = P P 2M M 2 P

S �M S � P (Fabd) S � P (Fded) S � P (F 0

ana)

P � S (F 0

abd) P � S (F 0

exe) P 2 S (F 0

abd)

S = P (Fcom)

M � S S � P (Fexe) S � P (Find)

P � S (F 0

ded) P � S (F 0

ind) P � S (F 0

ana) P 2 S (F 0

ded)

S = P (Fcom)

S = M S � P (Fana) S 2 P (Fana)

P � S (Fana) P 2 S (Fana)

S = P (Fded)

S 2M S 2 P (Fabd) S 2 P (Fded) S 2 P (F 0

ana)

S = P (Fcom)

M 2 S S � P (Find)

P 2 S (F 0

ana) P � S (F 0

ind)

S = P (Fcom)

Table 4.2: Syllogistic rules.
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If one compares Table 4.2 with corresponding attempts in �rst-order predicate

logic, such as (Michalski, 1993), one �nds that term-oriented logics, like NAL and

Peirce's logic (Peirce, 1931), provide a simpler and more natural way to combine

di�erent types of inferences.

� Truth-value functions

The truth-value functions appearing in Table 4.1 and Table 4.2 are listed in Table

4.3, in their \frequency{con�dence" form.5 Given the known algebraic relationships

among the di�erent forms of truth values (see Table 3.1), it is not di�cult to rewrite

the functions in their weight-of-evidence or frequency-interval forms (Wang, 1994c).

It is sometimes possible to �nd direct intuitive justi�cations for a given algebraic

function in a manner di�erent from the way we derived them (for example, Bai Shuo

in (Bai, 1991) reached the same formula for the revision function from a di�erent

starting point), but not always.

f c

Frev
c1(1�c2)f1+c2(1�c1)f2
c1(1�c2)+c2(1�c1)

c1(1�c2)+c2(1�c1)
c1(1�c2)+c2(1�c1)+(1�c1)(1�c2)

Fded f1f2=(f1 + f2 � f1f2) c1c2(f1 + f2 � f1f2)

Fabd f2 f1c1c2(f1c1c2 + k)

Find f1 f2c2c1(f2c2c1 + k)

Fexe 1 f1c1f2c2=(f1c1f2c2 + k)

Fcom 1� jf1 � f2j [c1c2(f1 + f2 � f1f2)]=[c1c2(f1 + f2 � f1f2) + k]

Fana (f1f2)=(f1 + f2 � f1f2) c1c
2
2(f1 + f2 � f1f2)

Table 4.3: Truth-value functions.

5The formulas for these functions are by no means �nal. They were derived from natural boundary
conditions on the various types of inference, and may well be re�ned as a result of future research.
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In terms of con�dence of the conclusions, we can divide the seven truth-value

functions into three groups:

1. Revision is the only rule in which the the conclusion has a higher con�dence

value than the premises do.

2. In deduction and analogy, the con�dence values of the conclusions have 1 as

their upper bound, and therefore they have corresponding rules in binary logics

(where analogy degenerates into the mere substitution of identical items).

3. In abduction, induction, exempli�cation, and comparison, the upper bound

of the conclusions' con�dence values is less than 1, and depends on a system

parameter, k, which is a constant, but can take di�erent values in di�erent

systems. Consequently, these rules have no counterparts in binary logic.6

� Question-related rules

In NARS, there are three types of rule that directly deal with questions. For a

given question, they decide, respectively, what is an answer, which answer is better

when multiple answers have been found, and how to generate derived questions.

As was stated at the end of Chapter 3, a judgment \S � P <f; c>" is an answer

to questions like \S � P", \S � ?", and \? � P". Similar rules apply to the \="

relation and the \2" relation.

If two answers J1 and J2 are found for a given question Q, there are several

possibilities:

1. J1 and J2 are about di�erent inheritance relations, such as \S � P1" and

6De�ning \induction" as \reverse deduction" and \abduction" as \explanation" leads to quite
di�erent results. We will discuss such issues in Chapter 7.
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\S � P2". In this case, the judgment with a higher expectation value (de�ned

in Section 4.1) is a better answer.

2. J1 and J2 are about the same inheritance relation, such as \S � P", and they

are based on overlapping evidence. In this case, the judgment with a higher

con�dence value is a better answer.

3. J1 and J2 are about the same inheritance relation, and they are not based on

overlapping evidence. In this case, the two judgments should be combined by

the revision rule to get J3, which has a higher con�dence, so is a better answer

to Q than either J1 or J2.

An important implication of the above rules is: there is no \�nal answer" to any

question, though the system can choose a better answer between two candidates,

and the rules of choice can be easily extended into cases involving more than two

candidates. Because both expectation and con�dence are real numbers in (0, 1),

an answer can only be the \current best", meaning that it is better than all known

answers, but cannot be the \ultimate best", meaning that there will be no better one

in the future. In the next chapter, we will see how this implication in
uences the

control strategy of the system.

What the system should do when no ready-made answer can be found for a ques-

tion? Because it has insu�cient resources, NARS cannot exhaustively produce all

combinations of premises in order to derive a desired conclusion. Instead, backward

inference rules are used to make the system work in a goal-directed manner.

The backward inference rules of NARS are determined by the following principle:

A question Q and a judgment J will give rise to a new question Q0 if and only if

an answer for Q can be derived from an answer for Q0 and J , by applying a forward

inference rule | that is, a syllogistic rule, as de�ned above.
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Given this de�nition, backward inference is just the inverse of forward inference,

and it works by \waking up" related judgments in order to answer questions that are

presented to the system (this will be explained in the next chapter). A backward-

inference table can be built from the syllogism table, Table 4.2, by taking the conclu-

sions in Table 4.2 as questions (Q), one premise (J2) as knowledge (K), and the other

premise (J1) as the derived question. After renaming the terms and rearranging the

order, we get Table 4.4, in which \P" can be either a term or a question mark.

K nQ P � M M � P M = P P 2M M 2 P

S �M S � P S � P S � P

P � S P � S P 2 S

S = P

M � S S � P S � P

P � S P � S P � S P 2 S

S = P

S = M S � P S 2 P

P � S P 2 S

S = P

S 2M S 2 P S 2 P S 2 P

S = P

M 2 S S � P

P 2 S P � S

S = P

Table 4.4: Backward inference rules.
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The backward-inference table turns out to be identical with the syllogism table,

if we ignore the truth-value functions. This elegant symmetry reveals an implicit

property of the syllogistic rules of NARS | that is, for any three judgments J1, J2,

and J3, if J3 can be derived from J1 and J2 by a syllogistic rule, then from J3 and

J1 the system can generate J 0

2, which involves the same inheritance relation between

the same two terms as does J2 (the truth values of J2 and J 0

2 may be di�erent).

Intuitively, the three inheritance relations constitute a triangle from any two sides of

which the third side can be derived. Such a property does not give rise to in�nite

loops in the system, because if J3 is really derived from J1 and J2, it must share

\serial numbers" (see the previous chapter) with each of the two, which prevents the

system from taking J3 and J1 (or J2) as premises in further inferences.



5

Control Mechanisms

Given the logic described in the last two chapters, we now know what conclu-

sions can be inferred from a system's experience, but this does not mean that those

conclusions really will be generated by the system.

In general, to build a reasoning system, a logic alone is not enough. A control

strategy is needed to pick premises and rules for each inference step, and a storage

mechanism is needed to keep track of knowledge and questions as well as of intermedi-

ate results and derived questions. Carnap calls these components \methodological",

and distinguishes them from the \logical" components of a system (Carnap, 1950). A

similar distinction is made by Kowalski in the formula \algorithm = logic + control"

(Kowalski, 1979).

Generally speaking, the logical part of a reasoning system provides the possibility

for a conclusion to be obtained, and the control part turns some of these possibilities

into reality. Only in the case of a system that has su�cient knowledge (meaning it

can generate all possible conclusions in �nite time) and su�cient resources (meaning

it has both time and space to do so) can the control part be ignored as unimportant.

Obviously, NARS is not such a system.

78
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5.1 Controlled concurrency

NARS receives two types of tasks from its environment: new knowledge (in the

form of judgments) and questions. To process a piece of new knowledge means to

apply some inference rule to it and to some piece of old knowledge (using them as

premises) to get some new conclusion. To process a question means to match it with

available knowledge to �nd an answer or to generate some derived questions, whose

answers will in turn lead to answers of the original question.

Therefore, NARS carries out both forward inference | that is, from judgments to

judgments | and backward inference | that is, from a question and a judgment to

a (derived) question or an answer (provided by the judgment). Such a bidirectional


ow of activity is critical to NARS. If it worked only backwards, the system could

not get answers to certain questions (in the previous chapter we saw that truth-

value functions are attached only to forward inference rules). On the other hand, the

system does not possess enough resources to work forwards only (thus exhaustively

generating all conclusions), so it must use questions to guide its inferences in a goal-

directed manner.

We say that NARS works under insu�cient time resources, or \under time pres-

sure", �rstly because the system's information-processing ability (represented by the

number and speed of its processors) has an upper bound, and secondly because all

tasks have time constraints attached to them, and so the system cannot process them

for as long as it wishes.

How to represent a time constraint (or time pressure)? The most common way

in so-called \real-time systems" is to assign a deadline | a �xed, limited amount

of time | to each task. However, this type of time constraint is inappropriate for

NARS, for the following reasons:
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1. The system cannot depend on the environment to assign such deadlines, because

the resulting requirements may exceed the system's capacity.

2. In general, the system cannot anticipate how much time it ought to spend on

a task when it is accepted (from the environment) or generated (by the system

itself), because that depends on future events | for example, on whether an

answer is found soon, and on how many new tasks show up in the near future.

3. The concept of \deadline" implicitly assumes a step function of the utility of

the answer by requesting an answer at a certain time, t | that is, an answer

provided before t does not get extra credit, and an answer found after t is

completely useless. Such a rigid, black-and-white attitude is not suitable for

many situations.

NARS' goal is not to obtain answers of a predetermined quality, but to work

as e�ciently as possible when resources are in short supply; for this reason, NARS

distributes its resources among many tasks. Consequently, the time resource given to

a task is not determined by an absolute deadline, but by a relative \share", which

depends both on the request from the external environment and on the internal

situation of the system.

In general, there are two ways to distribute time among tasks: sequential and

parallel. \Sequential" means to process the tasks one by one, and \parallel" means

to have more than one task being processed at the same time. NARS processes its

tasks in parallel, because that is a more 
exible way to distribute resources. It should

be stressed for this purpose we do not need parallel processing at the hardware level

(i.e., multiple processors) | such an implementation is possible, but is not necessary

for the model.

To represent the time pressure on a task, an \urgency" measurement is introduced.
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De�nition 15 The urgency value of a task is a real number in (0, 1]. At any given

instant, if the urgency of task t1 is u1 and the urgency of task t2 is u2, then the

amounts of time resources the two tasks will receive will have the ratio u1 : u2.

Urgency is therefore a relative rather than an absolute quantity. Knowing that

u1 = 0:4 tells us nothing about when task t1 will be �nished or how much time the

system will spend on it. If t1 is the only task in the system at the time, it will get

all of the processing time. If there is another task t2 with u2 = 0:8, the system will

spend twice as much time on t2 as on t1.

Intuitively, we can envision NARS as having a task pool, in which there is an

urgency value attached to each task. The system processes the tasks in a time-

sharing manner, meaning that the processor time is cut into �xed-size time-slices,

and in each slice a single task is processed. Because NARS is a reasoning system,

its processing of a task divides naturally into inference steps, one per time-slice.

The system distributes its time-slices among the tasks, giving each task a number

of time-slices proportional to its urgency value. As a result, urgency determines the

speed of processing of that task. This picture is very similar to the \parallel terraced

scan", introduced by Hofstadter (Hofstadter, 1984). \The basic image is that of

many `�ngers of exploration' simultaneously feeling out various potential pathways

at di�erent speeds, thanks to the coexistence of pressures of di�erent strengths."

(Hofstadter and FARG, 1995)

If the urgencies of all tasks remain constant, then a task that arises later will get

less time than a task that arises earlier, even if the two have the same urgency value.

A natural solution to this di�culty is to introduce an \aging" factor for the urgency

of tasks, so that all urgency values gradually decay.

De�nition 16 The durability factor (or value) of a task is a real number in (0, 1).
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If at a given moment a task has urgency value u and durability factor d, then after a

certain amount of time has passed, the urgency of the task will be du.

Therefore durability is also a relative measurement. If at a certain moment d1 =

0:4, d2 = 0:8, and u1 = u2 = 1, we know that at this moment the two tasks will get

the same amount of time resources, but when u1 has decreased to 0.4, u2 will only

have decreased to 0.8, so the latter will then be receiving twice as much processing

time as the former. (Note that under this de�nition, if a task has a high durability

factor, it decays slowly.)

By assigning di�erent urgency values and durability values to tasks, the environ-

ment (i.e., a human user or another computer system) can put many independent

types of time pressure on the system. For example, we can inform the system that

some tasks need to be worked on right now but that they have little long-term impor-

tance (by giving them high urgency values and low durability values), and that some

other tasks should be processed for a longer time (by giving them high durability

values).

Aging is not the only factor that changes the urgency distributions among the

tasks. The amount of time spent on a task is determined not only by requirements

of the environment, but also by the current result(s) the system is getting for the

task. For example, if the system has found a good answer to a question, the question

should become less urgent, and its durability factor should also be decreased (so it is

given less time).

For these reasons, each time a task is processed (i.e., during each inference step),

the system re-evaluates the task's urgency and durability values, to re
ect the current

situation. As a result, NARS maintains a dynamical distribution of urgencies in its

task pool.
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When should the system stop processing a task? Ideally, as in conventional com-

puter systems, this should happen when the task has been \�nished". For a piece of

new knowledge, this would mean that the system had generated all its implications.

For a question, it would mean that the system had found the best possible answer,

given its knowledge. In both cases, the system would need to access all relevant

knowledge. However, under the assumption of insu�cient resources, such exhaustive

use of knowledge is not possible for NARS. When time is in short supply, some pieces

of knowledge have to be ignored, even if they may be relevant.

The most common method for dealing with insu�cient resources is to retreat to a

stance of accepting satisfactory solutions instead of complete solutions. For example,

we can limit the maximum number of steps of forward inference for new knowledge,

or set a threshold for the con�dence or expectation of the answers. These types of

methods are widely used in heuristic-search systems, but they are too in
exible for

the purpose of NARS. Because the supply and demand of resources are constantly

changing in NARS, such thresholds are sometimes too high (therefore the system still

cannot satisfy them) and sometimes too low (therefore the system makes no attempt

to get better results even though resources are still available).

The solution used in NARS is: when a task is removed from the task pool, it is

not because the processing of the task has met some predetermined goal, but because

the task has lost too much ground in the competition for resources. Thus, when the

task pool is exceeded (it has a constant capacity), tasks at the low end of the urgency

spectrum are removed. This strategy means that resource allocation in NARS is

context-dependent. Even if we provide the same task, with the same urgency and

durability values, to the system, it may be processed di�erently: when the system is

busy (that is, there are many other tasks with higher urgency values), the task will

be processed only brie
y, and only \shallow" implications or answers will be found;
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when the system is relatively idle (that is, there are few other tasks), the task will be

processed more thoroughly, and \deep" results can be obtained. Generally speaking,

a task can be processed for any number of steps, as in \anytime" algorithms (Boddy

and Dean, 1994). The actual number of steps to be carried out is determined both

by its initial urgency and durability values, and by the resources competing in the

system.

If the task is a question asked by the environment, when to report an answer? In

standard theories of computation, an answer gets reported only at the \�nal state",

when the system has completed its processing of the question. However, when time

is treated as a limited resource, it is reasonable to ask the system to try to provide

some sort of answer as soon as possible. As was explained above, when an answer

is found, it does not necessarily mean that the system will stop processing the task.

Indeed, according to the question-related rules summarized in Section 4.4, it is always

possible for NARS to �nd a better answer for a question no matter what has been

found, because the quality of an answer, represented by its con�dence or expectation

value, can never reach 1, but can only approach it asymptotically.

As a result, the system may report more than one answer for a question | it

can change its mind when new evidence is taken into account, like trial-and-error

procedures (Kugel, 1986). The system keeps a record of the best answer it has found

for each question, and whenever a new candidate is found, it is compared with the

current best. If the new one is better (that is, has a higher con�dence or expectation),

it is reported to the user, and the record is updated. On the other hand, it is also

possible for a question to be removed from the task pool before even a single answer

is found for it.

NARS constantly generates derived tasks (judgments and questions) with its in-

ference rules. Each such task is assigned urgency and durability values by the system,
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and then put into the task pool. After that, it is treated just like a task provided

by the environment. Even if a \parent" task has been removed (by losing out in

the competition for resources), \child" tasks derived from it may still be processed,

provided that they have su�ciently high urgency values. For example, when solving

a question Q, NARS may generate two derived questions Q1 and Q2 (by backward

inference). Later, it �nds an answer to Q1, which leads to an answer to Q. At this

point, the urgency values of Q and Q1 are decreased more rapidly than that of Q2,

and it is possible for Q2 to be processed even after Q has been removed from the

system's task pool. If the purpose of a system were solely to answer questions coming

from the environment, the above strategy would seem pointless, because Q2 is merely

a means to solve Q, hence should go away if Q goes away. However, the purpose of

NARS is to adapt to its environment, which means that Q2, as a derived question,

has value for its own sake, even in a situation where the question that engendered it

has utterly vanished.

What I have described in this section is what I call \controlled concurrency". Its

main features, summarized, are these: the environment provides the system tasks

from time to time, giving each task an urgency value and a durability factor. In each

inference step, the system picks a task according to the current urgency distribu-

tion, generates new tasks as results of the interaction between that task and relevant

knowledge, then adjusts the urgency of the task according to its durability value and

the result of the inference. An answer is reported to the environment as long as it is

the best the system has so far found for the given question. Tasks with low urgency

are removed as a result of competition for resources.

This control mechanism is di�erent from that of ordinary time-sharing, because

here the tasks work on a common knowledge base, and it is not guaranteed that

all tasks will be processed all the way to their �nal conclusions. Consequently, the
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interaction among tasks in NARS is much stronger and more competitive than that

among the processes in a conventional time-sharing system.

5.2 Bags and chunks

The above ideas can be generalized. Let us say that a system has some items to

process in a certain way. Because new items may arrive at any time, and because the

time requirements of the items would exceed the system's capacity, it is impossible for

the system to do the processing exhaustively. It has to distribute its time resources

among the items, and to truncate the processing of an item before reaching its \�nal

conclusion". Furthermore, items are not treated equally. The system evaluates the

relative priority of each item as a function of several factors, and adjusts its evaluation

when the situation changes. In addition, the system's storage capacity, which is a

constant, is also in short supply.

Because this abstract phenomenon pervades the discussion of systems with insuf-

�cient resources, it will be useful to characterize it in terms of a class of objects, in

the sense of object-oriented programming, where an object is a data structure with

certain speci�c operations de�ned on it.

Let us de�ne a class called \bag". A bag can contain a constant number of items.

Each item has a priority value, which is a real number in (0, 1]. There are two valid

operations de�ned on a bag: put-in and take-out. The operation put-in takes an item

as argument, and has no return value. Its function is to put the item into the bag.

If the bag is already full, the item with the lowest priority is �rst removed from it,

and then the new item takes its place in the bag. The operation take-out has no

argument, and returns one item when the bag is not empty (when the bag is empty,

a special symbol is returned). The probability that any given item will be chosen, its
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\accessing rate", is proportional to its priority.

Now we can describe the memory structure of NARS in terms of bags. In NARS,

each inference step takes a task and a piece of knowledge as premises. We know, from

the description of the logical part of the model, that the two premises must share a

common term. This simple property of term logic provides a natural way of focusing

the selection of premises to within a small subset of the system's full knowledge.

For a task with the form \S � P", the knowledge that can directly interact with it

must have an S or a P in it. This suggests clustering tasks and pieces of knowledge

according to the terms they contain. In particular, if we put all tasks and knowledge

that share a common term together, call it a chunk, and name it by the shared term,

then any valid inference step will necessarily happen within a single chunk.1

De�ned in this way, a chunk becomes a higher-level unit of resource allocation,

which is larger than a task or a piece of knowledge. Intuitively, a chunk corresponds

to a concept. The name of a chunk is a term, and the body of the chunk contains

the meaning of that term | that is (according to the experience-grounded semantics

introduced in Chapter 3), its experienced relations with other terms. The memory of

the system is simply a set of chunks.

Now the action of choosing a task can be recast as a two-step process: �rst choosing

a chunk, and then from it choosing a task. In other words, the system distributes

its resources �rstly among the chunks, and then secondly, within each chunk, among

the tasks. The result is a two-level structure. On both levels, the notion of \bag"

applies. Speci�cally, we can describe the memory of NARS as a bag of chunks, with,

within each chunk, a bag of tasks.

Let us assume that the system has picked some chunk, S, and a task inside it,

1Obviously, such an approach introduces a certain amount of redundancy into the system. For
example, the task \S � P" belongs to both chunk S and chunk P .
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\S � P < f; c >", which is a piece of new knowledge. Now how to choose another

piece of knowledge to be used with it? As was stated above, the other piece of

knowledge should also come from within chunk S. There are �ve types of knowledge

in the chunk, of the forms \S � x", \x � S", \S 2 x", \x 2 S", and \S = x"

respectively, where x can be any term.

From Table 4.2 we can see that given the type of the task, di�erent types of

knowledge lead to di�erent types of inference. In the current example, the inference

may be deduction (if \x � S" or \x 2 S" is chosen), induction and comparison (if

\S � x" is chosen), analogy (if \S = x" is chosen), or even nothing (if \S 2 x" is

chosen). Since the purpose of forward inference is to reveal the implications of new

knowledge, the system tends to prefer deductive conclusions to inductive conclusions

(because the former usually have higher con�dence), and will not pick a piece of

knowledge that leads to no conclusion for this step. For each type of knowledge, the

system prefers items that have higher con�dence and that are more relevant to the

current situation. Therefore, knowledge choosing is also a two-step action. First, a

knowledge type is chosen probabilistically as a function of the type of the task, and

then a piece of knowledge of the chosen type is chosen. The second step is also carried

with the aid of the \bag" notion de�ned above. In particular, the pieces of knowledge

in each chunk are organized by type, so that each chunk contains �ve knowledge bags.

In summary, the memory of NARS is a bag of chunks, with each chunk consisting

of a task bag and �ve knowledge bags. To make the discussions easier, in the following

I will use activity, urgency, and importance for the priority value of a chunk, a task,

and a piece of knowledge, respectively.

Now we can see the distinction between tasks and pieces of knowledgemore clearly.

All questions are tasks. All judgments are knowledge. New knowledge also serves as

tasks for a short time. If a piece of knowledge provides an answer for a question, it
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will be treated as a task for a short time. Because of this distinction, the system has,

at any given moment: (1) a small number of tasks, which are active, remembered

for a short time, and highly relevant to the current situation; and (2) a much larger

amount of knowledge, which is passive, remembered for a long time, and mostly not

relevant to the current situation.

5.3 An atomic step

Processing in NARS consists of the repeated execution of the following sequence

of operations, which constitutes one \step of inference". Such a step always takes

a (nearly) constant amount of time, no matter how big the memory is. This is a

consequence of the fact that all operations listed below take roughly constant time.

(1) Handling of inputs

In principle, the environment can provide new questions and knowledge to the

system at any time. We can assume that the inputs are placed in a bu�er and are

processed only at the beginning of each step. All the inputs are treated as tasks by

the system. The environment provides urgency and durability values for each piece

of input. The system sorts the input into the task bags of the appropriate chunks,

and increases the activity of these chunks. If an input is a piece of knowledge (not a

question), it will also be put into the knowledge bag of the appropriate chunks.

(2) Choice of a chunk

The system picks a chunk from the memory. As was stated earlier, the choice is

probabilistic, with relative probabilities determined by the activity distribution of the

chunks in the memory. Generally speaking, a chunk containing more urgent tasks is

more active | that is, has a higher chance of being chosen.
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(3) Choice of a task

A task is removed from the task bag of the chunk, with relative probabilities

determined by the urgency distribution of the tasks in the task bag.

(4) Choice of a knowledge bag

The system makes a choice among the �ve knowledge bags inside the chosen

chunk, again probabilistically, biased by the type of the task. Generally speaking, a

knowledge type that usually leads to better results has a higher chance.

(5) Choice of a piece of knowledge

A piece of knowledge is taken out of the chosen knowledge bag, with relative

probabilities determined by the importance distribution of the pieces of knowledge in

the knowledge bag.

(6) Inference-drawing

Unlike many other systems, NARS does not decide what type of inference will be

used to process a task at the moment the task is speci�ed, but works in a knowledge-

driven way | that is, it is the combination of task and knowledge that happen to be

picked that determines what type of inference will be carried out. Depending on the

combination of task and knowledge, the inference will be one of the following:

match: if the task is a question, and the piece of knowledge happens to be the current

best answer to the question, a copy of the piece of knowledge is generated as

a new task, and also reported to the user if the question is an input question

(i.e., asked by the user);

backward inference: if the task is a question, the piece of knowledge may lead to

derived questions (Table 4.4);
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revision: if the task and the piece of knowledge happen to provide evidence for the

same inheritance relation, the evidence is accumulated (Table 4.1);

forward inference: if the task and the piece of knowledge provide evidence for two

inheritance relations that share exactly one term, new relations are formed

between the unshared terms (Table 4.2).

The making of the inference thus results in one or more derived tasks.

(7) Evaluation of priorities

The system needs to assign urgency and durability values for the derived tasks,

and to adjust the urgency/importance and durability value of the task/knowledge

that are serving as premises in the current step, and after doing so, to put them back

into the their respective bags. After that, the activity and durability values of the

current chunk are also adjusted, and the chunk is returned into memory.

(8) Handling of results

The derived tasks are placed in the input bu�er and will be processed, like input

tasks, at the beginning of the next atomic step.

5.4 Priority and durability

What has not been discussed is the subtlest part of the control mechanism: how to

determine the priority and durability values for chunks, tasks, and pieces of knowledge

in phase (7) of each atomic step. To this end, we need to design a set of numerical

functions.

Since all the quantities involved are real numbers in [0, 1], these functions have

been designed in a manner reminiscent of the design of the truth-value functions.
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First, the boundary condition constraining the desired function is determined, and

then a function satisfying this condition is formed with the help of T-norm, T-conorm,

and other general-purpose operators (such as di�erence, average, and so on). Func-

tions obtained in this way are by no means optimal. They only re
ect my current

analysis of the situation, and my ideas are still being revised from time to time. In

the following, therefore, we will discuss them only qualitatively.

� Tasks

The urgency and durability values of an input task are assigned by the user, and

re
ect the time constraint placed by the user on the task. Of course, the system can

provide default values.

The urgency and durability values of a derived task are determined by several

factors: generally, it inherits them from its parents. If both the task and knowledge

that derive the new task have high priority (or durability) values, the new task will

get a high urgency (or durability) value. However, the values will also be a�ected

by the \quality" of the inference result. In revision, a new task gets a high urgency

value if the two premises have signi�cantly di�erent truth values (a belief con
ict).

In forward inference, a new task gets a high urgency and durability values if it is a

con�dent conclusion. In backward inference, if the answer to the derived task can

(with its parent knowledge) generate a good answer to the parent task, it gets high

urgency and durability values. If the given task is a question and the given piece of

knowledge provides an answer for it, the urgency and durability values of the new

task (which is a copy of the piece of knowledge) will depend on how good the answer

is.

After the inference, the urgency value of the parent task is decreased. In addition

to the decrease due to the durability factor described earlier, there may be further

decrease, depending on the quality of the result. If an answer to a question is found
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and is quite good (that is, has a high con�dence or expectation), then the urgency of

the question is decreased more than if the answer is poor.

� Knowledge

Initially, a piece of knowledge is generated by copying some task. It is given the

highest importance value (that is, 1), and its durability value is determined by the

urgency and durability values of that task. In this way, new knowledge gets more

attention from the system, but usually decays rapidly unless it corresponds to an

urgent and long-term task.

After a piece of knowledge is used, its importance and durability values are ad-

justed. In contrast to the case of tasks, the importance value of a piece of knowledge

can be increased. In each adjustment, there are two competing forces pulling the

importance value in opposite directions. One force is the universal aging force, which

decreases the importance value by multiplying it by the durability factor (a number

less than 1). On the other hand, the piece of knowledge gets rewarded each time (by

increasing its importance value) depending on how good the result is in this step.

Therefore, in the long run, useful knowledge (which has provided good answers and

implications in the past) gets high importance values, which makes it more accessible

in the future.

The durability value of any given piece of knowledge is increased each time. As

a result, the longer a piece of knowledge stays in the memory, the more slowly its

importance value will decrease.

� Chunks

The activity value of a chunk increases when a task is put into it, with the size

of the increase depending on the urgency value of the task. At the same time, the

chunk's durability value is also adjusted. If the chunk already has high activity before
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the task is inserted into it, it will be given a high durability value, which ensures that

the current high activity will be kept longer. On the other hand, if the chunk's activity

took a big, upwards jump, then the durability value will be set low, so the chunk will

lose its activity soon.

The activity value of a chunk decreases whenever any task is removed from it.

In addition to the decrease due to the durability factor, the size of the decrease also

depends on the urgency of the task that was just removed. Speci�cally, if the task

had a high urgency value, the decrease will be larger.

� Summary

What makes the above functions di�erent from the heuristics used in expert sys-

tems is their domain-independent nature. In the design of these functions, no assump-

tion was made about the content of the task or the knowledge. However, this does

not mean that NARS uses a general-purpose, context-independent algorithm, which

always uses the same predetermined method to solve problems, and is insensitive to

available domain knowledge. Indeed, there is a pervasive in
uence of domain knowl-

edge on the control of inference-making at all times when the system is running. As

was laid out above in great detail, the system's choice at each step strongly depends

on the available and activated domain knowledge, which is certainly not predeter-

mined by the designer. On the other hand, the design of the system, including all the

functions discussed above, is independent of any particular domain.

Another property worth mentioning is that in each step, only those chunks, tasks,

and pieces of knowledge that are directly involved have their priority and durability

values adjusted. Thus, no matter how big the memory is, this set of adjustments takes

roughly constant time. This is exactly what one would wish for. On the other hand,

these adjustments have global e�ects. Since priority and durability are relative values,

the increase of the urgency of any particular task means that all competing tasks will
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have less chance. Though such e�ects are small at each step, they accumulate in the

long run, and result in a dynamic distribution of resources.

With all these control-related quantities adjusted dynamically, some tasks are

processed faster, and some pieces of knowledge are more accessible, while others

slowly slide into dormancy. And because storage space is limited, chunks, tasks and

pieces of knowledge with su�ciently low priorities may wind up being permanently

forgotten. This, though sometimes disadvantageous from a practical point of view, is

the price any system has to pay when its knowledge and resources are insu�cient.



6

Computer System

The �rst version (1.0) of NARS was implemented in 1986, for my Master of Science

degree. The programming language was Prolog. The results are presented in (Wang,

1986; Wang and Hsu, 1987).

In 1992 and 1993, in preparation for my Ph.D. project, I implemented versions

2.0, 2.1, and 2.2, all in Scheme (Wang, 1993c; Wang, 1993d).

In this chapter, the most recent implementation of the NARS model, version 3.0,

will be described.

6.1 Internal structure

From the descriptions of the model in the previous chapters, we can see that

NARS can be cast quite naturally in the framework of object-oriented programming.

For this reason, NARS 3.0 was written in C++.

The kernel of the implementation is the \bag" class. As was described previously,

the \take-out" operator makes its selection by looking at the priority distribution of

items within the bag. A very precise implementation of this behavior, though not

96
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impossible, is not necessary for the current purpose. What we need most of all is

a good approximation to the ideal behavior, plus adherence to the constraint that

the take-out operator (as well as the put-in operator) should take a roughly constant

time, preferably a very short time.

The actual implementation divides the items in a bag into several levels, according

to their priority. Thus a continuum of values is approximated by a discrete set

of levels. The take-out operator visits these levels according to a predetermined

probability distribution. Within each level, items are removed in a \�rst-in-�rst-out"

order. The put-in operator inserts a new item into the level that corresponds most

closely to the item's priority. When a bag is full and a new item must be inserted, an

item at the lowest non-empty level is removed. In this way, items are probabilistically

accessed in a manner that closely re
ects their priority, and yet their priorities are

never directly compared with one another; this design increases the computational

e�ciency of the operations.

Using the \class inheritance" mechanism provided by C++ (which should not

be confused with the \inheritance relation" between terms in NARS), three more

speci�c classes are de�ned as specializations of the \bag" class: \chunk-bag", \task-

bag", and \knowledge-bag". To reduce the computational overhead, what is actually

found in the \chunk-bag" is not chunks themselves (with their own task bags and

knowledge bags inside them), but the names of chunks. Once a name has been

selected, a look-up table is used to get the actual address of the chunk from its name.

Furthermore, the \chunk-bag" is divided into two bags, one for \active chunks", the

other for \dormant chunks"; both of these sub-bags have constant space, but only

the active chunks participate in the competition for time resources. When the bag

of active chunks is full, a name at the lowest non-empty level is moved into the bag

for dormant chunks, and thus that chunk is withdrawn from the competition for
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processor time. Of course, any dormant chunk can be activated by the arrival of a

new task. When the dormant-chunk bag is full, some chunk is erased from the system.

Therefore, active chunks are given (and �ght over) both time and space resources,

whereas dormant chunks are given (and �ght over) space resources only. In future

implementations of NARS, we can expect a relatively small active-chunk bag and a

huge dormant-chunk bag. In the current implementation, however, both bags are

small.

Aside from these bags, other major components of the system include the inference

tables (see Section 4.4), the truth-value functions (also see Section 4.4), and the

priority/durability functions (see Section 5.4).

There are two types of parameters that can be tuned. The �rst type includes all

space speci�cations, such as the sizes of various bags. These parameters are de�ned

as constants, meaning that they can be changed before compilation but cannot be

adjusted when the system is running. The second type includes the aging rates for

chunks, tasks, and knowledge, which can be adjusted when the system is running.

As de�ned in Chapter 5, the durability value of an item indicates how much of its

priority will remain after a speci�c constant amount time. The aging rates determine

that time constant. The smaller any aging rate is, the smaller the corresponding

constant is, therefore the faster the corresponding priority decreases.

6.2 User interface

The user interface of NARS 3.0 has been developed using the OSF/Motif toolkit,

which works smoothly with C++ classes.

A nice mechanism provided in Motif is \work procedure", which is a background

routine that is repeatedly called whenever no interface events happens. The atomic
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inference step of NARS (Section 5.3) exactly �ts into such a work procedure. Im-

plemented in this way, the system responds to user operations immediately, and the

expenses and complexity of implementing multiple processes are avoided.

Figure 6.1 shows a screen snapshot when the system is working on an example

(Example 5 of the next section). The other window snapshots in the following are

also taken from the same example, at di�erent moments. All these windows except

the main window can be created and destroyed interactively by the user.

Figure 6.1: Screen snapshot of NARS 3.0.

The main window of the system is shown in Figure 6.2.

The text region of the main window records the communications between the

system and the user. Lines that start with \>>>" are input to the system; lines

that start with \<<<" are output from the system; and the number after a \�"
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Figure 6.2: Main window.

indicates the time interval between successive lines, in terms of inference steps. Each

line of input and output shows a task, preceded by its urgency and durability values.

The truth values of all judgments are represented in the <frequency; confidence>

format,1 and any input task with con�dence value 0 is taken to be a question (its fre-

quency value does not matter). To indicate the various types of inheritance relations,

\�" is written in ASCII characters as \(=", \2" as \f�", and \=" as \==".

The three buttons on the bottom left side of the window correspond to the com-

mands for \repeatedly execute atomic steps", \stop executing atomic steps", and

\execute a given number of atomic steps", respectively. The \clock" always shows

1For the sake of simplicity, the \weight" and \interval" forms of truth value are not implemented
in NARS 3.0.
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the number of steps that have been taken since the last input or output event. The

button at the bottom right corner is for exiting the system.

The menu bar above the text region provides �ve sets of commands.

� Input

The system can get input either from a window or from a �le.

The \open window" command will display an auxiliary window (Figure 6.3) for

the user to provide questions and pieces of knowledge to the system. While the user

is creating a new task, the system may still be doing inference.

Figure 6.3: Input window.

The �le-related input commands include ones to do the following: to open a

speci�c �le, to pause while reading, to continue reading, and to stop reading (and

close the �le).

Having the system read an \experience" �le is a very e�cient way to put tasks

into the system, especially when the system is still under development. An experience

�le has precisely the same format as the text region of the main window. When the

system reads such a �le, lines starting with \>>>" are processed as new tasks, lines

starting with \*" are interpreted as instructions for the system to take that number

of inference steps, and lines starting with \<<<" are ignored. While reading from

a �le, the system still responds to interface events, including input from the input

window.
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The following is a sample experience �le:

>>> ( 0.7 , 0.6 ) Tweety {- bird < 1 , 0.8 >

>>> ( 0.7 , 0.6 ) bird (= animal < 1 , 0.8 >

* 10

>>> ( 0.8 , 0.4 ) ? {- animal < 0.5 , 0 >

* 10

>>> ( 0.8 , 0.8 ) animal == plant < 0.1 , 0.8 >

* 20

>>> ( 0.8 , 0.4 ) Tweety {- plant < 0.5 , 0 >

* 20

Intuitively, here the user �rst tells the system that \Tweety is a bird" and that \A

bird is an animal", with the same con�dence values. Since urgency and durability

are de�ned relatively, their precise values make no di�erence when the two pieces

of knowledge are given the same values. After being given a short time to process

the knowledge, the system is asked to �nd an instance of \animal". Comparing this

task with the previous two, we can see that the question is given a higher urgency

value and a lower durability value, so that it will get more attention at the beginning,

but will be forgotten earlier than the knowledge. Again, the precise urgency and

durability values are not important for the current discussion.

� Recording of conversation

There are commands that tell the system to start and to stop recording its ex-

perience/response (the conversation between the system and the user), respectively.

With these commands, the user can store an arbitrary section of the conversation

into a �le, which can be used later for analyzing the system's behavior, or can be

read later by the system (or other systems) as input.
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An example of a recorded conversation, with the previous experience �le as input,

will be discussed in the next section as Example 1.

� Memory

The user can save the current state of the system, including all the bags and the

values of all variables, into a �le. Later, such a �le can be loaded into the system,

to let it continue from a previous state. In this way, a user can let the system run

for an arbitrarily long time in principle, even though physically the system has been

\frozen" and \thawed" from time to time; such pauses have no in
uence on the

system's behavior.

� Display of speci�c bags

There are commands to open auxiliary windows to show the content and priority

distribution of a selected bag. As was stated in the previous chapter, a bag may

contain the names of all active chunks, all tasks in a chunk, or all knowledge of a

certain type in a chunk. For the latter two cases, the name of the chunk and the

type of the bag need to be speci�ed. The user can open several such windows to

follow the changes that happen at di�erent levels and points in the system. This

function is especially useful for the tuning and debugging of the system, as well as

when the system is used as a cognitive model. The \top items" option opens a \Demo

window" (Figure 6.4), which displays only items with top priority values in the bag,

with symbols indicating their priority and durability values. This type of window

is better for dynamical display. By contrast, the \all items" option opens a \Bag

window" (Figure 6.5) which contains more complete information about the contents

of the bag, and is better for static analysis.

� Parameter adjustment

All dynamical parameters can be changed using a scroll bar, and the change can be
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Figure 6.4: Demonstration window.

Figure 6.5: Bag contents window.
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saved or canceled (Figure 6.6). In the current version of the system, these parameters

include the aging rates of chunks, tasks, and knowledge, introduced previously. There

is also a threshold-like parameter that controls how \silent" the system is. When

this threshold is 0, the system reports (in the text region of the main window) all

conclusions it gets, no matter how trivial they are. With the increase of the threshold,

the system will only report important results (that is, with high priority and durability

values). When the threshold is 1, the system reports only the best answers to input

questions, and keeps all other results to itself.

Figure 6.6: Parameter window.

6.3 Examples

In this section, we shall see how NARS works by discussing several examples that

have been produced by the system. To simplify the discussion, in the following all

conversations were recorded when the system had just been \born" | that is, when

it has no previous experience. Also, the system is given no innate domain knowledge.

All the input judgments are assigned a con�dence value 0.8 by the user. Under the

presumption that k = 1 (the constant de�ning the \near future", de�ned in Chapter

3), this means that all input judgments are supported by evidence with w = 4 (so

c = w=(w + k) = 0:8).
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� Example 1

>>> ( 0.7 , 0.6 ) Tweety {- bird < 1 , 0.8 >

>>> ( 0.7 , 0.6 ) bird (= animal < 1 , 0.8 >

* 10

>>> ( 0.8 , 0.4 ) ? {- animal < 0.5 , 0 >

* 10

>>> ( 0.8 , 0.8 ) animal == plant < 0.1 , 0.8 >

* 4

<<< ( 0.81 , 0.21 ) Tweety {- animal < 1.00 , 0.64 >

* 16

>>> ( 0.8 , 0.4 ) Tweety {- plant < 0.5 , 0 >

* 5

<<< ( 1.00 , 0.02 ) Tweety {- plant < 0.10 , 0.41 >

After being told that \Tweety is a bird" and \A bird is an animal", the system

can �nd a single instance, \Tweety", for \animal", by deduction (see Section 4.4).

Because all available evidence is positive, the answer is \Yes". However, since the

con�dence of the conclusion is lower than either of the premises', it will be easier to

revise in the light of future evidence. Generally speaking, all syllogistic inferences

cause con�dence loss | that is, the con�dence of the conclusion is always lower than

the con�dence value of both premises.

The next thing that happens is that the system is told that \animal" and \plant"

are not similar to each other. By analogy, it concludes that it is very unlikely for

\Tweety" to be a \plant".

If the user changes the control factors in an experience �le, such as the urgency

and durability values of input tasks or the time interval between successive input
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tasks, the system's response changes, too, in the sense that the timings and orders of

reports are usually di�erent. However, what answers are possible is independent of

these control factors, being completely determined by the system's logic.

� Example 2

>>> ( 0.7 , 0.5 ) swan (= bird < 1 , 0.8 >

>>> ( 0.7 , 0.5 ) swan (= swimmer < 1 , 0.8 >

* 10

>>> ( 0.7 , 0.5 ) dove (= bird < 1 , 0.8 >

>>> ( 0.7 , 0.5 ) dove (= swimmer < 0 , 0.8 >

* 60

>>> ( 0.8 , 0.5 ) penguin (= bird < 1 , 0.8 >

>>> ( 0.8 , 0.5 ) penguin (= swimmer < 1 , 0.8 >

* 100

>>> ( 1 , 0.9 ) swimmer (= bird < 0.5 , 0 >

>>> ( 1 , 0.9 ) bird (= swimmer < 0.5 , 0 >

* 83

<<< ( 0.42 , 0.08 ) swimmer (= bird < 1.00 , 0.39 >

* 2

<<< ( 0.39 , 0.18 ) bird (= swimmer < 0.67 , 0.66 >

* 35

<<< ( 0.15 , 0.15 ) swimmer (= bird < 1.00 , 0.56 >

* 4

<<< ( 0.80 , 0.20 ) bird (= swimmer < 0.67 , 0.66 >

The system is told that \dove", \swan", and \penguin" are instances of \bird",

that \dove" is not a \swimmer", and that \swan" and \penguin" are instances of

\swimmer". Then it is asked, \Is a swimmer a bird?" and \Is a bird a swimmer?"
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According to the induction rule (see Section 4.2), \swan" and \penguin" provide

positive evidence for both inductive conclusions. \Dove" is a piece of negative evi-

dence for \A bird is a swimmer", but has nothing to do with \A swimmer is a bird".

Each piece of evidence generates a pair of inductive conclusions for the questions,

and then the corresponding conclusions are merged by the revision rule (see Section

4.1) to get summarized conclusions. As a result, \A swimmer is a bird" gets a higher

frequency (no negative evidence) and a lower con�dence (fewer examples) than \A

bird is a swimmer".

Since the question \Is a bird a swimmer?" is sent to both the chunk \swimmer"

and the chunk \bird", and since the two chunks work independently, the answer

\bird � swimmer <0:67; 0:66>" is reported twice.

For the question \Is a swimmer a bird?", the �rst answer is based on partial

knowledge | one piece of positive evidence. Later, the other piece of positive evidence

is taken into consideration, and the system provides a di�erent answer. In this sense,

NARS is a \non-monotonic logic", though quite di�erent from other logic systems

under that name (Reiter, 1987).

From this example we can see that though the answers can be understood as

statistical conclusions (such as \Three types of bird are known, of which two are

swimmers"), they are not generated by looking for birds in the knowledge base, then

counting swimmers among them. Instead, the system does induction from each piece

of evidence, then merges the results. In this way, the producing of an inductive answer

consists of many steps, and the system may stop anywhere, as a function of the real-

time pressures involving its computational resources. The system may happen to

�nd and take into account all relevant evidence, as in the current example, but such

completeness is not guaranteed and is not typical for more complex examples.
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� Example 3

>>> ( 0.6 , 0.5 ) sport (= physical-activity < 1 , 0.8 >

>>> ( 0.6 , 0.5 ) chess (= physical-activity < 0.2 , 0.8 >

* 5

>>> ( 1 , 0.9 ) chess (= sport < 0.5 , 0 >

* 1

<<< ( 0.66 , 0.05 ) chess (= sport < 0.20 , 0.39 >

* 1

<<< ( 0.36 , 0.05 ) chess (= sport < 0.20 , 0.39 >

* 8

>>> ( 0.6 , 0.5 ) sport (= competition < 1 , 0.8 >

>>> ( 0.6 , 0.5 ) chess (= competition < 1 , 0.8 >

* 184

<<< ( 0.75 , 0.12 ) chess (= sport < 0.60 , 0.56 >

This time, the system uses abduction to decide whether \chess" is a \sport".

Given the knowledge that \sport" usually means \physical activity" and \chess"

is seldom referred to as a \physical-activity", \chess" is judged as not a \sport".

However, the system then learns that \sport" also means \competition", and that

\chess" is a \competition", so in this sense, \chess" is a \sport". Finally, the positive

and negative evidence is combined by the revision rule and a summarized answer is

reported to the user, because the initial question, even though already answered once,

is still remembered by the system.

What makes this example di�erent from the previous one is that the answer should

not be understood extensionally as \There are many types of chess, but only 60%

of them are sports". As was explained earlier, the extent of extensional inclusion is
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only one particular way by which the truth value of a judgment is determined. Gen-

erally, a truth value can be generated by comparing the extensions of two concepts

(as in the earlier example) or by comparing the intensions of two concepts (as in the

current example). These two factors can even be mixed when an extensional conclu-

sion and an intensional conclusion are merged by the revision rule, thus becoming

indistinguishable in the result. Therefore, one can only say that the truth value of a

judgment records the extent to which one term \can be used as" the other, according

to the system's experience, but one usually cannot tell how such a value was arrived

at without examining the system's complete history.

� Example 4

>>> ( 0.9 , 0.6 ) fruit (= plant < 1 , 0.8 >

>>> ( 1 , 0.9 ) pear (= plant < 0.5 , 0 >

* 5

<<< ( 0.52 , 0.53 ) fruit == pear < 0.50 , 0.00 >

<<< ( 0.52 , 0.53 ) pear (= fruit < 0.50 , 0.00 >

* 7

<<< ( 0.50 , 0.53 ) fruit == pear < 0.50 , 0.00 >

<<< ( 0.50 , 0.53 ) pear (= fruit < 0.50 , 0.00 >

* 8

>>> ( 0.9 , 0.6 ) apple (= fruit < 1 , 0.8 >

>>> ( 0.9 , 0.6 ) orange (= fruit < 1 , 0.8 >

>>> ( 0.9 , 0.6 ) pear == apple < 0.9 , 0.8 >

* 5

<<< ( 0.77 , 0.18 ) pear (= fruit < 0.90 , 0.51 >

* 86

<<< ( 1.00 , 0.03 ) pear (= plant < 0.90 , 0.41 >
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In the previous examples, the \silence" parameter mentioned in Section 6.2 was

set to 1 by default, and so the system only reported answers to the input questions.

By decreasing the parameter, the user can get the system to report tasks generated

by itself. In this example, the parameter is set to 0.35.

After being told that \A fruit is a plant", the system is asked \Is a pear a plant?".

At this point, the system knows nothing about \pear", and so it produces two derived

questions to check whether a \pear" is a \fruit", and whether \pear" and \fruit" are

similar concepts (backward inference, see Section 4.4).

Thanks to the low silence parameter, the two questions are reported to the user

(and the system is working on them, too). This mechanism makes \active (system-

initiated) knowledge acquisition" possible, and now the system and the user use the

formal language (de�ned in Table 3.2) in a symmetric way: both of them can provide

knowledge and can ask questions.

In the current example, the user provides the required knowledge indirectly by

telling the system that both an \apple" and an \orange" are \fruits", and that \apple"

and \pear" are quite similar. Using relevant knowledge (\orange" is irrelevant here),

the system gets an answer to the original question by analogy (from \A pear and an

apple are similar" and \An apple is a fruit" to \A pear is a fruit") and deduction

(from \A pear is a fruit" and \A fruit is a plant" to \A pear is a plant").

Once again we see that in NARS, various types of inference rules are used in a

uni�ed manner. An analogical conclusion can later serve as a premise for deduction,

or be used to revise an inductive conclusion. As a result, an answer provided by the

system is usually generated through the cooperation of various types of rules along its

derivation path. Few results are obtained by deduction (or induction, analogy, and

so on) alone. As was stated earlier, neither the designer nor the system decides in

advance what rules to use for a speci�c task. Without following the system's activity
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step by step, we even cannot tell how an answer was derived.

� Example 5

>>> ( 0.7 , 0.6 ) cat (= animal < 1 , 0.8 >

>>> ( 0.7 , 0.6 ) dog (= animal < 1 , 0.8 >

* 10

>>> ( 0.8 , 0.4 ) cat (= dog < 0.5 , 0 >

* 8

<<< ( 0.74 , 0.11 ) cat (= dog < 1.00 , 0.39 >

* 1

<<< ( 0.74 , 0.11 ) cat (= dog < 1.00 , 0.39 >

* 1

>>> ( 0.7 , 0.6 ) dog (= pet < 1 , 0.8 >

>>> ( 0.7 , 0.6 ) dog (= barker < 1 , 0.8 >

* 50

>>> ( 0.8 , 0.4 ) cat (= barker < 0.5 , 0 >

* 6

<<< ( 0.10 , 0.01 ) cat (= barker < 1.00 , 0.12 >

* 13

<<< ( 0.22 , 0.02 ) cat (= barker < 1.00 , 0.31 >

* 11

>>> ( 0.8 , 0.4 ) cat (= pet < 0.5 , 0 >

* 22

<<< ( 1.00 , 0.02 ) cat (= pet < 1.00 , 0.31 >

* 28

>>> ( 0.8 , 0.6 ) animal (= thing < 1 , 0.8 >

* 17
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<<< ( 0.22 , 0.02 ) cat (= pet < 1.00 , 0.31 >

* 3

>>> ( 0.9 , 0.6 ) pizza (= thing < 1 , 0.8 >

* 50

>>> ( 1 , 0.9 ) pizza (= barker < 0.5 , 0 >

* 434

<<< ( 0.65 , 0.05 ) cat (= barker < 1.00 , 0.31 >

* 55

<<< ( 0.39 , 0.00 ) pizza (= barker < 1.00 , 0.09 >

* 35

<<< ( 1.00 , 0.00 ) pizza (= barker < 1.00 , 0.27 >

At the outset, the system is told that both \cat" and \dog" are instances of \ani-

mal". Based on this information, the system concludes that \cat" inherits properties

from \dog" (\Cat has some dogness"), though the con�dence of the conclusion is low.

Once again, the evidence is the shared intension, not extension, of \cat" and \dog",

and the conclusion is produced by the abduction rule.2

Later, therefore, given \A dog is a pet" and \Dogs bark", the system deduces \A

cat is a pet" and \Cats bark", with an even lower con�dence value. Though we know

the former is true whereas the latter is false, both are equally valid conclusions given

the evidence available to the system. When the system obtains more evidence in the

future, these beliefs will be revised.

For the same reason, when the system is told that \An animal is a thing" and

\Pizza is a thing", it guesses that \Pizza barks", because as far as it knows, \Pizza

2Of course, the rule also produces the symmetric conclusion \Dog has some catness", but this
is not reported because the symmetric question was not asked, and because the system's silence
parameter is set to 1 by default.
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has some dogness", both being \things". Such a conclusion (with its low con�dence,

of course) is valid, given the system's current knowledge.

Why does this conclusion look ridiculous to us? There are several factors that

contribute to such a feeling.

First, we humans know much more about \pizza" and \dog", especially about

their di�erences, than NARS does. If NARS were somehow provided with as much

knowledge as we have, it would of course assign a very low frequency value to \Pizza

has some dogness", and as a result, \pizza" would not inherit properties from \dog".

Another way of seeing this is to realize that to the system, \pizza" means no more

and no less than what it knows about the term, and since it knows nothing about

cheese and ovens and Italy and eating, the conclusion it makes is not so ridiculous. If

the word \seal" had been typed in instead of \pizza", the system would have reached

the same tentative conclusion | namely, that \Seals bark" | and in this case it would

not have sounded nearly as ridiculous to us (unless we interpret \seal" as meaning

\wax seal", in which case it sounds ridiculous again). One has simply to keep in mind

that bringing in full human knowledge to interpret the reasonableness of the system's

conclusion is very misleading; one has to imagine, instead, that one knows as little

about each word, even bland words like \thing", as the system does. This is hard for

a human to do, but it is the only way to relate properly to NARS (and in fact, to AI

systems in general, if one does not want to succumb to the Eliza e�ect).

Second, both \A dog is an animal" and \A dog is a thing" are true | we can

hardly �nd negative evidence for either of the two judgments, so their frequency

values are both close to 1. However, their con�dence values are di�erent. From

an extensional point of view, all instances of \dog" will also be instances of both

\animal" and \thing", therefore the two judgments are equally supported. From an

intensional point of view, however, there are many more properties shared by \dog"
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and \animal" than by \dog" and \thing". Consequently, \A dog is an animal" obtains

more evidence intensionally, and thus has a higher con�dence value than \A dog is a

thing". This result explains the well-known \speci�city principle" | when a concept

inherits properties from its superordinate concepts, the more speci�c a superordinate

concept is, the higher priority it has (other things being equal) (Kyburg, 1983; Wang,

1995b).

Third, we humans seldom consider either a dog or a pizza as a \thing" | while

they surely are \things", this fact is not helpful for most situations. Since everything is

a \thing", we hardly have anything to say about a \thing". Therefore, it is unlikely

for a judgment like \A dog is a thing" to be boosted in importance as a result of

its contributions in the past. It follows that the importance value of this piece of

knowledge will always be relatively low, and probably will constantly diminish, and

thus \thing" will intend to be ignored when the term \dog" is used.

The above analysis shows that though it is logically quite valid for NARS to be-

lieve \Pizza barks" in certain situations, such a conclusion will be thrown away as

the system acquires more and more experience, bring it closer and closer to that of an

English speaker (to whom pizza does not bark). On the other hand, we should realize

that, when probing in unfamiliar environments, we humans also often draw conclu-

sions that are similar to \Pizza barks" in spirit | they are valid given our knowledge

at the moment, but will look ridiculous later, when more evidence is collected.

The above examples are not the most complex that NARS can handle. More

complex experiments, some of them consisting of about twenty terms, a couple of

hundred input tasks, and tens of thousand of inference steps, have been carried out

in NARS. The results of such experiments provide richer phenomena, but are not as

easily analyzable as the above examples.
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6.4 Performance

The current implementation of NARS consists of roughly 5,000 lines (in C++),

and the object code takes about one megabyte of memory. When it is running on a

Sun Sparcstation and has a memory of 25 chunks, each inference step needs about

1/50 second.

The implementation of the logical part is straightforward, so the real purpose of

the computer system is to develop and test the control part of the NARS model.

Generally speaking, the model works as expected. The resulting system is adaptive

to its environment. It is limited by its �xed memory size, can react to various time

constraints, and is open to accepting and working on new tasks all the time. By

observing the changing internal structure of the memory, we can see how the time{

space resources are distributed among competing items, and how the distribution

varies dynamically.

Given the complexity and the speed of the system, it is practically impossible

for a human user to predict the system's reaction to an interactively provided task.

For a simple problem, the user may be able to distinguish possible answers from

impossible ones, but is unlikely to be able to predict which possible answers will

actually be produced by the system. On the other hand, if a certain state is saved

(by the \save" command) and a section of experience thereafter is recorded (by the

\record" command), the user can precisely reproduce and study the system's behavior

in this period (by resetting the system to the saved state, then feeding the recorded

experience to the system).

As an adaptive system, NARS exhibits behavior that is sensitive to its experience.

Not only the contents of input knowledge matters, the timing of input also makes a

di�erence. Two pieces of input knowledge will interfere with each other in terms of the
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processing that they trigger, if the interval between their arrivals is too short; on the

other hand, the chance of their interaction decreases if their arrivals are temporally

far from each other.

The input questions, though containing no knowledge, provide important infor-

mation to the system by showing which particular inheritance relations are of interest

to the environment. The system uses this type of information to adjust the priority

and durability values of relevant pieces of knowledge. Therefore, a way to \teach" the

system is to ask the right question at the right time. Moreover, repeating a question

can also be useful at certain moments, since doing so will draw the system's attention

to the question and the concepts involved in it.

In this way, a user of NARS plays a role that is halfway between those of traditional

\programmer" and \user". What a user does, when communicating with NARS,

in
uences the system's internal structure and future behavior, but a user cannot

force the system to believe something or to do something, unless the user has complete

control over every bit of experience of the system.

In the future, when a system like NARS is really applied in a domain for some

practical purpose, a \training" stage will be necessary, in which a \tutor" (human

or computer) provides relevant knowledge to the system, and guides the system to

organize it properly by asking proper questions at proper time. For this purpose, a

\computer education theory" will be needed, and we can expect it to share many

principles with the current education theory (for human beings).

However, NARS 3.0 has been implemented not for some practical purpose, but

as a prototype of the theory of intelligence developed in the previous chapters. The

implementation can be considered successful in that it was designed according to the

theory and exhibits behavior predicted by the theory. Unlike some other AI projects,

NARS does not attempt to reproduce psychological data or to solve problems that
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usually need special expertise.

At its current stage of development, NARS 3.0 has been tested only on small

examples involving fewer than 20 concepts. This naturally leads to questions about

its potential for \scaling-up". It is well known that many AI models work well on

small problems, yet not at all on big problems. Will this happen to NARS? Obviously,

with more tasks and more pieces of knowledge, it would take NARS more time to

pick a desired one to work on, but the time for an inference step would be about

the same, as was pointed out previously. On the scaling-up issue, there is a basic

di�erence between NARS and many AI projects. When a system is designed under the

assumption that an answer may in principle require consulting all relevant knowledge,

then the scaling-up problem becomes inevitable | the system can a�ord the expenses

when the knowledge base is small, but cannot do so when the knowledge base is large.

By contrast, NARS has been expressly designed under the assumption of insu�cient

resources, and so it does not attempt to search its knowledge base exhaustively, even

when the knowledge base is small. (In fact, if the purpose of the NARS project were

merely to answer the questions in the previous examples, a system that simply counted

the evidence would work better.) Because NARS takes no advantage of having a small

knowledge base, probing the system's behavior with small examples can still provide

us with general insight into the philosophical theory and formal model according to

which the computer system was designed.



7

Theoretical Implications

As was stated in Chapter 2, the ultimate goal of this research is not to design

a reasoning system per se, but to explore the essence of intelligence. The formal

model and the computer system have both been developed for this purpose, because

with them our discussions can become clearer and more concrete. In this chapter,

we return to the theoretical territory to see how several important issues in arti�cial

intelligence and cognitive science are illuminated by this theory/model/system. These

issues are not the only ones addressed by the research, but they are among the most

representative ones.

7.1 Symbol-grounding

According to NARS' experience-grounded semantics, the meaning of a term con-

sists of its experienced relations with other terms, and determines how the term will

be used by the system in the future. A human observer is of course free to interpret

the terms appearing in NARS by relating them to words in a natural language or

with human concepts, but that is their meaning to the interpreter, and has nothing

to do with the system itself. For example, if the term \bird" never appears in the

119
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system's experience, it is utterly meaningless to the system (though meaningful to

English speakers). However, after the sentence \bird � animal < 1; 0:8>" appears

in the system's input stream, the term \bird" begins to have meaning to the system,

revealed by its inheritance relation with \animal". As the system comes to know more

about \bird", its meaning becomes, by de�nition, richer and more complex. The term

\bird" may never mean the same to NARS as to a human being (because we cannot

expect a computer system to have human experience), but on the other hand, we can-

not say that \bird" is utterly meaningless to the system for this (human-chauvinistic)

reason.

This leads us to Searle's \Chinese room" argument (Searle, 1980) and Harnad's

\symbol grounding" problem (Harnad, 1990). As was mentioned previously, Searle's

argument is based on the assumption that a symbol can get meaning only from

a model, by an interpretation. If one accepts the idea of an experience-grounded

semantics, this is an untenable argument. As soon as a term has experienced relations

with other terms, it becomes meaningful to the system, no matter how impoverished

or diluted its meaning is. An adaptive system like NARS never processes a term

solely on the basis of its \shape" without considering its relations with other terms

in the system's experience. The \shape" of a term may be more or less arbitrary, but

its experienced relations with other terms are not.

By saying this, I am not claiming that a word in a natural language gets its

meaning only from its relations to other words in the language, because human expe-

rience does not consist of words only. The experience-grounded semantics introduced

here can be extended to systems with sensory{motor capacity, where truth values

of judgments and meanings of terms are no longer determined solely via linguistic

interactions among terms, but also to some extent by \nonverbal" components of ex-

perience. However, the principles of experience-grounded semantics remain the same
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| that is, the truth values of (declarative or procedural) knowledge are determined

by evidential support, and the meanings of items in the system's experience (words,

perceptual images, motor sequences, and so on) are determined by their experienced

relations with other items. In a system of this sort, the meaning of a word is much

more complex than in a system whose experience consists of symbols alone, but that

fact does not rule out the simpler case as a possible way for symbols to acquire

meanings.

The feeling of meaninglessness in Searle's \Chinese room" comes from his delib-

erate cutting-o� of his experience in Chinese from his sensory{motor experience and

his experience represented in his native language. If we put an intelligent computer

system into the same situation, there are two possible cases. If the computer system

already had profound sensory{motor experience and/or a \native language", it might

also consider the Chinese characters to be meaningless, because it could not relate

them to its previous experience. However, if the system entered the room with no

previous experience, Chinese would become its \native language" | that is, the sys-

tem would build up meanings for the characters on the basis of how they are related

to one another, and would not attempt to ground them on some \more fundamen-

tal" stu�, nor would it complain about \meaningless squiggles and squoggles" when it

failed in doing so. If the system also had sensory{motor capacities and communicated

with other similar computer systems in Chinese, we might �nd that the meanings of

Chinese words, to these systems, were as rich and as complex as they are to human

Chinese speakers, though it is possible that they might occasionally have di�erences

of opinion about the \correct" meaning of a given word.

If experience-grounded semantics is applied to a symbolic system, all the symbols

that the system has are already grounded | in the system's experience, of course.

The crucial point here is that for a symbol to be meaningful (or grounded), it must
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somehow relate to the system's environment. However, such a connection need not

necessarily be provided by sensory{motor mechanisms. The experience of a system

can be purely symbolic, or verbal, as in the case of NARS. This type of experience is,

to be sure, much simpler and more \coarse-grained" than sensory{motor experience,

but it is nevertheless experience (Piaget, 1960), and therefore it can serve to ground

the symbols that constitute it, just as words in natural language are grounded in

human experience.

This suggestion might sound like what Harnad calls \dictionary-go-round" | a

disturbing-seeming vision that propels him to express the hope that the meanings of

symbols can \be grounded in something other than just more meaningless symbols"

(Harnad, 1990). Of course, neither NARS nor a person can learn Chinese from noth-

ing but a Chinese{Chinese dictionary or a Chinese-only radio broadcast. In NARS'

current \native language" described in Chapter 3, the \meaning" of the inheritance

relations and truth values is hard-wired into the system, and is re
ected in the way

the relations and values are used by the system. Only the meanings of terms are

acquired from experience. Thus NARS is not an absolute tabula rasa.

There is a subtle di�erence between Harnad's dictionary-go-round image and the

acquisition of symbols' meanings by NARS: in experience-grounded semantics, the

meaning of a term is not reduced to the meaning of other terms (which would obviously

lead to circular de�nitions in any �nite language), but is de�ned by its relations with

other terms. These relations are formed during the interaction between the system

and its environment, and are not arbitrary at all. Moreover, extending the system's

experience to include sensory{motor activities does not fundamentally change this

situation. Sensory{motor primitives are still components of a system's experience,

rather than components of the \outside world". The meanings that they have (to the

system) come totally from their mutual relationships, rather than from their intrinsic
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physical nature. In many situations, what a perceptual image means to a person

depends on its associations with (verbal) concepts.

Human beings judge the truth value of a sentence in the context of their personal

experience, and they determine the meaning of a word on the basis of its relations

with other words. This is not a new idea to psychologists and linguists (Ellis, 1993;

Lako�, 1988; Palmer, 1981; Tversky and Kahneman, 1974). However, few people

have tried to apply this idea to an arti�cial language de�ned by a formal grammar.

This oversight is due to several assumptions, which, though seldom mentioned, are

tacitly accepted by many people.

It is very often implicitly assumed that the semantics of a formal language has to

be model-theoretic. Such an inductive conclusion seems warranted by our experience

| almost all formal languages have traditionally been assigned their semantics in this

way. As a result, people who do not like the semantics usually abandon the language at

the same time. However, a language can be \formal" in two di�erent senses. In a weak

sense, \formal" means merely that the language is arti�cial, and is de�ned by a formal

grammar; in a strong sense, \formal" means that the language is used in conjunction

with a model-theoretic semantics. The language used in NARS is \formal" in the weak

sense only. From a technical point of view, it would be easy to give the language a

model-theoretic semantics, by interpreting the three inheritance relations as in set

theory, and interpreting the truth value extensionally only. However, with such a

semantics, the language would no longer be suitable for our current purposes.

Logicians, in distinguishing themselves from other scholars, such as psychologists,

tend to stress the normative nature of logical theory. As a result, in their study of

semantics, the goal is often that of looking for the real, objective meanings of terms

or truth values of sentences. Even if such an opinion has some degree of justi�ability

when one's purpose is to study the logic of mathematics, that justi�ability goes away
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when one turns to the study of the \logic" of empirical science and common sense.

For the purposes of AI, what we need is another kind of normative model, in which

meanings and truth values are founded on the system's experience.

7.2 Induction

Induction has been a perennial headache in traditional logic. As Hume's \in-

duction problem" revealed, our predictions of the future cannot be infallible (Hume,

1748). From past experience, no matter how great, we cannot get a perfect descrip-

tion of the \state of a�airs", nor can we even know how far our current knowledge

is from such an \objective" description. Based on this, Popper drew the well-known

conclusion that an inductive logic is impossible (Popper, 1959). However, from our

previous discussion of semantics, we can see that what is really being pointed out

by Hume and Popper is the impossibility of an inductive logic built as an axiomatic

system.

Let us see how induction is justi�ed in NARS by considering the following ideal

experience: the system gets the knowledge that \swan � bird < 1; 1 >" (\Swans

are birds") and \swan � white-thing < 1; 1>" (\Swans are white"). According to

previous discussions, here we �nd a common instance of \bird" and \white-thing".

This experience can be generalized as \bird � white-thing < 1; 1=2>" (\Birds are

white") | that is, the inductive conclusion is supported by positive evidence with

unit weight. The frequency of the conclusion, 1, means that all evidence summarized

by this sentence is positive; the con�dence, 1/2, indicates the amount of evidence

collected (c = w=(w + k) = 1=2, with w = 1 and k = 1). The truth value of the

conclusion does not measure how many birds \in the world" are white. If in another

section of experience the system knows that crows are birds but that they are not
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white, it similarly derives the inductive conclusion, \bird � white-thing <0; 1=2>",

from that piece of evidence alone. When these two con
icting conclusions meet, their

underlying bodies of evidence are combined by the system's revision rule, and the

system produces a summarized conclusion \bird � white-thing <1=2; 2=3>", where

the frequency is a weighted sum of the competing two, and the con�dence is higher

than the premises', due to the accumulation of evidence.

From the above example we can see that the inference rules of NARS are not

truth-preserving in the traditional sense, since the conclusions may con
ict with new

evidence; however, they are truth-preserving according to the new de�nition of truth

value, because the truth value of the conclusion is determined by the experience

summarized in the premises.

If the answers provided by NARS are fallible, then in what sense are these answers

\better" than arbitrary guesses? Considerations of this sort lead us to the concept

of \rationality". When infallible predictions cannot be obtained (due to insu�cient

knowledge and resources), answers based on past experience are nonetheless better

than arbitrary guesses, provided the environment is relatively stable. If the environ-

ment is completely instable, any attempt to adapt to it will be hopeless. The fact

that an answer is only a summary of past experience (thus no future con�rmation can

be guaranteed) does not make it tantamount to an arbitrary conclusion | indeed,

that is what \adaptation" means.

Someone might argue that what NARS does is not genuine \induction", which

(by de�nition) is \to generate a universal statement from speci�c statements", while

what NARS gets is \statistical statements". Though such a de�nition of induction

is widely accepted, and many discussions are based on it (Popper, 1959), it is not an

appropriate way to study induction. From a theoretical point of view, such a de�nition

presupposes the use of a formal language, such as �rst-order predicate language,
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where every general statement is created by using a \universal quanti�er". This is

a particular way to formalize Hume's problem, but by no means the only reasonable

one. What Hume was concerned with is how we can extend our �nite speci�c past

experience to the in�nite general future situation. And yet, from a practical point

of view, almost none of our knowledge comes with a \universal quanti�er" attached,

except (perhaps) in mathematics. When we say \All ravens are black", what we mean

is \All ravens (according to our knowledge) are black", but not \All ravens (whether

known or unknown to us) are black". For a system with insu�cient knowledge (either

a human or a computer), the latter statement cannot be justi�ed. If we insist upon

restricting the term \induction" to this limited meaning, we have to admit that it

is an unattainable goal. However, by doing this, we prevent ourselves from studying

the real problem | that is, how to use past experience to predict future experience,

while being fully aware that the predictions will not be infallible.

The study of induction in arti�cial intelligence has been strongly in
uenced by the

Popper tradition. Representative works in the �eld de�ne \induction" as the process

by which a general statement (usually a universally quanti�ed sentence in a �rst-order

language) is found. From it, speci�c cases can be deduced (by �rst-order predicate

logic) (Michalski, 1983; Quinlan, 1986). Therefore, induction is often referred to as

\reverse deduction". What distinguishes NARS from these approaches to induction

is the following list of properties:

1. In NARS, general judgments do not necessarily have binary truth values, but

can have counterexamples. Knowing that penguins are birds but cannot 
y

does not falsify the judgment \Birds 
y", but only decreases its frequency, thus

making the judgment \weaker".

2. In NARS, induction is not carried out by an algorithm that generates a hypoth-

esis by searching a \space of possible hypotheses", then exhaustively uses all
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available knowledge to test it. Instead, as is shown by the previous examples,

each piece of evidence generates an inductive conclusion, and assigns a truth

value to it at the same time.

3. In NARS, inductive conclusions are generated and revised incrementally, so they

can be produced under various time pressures.

4. In NARS, induction is not an isolated \tool" or \module" that can be invoked by

the user to solve a domain problem, but an operation intimately related to and

inseparable from other inference rules. As is shown by the examples, inductive

conclusions merge by the revision rule, and the premises and conclusions of

induction are provided by and are used by deduction, abduction, analogy, and

so on. Indeed, a major reason for my having chosen term logic over predicate

logic is that in term logic, multiple types of inference can be naturally integrated

with one another.

7.3 Categorization

Among other things, NARS is a model of categorization, in which a term can be

understood as the name of a concept or category (Wang, 1993b).

As was explained previously, the basic relationships between two terms are the

three inheritance relations, which in di�erent ways indicate the extent to which one

term can be used as the other, or, in Hofstadter's terminology, \slipped" into the

other. In this sense, NARS attempts to formalize the \as" or \slippability" relations

between concepts, and to give them a central place in the study of arti�cial intelligence

(Hofstadter, 1995).

In NARS, inheritance is always a matter of degree, determined by the system's



7. Theoretical Implications 128

experience with the terms in the relation. In this aspect, it agrees with fuzzy logic

(Zadeh, 1965) and several psychological models of categorization (Medin and Ross,

1992). The meaning of a given concept | that is, what makes it di�erent from all

others | is its unique position in the system's experience. This position is revealed

by its relations with other concepts | that is, by its extension and intension, de�ned

in Chapter 3. This feature makes NARS di�erent from the classical theory of cate-

gorization, according to which concepts have de�ning features that act as criteria for

determining category membership, and the \membership" relation between a concept

and potential exemplars is binary (i.e., black-and-white).

Since all inferences in NARS involve inheritance relations, we can say that all the

activity in the system amounts to categorization or high-level perception. When the

system is looking for an answer to a question \S 2 P", what it does is nothing but

trying to judge the degree to which S is an instance of P , or identically, the degree

to which P is a property of S.

How is such a judgment made? In NARS, it depends on the current meaning

of the two concepts. If both S and P are characterized by a set of properties, the

degree of membership can be judged by abduction | that is, by looking at the extent

to which S has P 's properties. If P is largely characterized by a set of exemplars,

then the degree of membership can be judged by analogy | that is, by looking at the

extent to which S is similar to P 's most typical, or strongest, instances. The degree

of membership can also be judged by deduction if there is a term M such that the

truth values of both \S 2M" and \M � P" are known. Usually, in fact, the degree

of membership is judged in more than one way, and the evidence from all the di�erent

sources is combined (by the revision rule) to get a summarized conclusion.

This NARS-oriented account of categorization can be characterized as a gener-

alization of current psychological theories on the issue, of which \prototype theory"
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and \exemplar theory" are two prototypical exemplars. We discuss them both very

brie
y.

According to prototype theory, a concept is characterized by properties shared by

most of its members. As a result, category boundaries become fuzzy in the sense

that some exemplars, thanks to the fact that they share more properties with the

\prototypes" of the concept, are more \typical" members than others. The prototypes

themselves are determined by the central tendency of the concept's members (Rosch,

1973).

According to exemplar theory, a concept is determined by a set of examples, and

the degree of membership of a test item in the concept is measured by its similarity to

particular examples that exemplify the concept. In this theory, membership is fuzzy,

too, but for di�erent reasons than in prototype theory. Here, the fuzziness comes from

the fact that the similarity relation usually is a matter of degree (Nosofsky, 1991).

Both theories represent special cases of categorization in NARS. By considering

both the extension and intension of a concept, and by using multiple types of infer-

ences, NARS provides a more general model of categorization.

Another important nature of NARS is its assumption of insu�cient resources. In

the context of categorization, this means that when the strength of a membership

relation is assessed, only part of the relevant knowledge can be used. But since we

want to give all possibilities a chance, and at the same time to focus on what has

proven most useful in the past, a probabilistic mechanism is used for selection among

relevant but competing pieces of knowledge, as described in Chapter 5. Moreover,

the probability distribution is continually adjusted as the situation changes.

Taken all together, these ideas give each concept in NARS a context-sensitive

dynamic structure. As the system runs, new relations are added, old relations are
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deleted, and the priority distribution is adjusted by the system to adapt to its envi-

ronment. As a result, when a concept is used at di�erent times, its meaning can be

quite di�erent.

The internal structure of a concept in NARS is dynamic but not arbitrary. When

the system has plenty of experience with a particular concept, some of its relations

become stable (i.e., have a high durability value), and have a high probability of

being addressed when the system uses the concept. Let us call these the dominant

relations, or essence, of the concept. They endow the concept with a kind of \hard

core", though in fact even the core slowly changes over time.

According to this view of categorization, the meaning of a term is in principle

\personalized" or \idiosyncratic" | that is, it is di�erent in di�erent systems, despite

bearing the same name. The \objective" aspect, or more accurately, the \public"

aspect, of a term's meaning is a natural outgrowth of communication. Systems that

coexist in the same environment will exert in
uences on each other concerning what

each term \means". For a system to communicate e�ciently, it has to try to take into

account how a term is used by the other systems. Here we thus see two contradictory

tendencies: individual experience tends to make the meanings of terms even more

personalized and unique, while communication tends to reduce these interpersonal

di�erences and to make meanings ever more universal.

As a result, concepts in NARS approach the idea that Hofstadter calls \
uid

concept" | that is, \concepts with 
exible boundaries, concepts whose behavior

adapts to unanticipated circumstances, concepts that will bend and stretch | but not

without a limit" (Hofstadter and FARG, 1995). The \Slipnet" structure, developed by

his group, also represents concepts by their relations between each other, and allows

the relations to change dynamically (Hofstadter and FARG, 1995). Consequently,

concepts in the Slipnet are 
uid while still having relatively stable \hard cores",
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similar to concepts in NARS.

7.4 Is NARS a logic?

As we have seen, concepts in NARS are usually 
uid, fuzzy, and elusive; judgments

are usually equivocal, con
icting, and fallible; and the system's behaviors are usually

unpredictable and irreproducible. The system may be absent-minded, may forget

important information, and may change its mind from time to time. How can we still

say that NARS works according to a logic?

In fact, the concept \logic" has two di�erent senses (Wang, 1992). Construed very

broadly, logic is the set of principles of, and criteria for, valid inference. However,

nowadays the concept is used in AI under a narrower construal, which is restricted to

�rst-order predicate logic, its variations, model-theoretic semantics, theorem-proving,

and so on (Birnbaum, 1991; McDermott, 1987; Nilsson, 1991).

Obviously, NARS does not constitute a logic in this narrower sense. However, it

is a logic in the broader sense. Technically, it has a formal language, and uses a set of

formal rules to do inference. Theoretically, it is an attempt to formally capture the

principles of valid inference. From Chapter 2, we know that NARS is still a normative

model of reasoning, rather than a descriptive model. That is, NARS represents what

a system (human or computer) should do, in a given situation and following de�nite

principles of reasoning. However, since the environment assumed by the model is

similar to the circumstances in which the human mind �nds itself, we can expect

NARS to be relatively close to a descriptive model of human reasoning, at least when

compared with other normative models, such as Aristotle's logic, �rst-order predicate

logic, and the Bayesian school of probability theory (Wang, 1996a).

To clarify more sharply the di�erence between NARS and other reasoning systems,
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we now de�ne three categories of reasoning systems, based upon their assumptions

about the su�ciency of knowledge and resources:

Pure-axiomatic systems. Such systems are designed under the assumption that

both knowledge and resources are su�cient (with respect to the questions that

will/can be asked), so adaptation is not necessary. A typical example is the

notion of \formal system" suggested by Hilbert (and many others), in which

all answers are deduced from a set of axioms by a deterministic algorithm, and

which is applied to some domain using model-theoretical semantics. Such a

system is built on the idea of su�cient knowledge and resources, because all

relevant knowledge is assumed to be fully embedded in the axioms, and because

questions have no time constraints, as long as they are answered in �nite time.

If a question requires information beyond the scope of the axioms, it is not the

system's fault but the questioner's, so no attempt is made to allow the system

to improve its capacities and to adapt to its environment.

Semi-axiomatic systems. Such systems are designed under the assumption that

knowledge and resources are insu�cient in some, but not all, aspects. Con-

sequently, adaptation is necessary. Most current AI approaches fall into this

category. For example, non-monotonic logics draw tentative conclusions (such

as \Tweety can 
y") from defaults (such as \Birds normally can 
y") and avail-

able knowledge (such as \Tweety is a bird"), and revise such conclusions when

new knowledge (such as \Tweety is a penguin") arrives. However, in these

systems, defaults and pieces of knowledge are usually unchangeable, and time

pressure is not taken into account (Reiter, 1987). Many learning systems at-

tempt to improve their behavior, but still work solely with binary logic where

everything is black-and-white, and persist in always seeking optimal solutions

of problems (Michalski, 1993). Although some heuristic-search systems look for



7. Theoretical Implications 133

less-than-optimal solutions when working within time limits, they usually do

not attempt to learn from experience, and do not consider possible variations

of time pressure.

Non-axiomatic systems. In this kind of system, the insu�ciency of knowledge and

resources is built in as the ground 
oor, and the system works accordingly.

According to the working de�nition of intelligence proposed in Chapter 2, pure-

axiomatic systems are not intelligent at all, non-axiomatic systems are intelligent,

and semi-axiomatic systems are intelligent in certain respects.

In some practical situations, an intelligent system is not necessarily superior to

a nonintelligent system. In fact, quite to the contrary: when a problem can be

solved by both types of system, the nonintelligent method is usually better, because

it guarantees a correct solution. As Hofstadter once observed, for tasks like adding

two numbers, a \reliable but mindless" system is better than an \intelligent but

fallible" system (Hofstadter, 1979).

Pure-axiomatic systems are very useful in mathematics, where the aim of study is

to idealize knowledge and questions to such an extent that the revision of knowledge

and the deadlines of questions can be ignored. In such situations, questions can be

answered in a manner so accurate and reliable that the procedure can be reproduced

by an algorithm. We need intelligence only when no such pure-axiomatic method can

be used, due to the insu�ciency of knowledge and resources. For similar reasons,

the performance of a non-axiomatic system is not necessarily better than that of a

semi-axiomatic system, but it can work in environments where the latter cannot be

used.

Logic was originally the study of human reasoning in general situations. However,

since the rise of \mathematical logic", the attention of logicians has been focused on
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the foundations of mathematics, an area that involves di�erent principles from those

that underlie everyday thinking (Ellis, 1993). Logicians' studies have contributed

greatly to mathematics, but have left a misleading heritage to AI. When AI researchers

eagerly adopt standard tools from mathematical logic, what is too often ignored is

the fact that these tools were originally conceived and built for completely di�erent

purposes.

Traditionally, AI has been referred to as a branch of computer science. According

to our previous de�nitions, AI can be implemented with tools provided by computer

science, but from a theoretical point of view, AI and computer science make opposite

assumptions: computer science focuses on pure-axiomatic systems, but AI focuses |

or should focus | on non-axiomatic systems.

The fundamental assumptions of computer science can be found in mathematical

logic (especially �rst-order predicate logic) and computability theory (especially the

theory of Turing machines). These theories take su�cient knowledge and resources

for granted, and therefore adaptation, plausible inference, and tentative solutions to

problems are neither necessary nor possible.

Similar assumptions are often made by AI researchers with roughly the following

type of justi�cation: \We know that the human mind works under conditions of

insu�cient knowledge and resources, but if you want to set up a formal model and

then implement it as a computer system, you must somehow idealize the situation."

It is true that every formal model is an idealization, and so is NARS. The key

question concerns what to omit and what to preserve in the idealization. In the current

implementation of NARS, many factors that should in
uence reasoning are ignored,

but the insu�ciency of knowledge and resources is strictly assumed throughout. Why?

Because such insu�ciency is a de�ning feature of intelligence, so if it were abandoned

in the \idealization", the resulting study, whatever its worth might be, would be
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about something other than intelligence.

Some critics implicitly assume that because a certain level of a computer system

can be captured by �rst-order predicate logic and implemented as a Turing machine,

these axiomatic theories also apply to the entire range of behavior that such a system

can exhibit (Dreyfus, 1992; Penrose, 1994). This is not the case. When a virtual

machine A is implemented on a virtual machine B, the former does not necessarily

inherit all the properties of the latter. For example, it is invalid to conclude that a

computer cannot process decimal numbers (because the hardware uses binary num-

bers), cannot process keyboard characters (because underneath it all, everything is

just bits), or cannot use a functional or a logical programming language (because

the commands of such languages are eventually translated into procedural machine

language).

Obviously, with its 
uid concepts, revisable knowledge, and fallible inference rules,

NARS violates all the norms of classical logics. However, as a virtual machine, NARS

can be built upon another virtual machine that is in fact a pure-axiomatic system,

as my implementation demonstrates, but this fact does not in any sense make NARS

\axiomatic".

Many arguments proposed against logical AI (Birnbaum, 1991; McDermott, 1987),

symbolic AI (Dreyfus, 1992), or AI as a whole (Searle, 1980; Penrose, 1994), are

actually arguments against a more restricted target: pure-axiomatic systems. These

arguments are powerful in that they reveal many aspects of intelligence that cannot be

produced by a pure-axiomatic system (though these authors do not use this term), but

some of the arguments seriously mislead by portraying such systems as the prototype

of AI models of mind.
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7.5 NARS as an inheritance network

By working on a reasoning system with its formal language and inference rules,

one does not necessarily commit oneself to the assumptions of traditional logic-based

AI paradigms. Designed as a reasoning system, but not a \logicist" one (McCarthy,

1988; Nilsson, 1991), NARS actually shares more philosophical assumptions with the

subsymbolic or connectionist movement (Hofstadter, 1985; Holland, 1986; Holland

et al., 1986; Rumelhart and McClelland, 1986; Smolensky, 1988), despite the fact

that I chose to formalize and implement these assumptions in a framework that on

the surface looks closer to the traditional symbolic-AI tradition.

In fact, NARS can be naturally described as an inheritance network (Wang,

1994c). We can see each term as a node, each judgment as a link between two par-

ticular nodes, and the corresponding truth value as the strength of the link. Between

two given nodes, there are three possible types of links, corresponding to the three

inheritance relations | namely, \�!" for \�", \ !" for \=", and \7�!" for \2".

In this way, the knowledge base of NARS is a network like Figure 7.1. This type of

network is di�erent from a semantic network and other symbolic networks, because

there are only three types of link, whose meanings and functions are precisely de�ned

(as was done in Chapter 3), and because there are often two or more links between a

given pair of nodes, and their truth values might con
ict with each other.

The network has both active links (tasks) and passive links (knowledge). Priorities

are de�ned among nodes, active links, and passive links. In each atomic step of

processing, an active link interacts with an adjacent passive link to generate new

links, and di�erent types of inference correspond to di�erent combinations of the two

component links (Minsky, 1985; Wang, 1994c), as summarized in Figure 7.2, where

the solid links are premises, and the dashed links are conclusions. The corresponding

truth-value functions are listed in Table 4.3.
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Figure 7.1: An inheritance network.
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Figure 7.2: Rules of the inheritance network.
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In such a network, to answer a question means to determine the strength of a link,

given its type and its beginning and ending nodes, or else to locate that node that

has the strongest link the system can �nd from or to a speci�ed node. Thanks to the

fact that during the processing, not only the topological structure of the network but

also the strengths of its links and its priority distribution are all constantly changing,

what the system does is much more than searching a static network for the desired

link or node.

Seen as a network, NARS shares many properties with various subsymbolic ap-

proaches (Hofstadter and FARG, 1995; Holland, 1986; Smolensky, 1988), such as

parallel processing, nondeterminism, self-organization, distributed representations,

and so on. Let us consider the last property in more detail here.

At �rst glance, the internal representations of NARS seem to be local, since the

knowledge \Swans are birds" is stored explicitly in the link that runs between the

node swan and the node bird. However, when the system is told \Swans are birds",

the judgment is treated both as a passive link (to be set up between the given nodes)

and as an active link (to interact actively with other links); therefore, it will have

e�ects on other nodes and links. On the other hand, when the system is asked \Are

swans birds?", it will not only seek the direct link between nodes swan and bird, but

will also try to answer the question by inference from available knowledge, so that

other nodes and links may be involved in the process.

As a result, NARS' internal representations become distributed in the following

senses: (1) an input task may have non-local e�ects, (2) an output result may have

non-local sources, and (3) local losses of information (whether by intentional deleting

of information or by unintended hardware malfunction) may be partially recovered

from information kept in other parts of the system.

Since NARS can be naturally described as a network, why is a \logical" description
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still preferred? Indeed, the terminology of networks, using concepts such as \node",

\link", \strength", \activation", and so on, is semantics-neutral and can therefore be

used for many di�erent purposes without stirring up any controversy, whereas philo-

sophical concepts like \meaning", \truth", and \induction" tend to stir up hornet's

nests of argumentation.

So why do I use this \logical" language as my primary way of presenting and de-

scribing NARS? By constantly using the terminology of logic, what I want to show is:

to model intelligence faithfully, what really matters is the set of underlying theoretical

premises, not the terminology or the technology. Once one accepts a new working

de�nition of intelligence, one �nds that a reasoning system, despite having the trap-

pings of a formal language and truth-preserving inference rules, can still have many

interesting and unexpected properties. The basic troubles with traditional logic-based

symbolic AI stem from its fundamental assumptions about su�ciency of knowledge

and resources, and its pursuit of completeness, consistency, and decidability, rather

than from detailed decisions about how AI systems work. It seems to me preferable

to consider NARS as a type of logic, due to its preciseness, during the design process

and also in explaining the basis for its design, whereas the \network" image seems

preferable, due to its vividness, for occasions when the system must be presented in

a very short time to other people.

7.6 Is it still computation?

With the control mechanisms described previously, it is easy to see that the pro-

cessing triggered by a task given to the system is context-sensitive. Even for the

same task, with the same priority and durability values, the result may be di�erent

(though not necessarily so). How a task is treated depends on what knowledge the
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system has, how the knowledge is organized, and how much of the system's resources

the task gets | put simply, it is determined by the system's experience, which in-

cludes not only events that take place before the task showed up, but also events that

happened after that moment. The contents, the order, and the timing of events all

matter. Furthermore, a question may result in no answer, one answer, or more than

one answer.

As a result, the response of NARS to a given task is unpredictable from that task

alone. However, it needs to be stressed that the unpredictability is not caused by the

\take-out" operator of the \bag" class, which makes choices probabilistically. That

operator is used for distributing resources unevenly among competing items, rather

than for introducing a \pure random" or \nondeterministic" factor into the system

solely for the sake of making it unpredictable. Similar points are made in (Hofstadter,

1993; Hofstadter and FARG, 1995). Indeed, it is perfectly reasonable to implement

that operator deterministically, something that can be easily done using standard

pseudo-random-number generators. When the system is reset to its initial state, and

the previous experience (i.e., input tasks) is precisely reproduced, the system will

simply repeat what it did before, including all of its probabilistic choices involving

bags.

An interesting and important question about NARS naturally arises: Is the system

still computing?

According to the usual de�nition of a Turing machine M , a computation is the

procedure by which M transforms its initial state q0 into qf , one of its potential �nal

states, in response to input data di. In its �nal state, M provides an output do as the

result of the computation. We can equally well say that M is a function that maps

di to do, or that M is an algorithm with di and do as input and output, respectively.

A conventional computing system works in a sequential and deterministic way:
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waiting for the user to input a new task;

accepting a task;

processing that task;

reporting the result;

resetting the working memory;

waiting for the user to input a new task;

and so on, cyclically.

According to the de�nition of computation, the characteristics of such a working

mode are:

1. There is a unique initial state in which the system can accept input tasks, and

tasks are processed in a one-by-one manner. If a task arrives when the system

is still busy with another task, the new task has to wait. Even if interrupt

mechanisms are taken into consideration, the picture is fundamentally the same.

2. The system always yields the same result for a given task, no matter when the

task is processed.

3. The amount of resources spent on a task is a function of the task alone, depend-

ing on the complexity of the algorithm and the amount of relevant knowledge,

but independent of when the task is processed.

4. There is a predetermined set of �nal states in which the system will stop working

on a task and provide a result, no matter whether there are other tasks waiting

to be processed.

As has been previously made abundantly clear, NARS does not work in this way.



7. Theoretical Implications 142

In NARS, there is no unique \initial state" in which the system waits for and

accepts new tasks. At any moment when the system is running, tasks can be accepted,

in many di�erent internal states.

Similarly, there is no \�nal state" for a task. For instance, if a task's urgency

is low (relative to other tasks), it is even possible for it to be completely ignored.

If a tentative answer to a question is reported, usually neither the system nor its

human designer can predict whether a better answer will be reported later, taking

more knowledge into consideration. It is undecidable whether a given answer is the

answer to the question, since that will depend on events still to take place in the

future, such as whether the system acquires from the environment new knowledge

related to the task, or whether more time winds up being spent on it.

By slightly changing the meaning of the term, one might say that NARS has an

initial state | namely, when its memory is completely empty (the system is \born"

without any innate domain knowledge). Its state changes as soon as it interacts with

its environment and begins processing tasks. The system never will return to its

initial state, until and unless a user terminates the processing and erases all of its

memory. In such a case, the system can of course be \reborn" with the same \genetic

code" | its sets of inference rules, control mechanisms, \personal parameters", and

so on. However, unless the experience of the system perfectly repeats its experience

in its \previous life", the system's behaviors will be di�erent.

In summary, the system's behaviors are determined by its initial state and its

experience, but not by either one of the two alone.

If we take a question (as de�ned in Chapter 3) as the input to NARS, and the

answer to that question as output, then their relation cannot be captured by concepts

like \computation", \function", and \algorithm". However, this does not mean that

there are \magical" or \pure random" factors introduced in NARS. The system can
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still be implemented as a Turing machine, and therefore it is still computing, but at

a di�erent level of description.

If we take an arbitrary state of NARS, q1, as an \initial state", the state the

system arrives at after a certain amount of time, q2, as a \�nal state", then we can

view what NARS does during that period of time as computation, with its experience

(all of the tasks provided by the environment during that time) as the input, and

its responses (all of the system-generated reports) as the output. At this level of

description, the system still works as a function or algorithm that deterministically

maps an input to an output. However, this view of input and output is very unwieldy

and unnatural.

In summary, the behavior of NARS can be described at two di�erent levels. At

one of them, NARS is indeed computing, but not at the other. This state of a�airs has

been articulated by Hofstadter in the following way: \something can be computational

at one level, but not at another level" (Hofstadter, 1985), and by Kugel as \cognitive

processes that, although they involve more than computing, can still be modeled on

the machines we call `computers' " (Kugel, 1986). In contrast to this, conventional

computer systems, while also describable at these two levels, are computing in both

of them. Let us use an ordinary sorting program as an example: you can take either

a single sorting problem (the analogue to a single question from the environment), or

a sequence of such problems (the analogue to the unwieldy and long sequence of user

inputs in a given period of time), as the input, and the processes in both cases are

computation | the program's response to a given sorting task is fully determined

and does not depend on the processing of other sorting tasks, or the answers given

to them.

For practical purposes, what we are interested in is usually the relationship be-

tween questions and answers. From the above discussion, we see that in NARS such
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a relationship cannot be referred to as computation. On the other hand, NARS can

still be implemented in abstract Turing machines as well as in concrete von Neumann

computers.

This conclusion is not just a picturesque new way to see things, but has im-

portant methodological implications. When a system like NARS is designed, the

designer should not try to decide what answer the system should produce in re-

sponse to a given question | that should be decided by the system itself at run time;

the designer simply cannot exhaustively consider all possible situations in advance

(the designer, hopefully, is also an intelligent system, thus limited by insu�cient re-

sources). For similar reasons, the designer cannot decide in advance how much of the

resources to spend on a certain task, for this is totally context-dependent. Thus, the

designer is no longer working on either domain-speci�c algorithms or general-purpose

algorithms (like GPS), but rather on meta-algorithms, which carry out inferences,

manage resources (like a small operating system), and so on (as described in the pre-

vious chapters). In this way, the problems solved by the designer and the problems

solved by the system itself are clearly distinguishable from one another.

Although general-purpose algorithms and meta-algorithms are both independent

of speci�c domains, there is still a fundamental di�erence between the two types of

algorithm, with respect to how a domain problem (i.e., a question asked by the user)

is solved. In the former cases, the problem-solving process is still computation. As

was described previously, the system accepts the problem at its initial state, processes

it according to predetermined procedure, then stop at the �nal state and reports the

solution. We already know that NARS does not work in this way. The fact that

NARS still consists of a set of algorithms does not mean that the system's problem-

solving activities (for user provided problems) follow any algorithm. Of course, the

algorithms in NARS do facilitate the problem-solving activities, but in a di�erent
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way. For example, Section 5.3 actually describes the algorithm that controls an

atomic step, which invoke other algorithms, like the put-in and take-out procedures

of various bags. However, none of these algorithms takes user-provided problems as its

input. In fact, armed with these algorithms, NARS deals with environment-provided

tasks without (task-oriented) algorithms. We call them meta-algorithms, because they

are not ready-made methods for user problems, but (ready-made) methods by which

the \object-level" methods can be formed dynamically in run time.

These ideas allow us to explain why Tesler's Theorem | \AI is whatever hasn't

been done yet" (Hofstadter, 1979) | applies to many AI projects: in those projects,

the designers usually use their own intelligence to solve domain problems, and then

implement the solutions in computer systems in the form of task-speci�c algorithms.

The computer systems then execute the algorithms on speci�c instances of the prob-

lems, an activity that can hardly be referred to as \solving problems intelligently".

For example, many \expert systems" have no learning ability. Such systems are de-

signed by \knowledge engineers", who abstract domain knowledge from experts in a

particular �eld, and then implant this knowledge into a computer system, so as to

reproduce the experts' problem-solving ability. According to my working de�nition

of intelligence, both the domain experts and the knowledge engineers are intelligent

| they work with insu�cient knowledge and resources, and they learn from their

experience | and yet the expert system itself is not intelligent, because, ironically,

when it faces a problem, it faithfully follows the predetermined algorithms that were

abstracted from the experts' intelligent behaviors, thanks to the intelligence of the

knowledge engineers.

This new way of describing AI also changes what we usually referred to as a

\solution". Let us take the \combinatorial explosion" problem as an example. If,

for a particular problem, there is an algorithm that takes an amount of time that
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grows exponentially with some parameter in the problem, usually such an algorithm

is useless in actual practice | the time expense will rapidly increase to astronomical

�gures, and the system will simply be paralyzed.

The traditional way to deal with this problem is to look for a faster algorithm,

even if that implies sacri�cing the quality of the solution. Since in NARS, problem-

oriented algorithms are not used, the very concept of \computational complexity"

disappears. If the system is faced with a problem that may take a large amount of

time, what is guaranteed is not that the system will arrive at a satisfactory solution,

but rather, that the system will not be paralyzed by the problem | the system will

gradually decrease the problem's priority, while still leaving it a chance to be solved

through future inspirations. This is much like what happens in the human mind:

we say there is no \combinatorial explosion" in our minds, not because we can solve

all problems in polynomial time, but because we seldom, if ever, stick to exhaustive

searching, nor even to working monomaniacally on a single problem facing us.

NARS is creative and autonomous in the sense that its behavior is determined

not only by its initial design, but also by its \personal" experience. It can generate

judgments and questions never anticipated by its designer, and can work on them

by its own choice. A \tutor" can \educate" it by manipulating its experience, but

cannot completely control its behavior due to the complexity of the system. From

a pragmatic point of view, this is neither necessarily a good thing, nor necessarily a

bad thing. It is simply the case that an adaptive system with insu�cient knowledge

and resources has to behave in this way.
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Conclusion

In this chapter, the major results of the NARS project are summarized, the foun-

dations of the research are evaluated, and its limitations and possible future extensions

are discussed.

8.1 Major results

\Intelligence" represents certain information-processing principles, which are re-

quired to deal successfully with certain environments.

Concretely, intelligence is adaptation under insu�cient knowledge and resources,

which means that the system must be �nite and open, and must work in real time.

A reasoning system provides a suitable (though not the only possible) avenue for

the study of arti�cial intelligence.

Model-theoretic semantics is not applicable to situations where intelligence, in the

above sense, is required. For this reason, an experience-grounded type of semantics

is introduced instead, which helps both the designer's building of the system and the

user's understanding of the system. In the framework of this semantics, the truth

147
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value of a judgment is determined by its evidential support, and the meaning of a

term is determined by its experienced relations with other terms.

To support such a semantics, a term-oriented language is chosen, which is char-

acterized by the use of subject{predicate sentences. A judgment, indicating an in-

heritance relation between some pair of terms, is such a sentence with a truth value

attached, which indicates the extent to which the subject belongs to the extension of

the predicate, and the predicate belongs to the intension of the subject. Evidence for

the sentence, either positive or negative, can be collected both from the extensions

and from the intensions of the terms, spread about in the rest of the judgments of the

system. As a result, each judgment's truth value, determined by available evidence,

represents various di�erent types of uncertainty in a uniform manner.

All inference in NARS is about inheritance relations among terms. NARS' infer-

ence rules were constructed by taking both extensions and intensions into account,

and by considering all possible types of combinations of premises. As a result, NARS

has a set of inference rules for revision, deduction, induction, abduction, exempli�ca-

tion, comparison, analogy, and backward inference. These di�erent types of inference

are carried out in a basically uniform format, are justi�ed by the same semantics, and

are used in similar ways.

To work in real time and with insu�cient resources, the system processes many

tasks in parallel. The resource of time is distributed among the tasks unevenly, and

the distribution is dynamically adjusted when the situation changes. Tasks that are

more relevant to the system's current priorities are always given more processing

time, so that in e�ect, they are processed faster and their implications (in the case of

pieces of knowledge) or their potential solutions (in the case of questions) are explored

further than happens for less relevant tasks.

The system's memory is organized into a two-level structure: the task/knowledge
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level and the chunk level. At the chunk level, tasks and pieces of knowledge are clus-

tered according to the terms appearing in them. On each level, items are stored in

\bags", which are data structures characterized by �xed size and supporting prob-

abilistic retrieval of items within them. A chunk is a high-level unit of resource

allocation and inference activity. Chunks cooperate by sending messages (tasks) to

one another.

The system works by repeatedly executing atomic inference steps, each of which

takes only a very short time. New questions and knowledge can be accepted at any

time, and their processing will depend on the current state of the system's knowledge

and resources.

Such a model of intelligence can be implemented on a computer system, using

currently available hardware and software technology. The resulting system is not

complex technically, but does produce complex behaviors, as predicted by the theory.

This theory/model/system has relevance to many important philosophical issues

in cognitive science and arti�cial intelligence, such as symbol-grounding, induction,

categorization, the role of logic and computation in thought, and others. In fact, a

noteworthy aspect of this research project is its tight connection with many ques-

tions that are traditionally studied in separate disciplines and subdisciplines, and the

coherence of its answers to these questions.

8.2 Evaluation

After many descriptions and discussions, let us reevaluate the foundations of the

research, by comparing the working de�nition of intelligence with the requirements

set up at the beginning of Chapter 2:
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Faithfulness. Obviously, natural information-processing systems (i.e., humans and

animals) are adaptive, and they have to work with insu�cient knowledge and

resources. Being more adaptive, human beings are much more intelligent than

other animals. By contrast, though traditional computing systems also have

extremely limited knowledge and resources, they are usually set a carefully

limited class of problems, chosen so that their knowledge and resources will

in fact be su�cient for those problems. Therefore, the de�nition draws a line

between intelligent and nonintelligent systems that is faithful to the common

usage of the word \intelligence."

Sharpness. The de�nition is sharp, because whether a system is adaptive can be

determined by testing whether its behavior depends on its experience. For a

computer system, whether it is designed under the assumption of insu�cient

knowledge and resources can be determined by checking for three properties:

�niteness (can the system forget?), operation in real time (can the system work

under a range of di�erent time constraints?), and openness (does the system

restrict what it can be told or asked?). As Turing proposed, we still decide

whether a system is intelligent by \talking" with it, but the standards are

di�erent | we do not require the system to talk like a human.

Fruitfulness. As the foregoing chapters have demonstrated, the de�nition has yielded

fruit by inspiring the major components of NARS, which have exhibited many

desired properties. Indeed, rooted in this de�nition of intelligence, NARS ad-

dresses many facets of AI in a consistent manner, and also provides a way

of conceiving AI that clearly distinguishes it from related disciplines, such as

computer science, psychology, and neuroscience.

Simplicity. The de�nition is quite simple, making it easy to discuss and to apply

to research. Its direct outcome, NARS, is also relatively simple in its structure
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(compared with other AI systems), though the system's behavior can be very

complex due to its interaction with its environment.

Because of these considerations, I believe that the working de�nition of intelligence

introduced in this project is preferable to many others accepted by AI researchers.

However, I do not claim that the de�nition is the correct one. Obviously, there are

many intelligence-related phenomena that have not been not covered by the current

version of NARS. These phenomena suggest extensions of NARS, which may cause

future revisions to the de�nition, but which at this time cannot be used as arguments

against the de�nition. A working de�nition, as the cornerstone of a research paradigm,

merits rejection only when a superior rival is o�ered, not merely when a weakness is

pointed up in it (Kuhn, 1970). I hope that in the near future the working de�nition

of intelligence used here can be replaced by a better one, one that will still be based

on the four criteria of faithfulness, sharpness, fruitfulness, and simplicity.

8.3 Limitations and extensions

We can distinguish three types of limitations for NARS: ones that can and will be

removed in future versions of system, ones that might be removed in future versions

of the system, and ones that cannot be removed in future versions of the system.

� The next step: NARS 4

NARS 3.0 is an intelligent reasoning system, in the sense that it is an adaptive

system that works under insu�cient knowledge and resources. However, this does not

mean that it cannot be made \more intelligent". Indeed, according to my working

de�nition of intelligence, one can increase a system's intelligence by extending its

interface language, by providing it with new inference rules, by increasing its e�ciency
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at resource management, by giving it the capacity to self-organize at a higher level,

and so on.

The most obvious limitation of NARS 3.0 is in its language and inference rules,

where only simple (atomic) terms can be represented and processed. In the next

version, NARS 4, compound terms will be introduced into the system. Speci�cally,

these types of compound terms will be de�ned and integrated into the processing of

NARS.

1. If S is a term, fSg, the set containing S, is also a term. Actually, this com-

pound term was already introduced in Section 3.5, when the \2" relation was

de�ned. However, the corresponding compound terms are not directly processed

in NARS 3.0.

2. If S and T are terms, (S [ T ) (union), (S \ T ) (intersection), and (S � T ) (set

di�erence) are valid terms.

3. If S and T are terms, (S � T ) (Cartesian product) is also a term. When T is

a term and R is a Cartesian product, (R�1) (inverse) and (R=T ) (quotient) are

also terms.

(R=T ) is the term de�ned by the relation ((R=T )�T ) = R, whereas the intuitive

meanings of the other compound terms are similar to their meanings in set theory.

In fact, the term-oriented language used in NARS is closely related to the formal

language used in set theory. The major di�erences are that in NARS a judgment is

no longer binary, and a term is de�ned both extensionally and intensionally.

With these compound terms, NARS could represent \Tweety is a white bird" as

\Tweety 2 (white-thing \ bird)", where the compound term \(white-thing \ bird)"

is the predicate term of the judgment; it could also represent \Mary and John are
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friends" as \(fMaryg � fJohng) � friend", where \(fMaryg � fJohng)" is the

subject term.

It is easy to extend the grammar de�ned in Section 3.5 to include these types of

compound terms. The study of the related truth-value functions is of course more

complex, and is under way.

The extended system not only will handle compound terms provided by the user,

but also will be able to generate them by itself. The need for compound terms

comes directly from the insu�ciency of knowledge and resources. If \white-thing"

and \bird" appear together in the intensions and/or extensions of many terms, then

treating them as a unit will be much more e�cient, hence more intelligent.

What makes this approach di�erent from previous \concept-forming" approaches

is: inference in NARS is knowledge-driven. The system does not exhaustively try

all possible ways to form compound terms. The term \(white-thing \ bird)" will

be formed only when the system �nds a term that is both \white-thing" and \bird".

After such a compound term is formed, the system will remember its relations with its

constituent terms, yet at the same time treat it like other simple terms. Compound

terms formed in this way will tend to be quickly forgotten by the system, unless they

repeatedly crop up in the system's inference activity. If a compound term survives in

this type of competition for resources, the system will come to treat it more and more

as a whole, meaning that its relations with its constituent terms will be explicitly

considered less and less often. In certain situations, these relations might even be

totally forgotten by the system. As a result, in NARS 4 one can expect more complex

categorization and inference processes.

� Long-term limitations

After the implementation of the new features introduced above, there will of course

still be many important and interesting things typical of intelligent systems that
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NARS cannot do. The following are some of them.

Higher-order judgments. It is easy to extend the �rst-order term-oriented lan-

guage used in NARS 4 to a higher order: we need only allow an inheritance

relation, or a judgment about an inheritance relation, to be used as a term. In

this way, the system can represent knowledge like \John knows that penguins

are birds" and \If Mary is John's wife, then Ana is Bob's wife". What is hard

is to set up inference rules for these types of higher-order judgments. It seems

that all the old rules (those for �rst-order judgments) are still valid, but there

should be new ones that apply specially to higher-order judgments.

Procedural knowledge. If we allow a term to represent an operation or an event,

such as \to tell" or \to move", then it is possible for the system to represent

procedural knowledge, and to use it in planning and scheduling of activities.

However, as with higher-order judgments, at the current time it is still not

clear what special inference rules are necessary for procedural knowledge. For

instance, the system may need rules to organize operations into larger units.

Sensory{motor subsystem. The ability to deal directly with the physical world

is not required in my working de�nition of intelligence, but if a system has

some kind of sensory{motor mechanisms, its interface language will ipso facto

be greatly extended, and it will therefore be more intelligent than a system that

has only a symbolic interface. After such an extension, some terms in NARS

will no longer correspond to words in a symbolic language, but to perceptual

patterns or motor routines of the system that arise in its physical (not verbal)

interaction with its environment.

Natural-language interface. Semantically, the interface language of NARS 3.0 is

already more similar to natural language than are those of many other reasoning
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systems, since the meaning of a term or a judgment is determined by available

knowledge, and therefore is 
uid and context-sensitive. However, to make NARS

handle natural language is still a distant goal. Because we cannot expect NARS

to have human experience, it is not clear how far we can go in the attempt to

make NARS use our language not only intelligently (which is relatively easy)

but also in a human way.

Meta-level self-organizing. All the self-organization in NARS 4 will still be on the

level of domain knowledge. In the course of building and modifying its knowl-

edge hierarchy, the system will generate new judgments and new terms, and it

will the adjust truth values of judgments and the priorities of chunks, tasks, and

pieces of knowledge, but it won't change its own personality parameters (such

as the size of a chunk), inference rules (such as how to revise a judgment),

or control strategies (such as tampering with its forgetting rate). These kinds

of meta-level self-organization require higher-order judgments and procedural

knowledge, as well as knowledge about the system itself.

Local axiomatization. Even though I claim that intelligence arises when knowl-

edge and resources are insu�cient, this does not contradict the fact that human

beings can axiomatize a speci�c domain (\local axiomatization") by assuming

su�cient knowledge and resources. If NARS had a similar capacity to locally

axiomatize, it would then be able to use numbers and other mathematical no-

tions, make counterfactual assumptions (which involves accepting a statement

in the face of negative evidence), design algorithms, and so on, thus achieving

greater generality of knowledge and higher e�ciency of resources. For pieces of

knowledge of this type, we might wish to let their con�dence values equal 1,

meaning that they are conventions made by the system, so will not be directly

used to predict future events, and therefore cannot be revised by new evidence.
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How to coordinate such analytical knowledge with the system's empirical knowl-

edge is still an open problem.

Since I do not have clear ideas about how to extend NARS to do these things yet,

they will remain limitations of NARS for a long while, but at the same time they

will become my goals in future years. However, I still have reason to believe that

it makes more sense to tackle these challenges from a non-axiomatic point of view,

rather than from a pure-axiomatic or semi-axiomatic point of view, since they are

all closely related to the working de�nition of intelligence | namely, the ability to

adapt under insu�cient knowledge and resources. Therefore, I feel that what I am

now doing constitutes a necessary step toward these goals.

� Permanent limitations

There are certain limitations that cannot be removed from the NARS project,

since they are fundamentally inconsistent with the working de�nition of intelligence

that gives rise to NARS.

1. Since NARS works with insu�cient knowledge and resources, it is impossible

for it to have properties that only a pure-axiomatic system can have, such as

consistency, completeness, decidability, and so on. When NARS is used to solve

practical problems, it cannot guarantee that its results will be correct or optimal;

judgments in NARS are always subject to being revised by the system or refuted

by future experience.

2. NARS is not designed to be an accurate model of human reasoning, but to be

a reasoning system that has intelligence (according to my working de�nition of

the concept). The system should follow the same principles as does the human

mind. However, it is not necessary to have the same internal structure and

mechanisms as in the human brain, since computer hardware is fundamentally
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di�erent from bio-hardware. Moreover, since NARS' experience will always be

di�erent from that of a human being, it is not necessary (though it is still

possible to a certain extent) to have the same external behavior as the human

mind, such as exactly reproducing some psychological data or passing a certain

type of Turing test.

3. NARS is not designed to solve certain domain problems. It is not an expert

system nor any other type of computer application system. It is intelligent, not

because it can solve problems that no (or few) people can solve (though that

might occur in the future), but because it works in a highly adaptive way. Like

humans, it will make not only intelligent ideas, but also \intelligent" mistakes.

These limitations are easier to deal with than the previous ones | we can just

ignore them. This is not to say that the attempt to overcome them is not a valuable

goal for research, but simply that such a goal is fundamentally di�erent from (though

still related to) our current goal | exploring the essence of intelligence. These limi-

tations of the NARS project mean that if someone is looking for a computer model

with these properties, then NARS should not be a candidate, having been designed

with other goals in mind.
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